Skip to main content
Log in

Hydrochemistry and strontium isotope fingerprints of solute sources and CO2 consumption in Changbai Mountain area, Northeast China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As one of the most representative forms of groundwater, mineral water provides a critical understanding of regional hydrogeochemical features and rock weathering processes. However, current studies have mostly focused on the quality of mineral water and have rarely addressed the weathering process during its formation. Therefore, a multi-tracer approach combines chemical parameters, major ions, selected trace elements, and 87Sr/86Sr ratios for mineral water samples in Changbai Mountain during 2020–2021. First, we determined the hydrogeochemical characteristics of different types of mineral water. Secondly, the water-rock interaction processes governing the water mineralization were described to fix the hydrogeochemical background. Thirdly, the chemical weathering rate was calculated. The total dissolved load generated by rock weathering was around 6.76 tons/km2/year in the mineral water catchment area; 44.6% and 36.9% of the dissolved load were derived from silicate and carbonate weathering, respectively. The trace carbonates also played an important role in the overall rock weathering. Finally, after fully considering various influencing factors, we concluded that lithological characteristics and the soil environment rich in organic acids were the most important factors affecting rock weathering in the Changbai Mountain area. Overall, this study highlights the mineral water’s role in the fluxes of CO2 in local area and reveals possible influence of the unique ecological and geological environment on rock weathering in Changbai Mountain. It can provide a reference for the subsequent assessment of environmental stability for basalt areas and the possibility of sustainable water resources development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  • Aloisi G, Wallmann K, Tishchenko P, Haeckel M, Pavlova G, Greinert J, Eisenhauer A (2006) A possible long-term CO2 sink through submarine weathering of detrital silicates. Geochim Cosmochim Ac 70(18):A11

    Article  Google Scholar 

  • Amiri V, Berndtsson R (2020) Fluoride occurrence and human health risk from groundwater use at the west coast of Urmia Lake, Iran. Arab J Geosci 13(18):921

    Article  CAS  Google Scholar 

  • Bello M, Ketchemen-Tandia B, Nlend B, Huneau F, Fouepe A, Fantong WY, Boum-Nkot SN, Garel E, Celle-Jeanton H (2019) Shallow groundwater quality evolution after 20 years of exploitation in the southern Lake Chad: hydrochemistry and stable isotopes survey in the far north of Cameroon. Environ Earth Sci 78(15)

  • Berner RA (1997) The rise of plants and their effect on weathering and atmospheric CO2. Science 276(5312):544–546

    Article  CAS  Google Scholar 

  • Berner RA, Maasch KA (1996) Chemical weathering and controls on atmospheric O2 and CO2: fundamental principles were enunciated by J.J. Ebelmen in 1845. Geochim Cosmochim Ac 60(9):1633–1637

    Article  CAS  Google Scholar 

  • Bian JM, Li YH, Ma YX, Li JL, Yu YX, Sun WH (2022) Study on hydrochemical characteristics and formation process of Antu mineral water in Changbai Mountain, China. Water-Sui 14(18)

  • Bickle MJ, Bunbury J, Chapman HJ, Harris NB, Fairchild IJ, Ahmad T (2003) Fluxes of Sr into the headwaters of the Ganges. Geochim Cosmochim Ac 67(14):2567–2584

    Article  CAS  Google Scholar 

  • Blum JD, Gazis CA, Jacobson AD, Page Chamberlain C (1998) Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series. Geology 26(5):411–414

    Article  CAS  Google Scholar 

  • Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Ac 58(10):2341–2359

    Article  CAS  Google Scholar 

  • Buggle B, Glaser B, Hambach U, Gerasimenko N, Marković S (2011) An evaluation of geochemical weathering indices in loess–paleosol studies. Quat Int 240(1):12–21

    Article  Google Scholar 

  • Caldeira K (2006) Forests, climate, and silicate rock weathering. J Geochem Explor 88(1-3):419–422

    Article  CAS  Google Scholar 

  • Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombon Bay, Argentina. J Hydrol 365(3-4):335–345

    Article  CAS  Google Scholar 

  • Chai Y, Xiao C, Li M, Liang X (2020) Hydrogeochemical characteristics and groundwater quality evaluation based on multivariate statistical analysis. Water-Sui 12(10):2792

    CAS  Google Scholar 

  • Cloutier V (2004) Origin and geochemical evolution of groundwater in the Paleozoic Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada, INRS—Eau. PhD diss., PhD Thesis, INRS-Eau, Terre & Environnement, Québec, Canada

    Google Scholar 

  • Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353(3-4):294–313

    Article  CAS  Google Scholar 

  • Clow DW, Mast MA, Bullen TD, Turk JT (1997) Strontium 87/strontium 86 as a tracer of mineral weathering reactions and calcium sources in an Alpine/Subalpine Watershed, Loch Vale. Colorado Water Resour Res 33(6):1335–1351

    Article  CAS  Google Scholar 

  • Dalai TK, Krishnaswami S, Kumar A (2003) Sr and 87Sr/86Sr in the Yamuna River System in the Himalaya: sources, fluxes, and controls on Sr isotope composition. Geochim Cosmochim Ac 67(16):2931–2948

    Article  CAS  Google Scholar 

  • Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202(3-4):257–273

    Article  CAS  Google Scholar 

  • Deuerling KM, Martin JB, Martin EE, Scribner CA (2018) Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, west Greenland. J Hydrol 556:220–232

    Article  CAS  Google Scholar 

  • Dinelli E, Lima A, De Vivo B, Albanese S, Cicchella D, Valera P (2010) Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. J Geochem Explor No.3:317–335

    Article  Google Scholar 

  • Dixon JL, Hartshorn AS, Heimsath AM, DiBiase RA, Whipple KX (2012) Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains, California. Earth Planet Sc Lett 323:40–49

    Article  Google Scholar 

  • Elena FEFY, Vasiliy L, Natalia K, Arslan S, Elena M, Ekaterina B, Anna K, Alexey M, Elena B (2020) Hydrogeology and hydrogeochemistry of mineral sparkling groundwater within Essentuki area (Caucasian mineral water region). Environ Earth Sci No.1:1–12

    Google Scholar 

  • Ettayfi N, Bouchaou L, Michelot JL, Tagma T, Warner N, Boutaleb S, Massault M, Lgourna Z, Vengosh A (2012) Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco. J Hydrol 438-439:97–111

    Article  CAS  Google Scholar 

  • Fan B, Zhao Z, Tao F, Liu B, Tao Z, Gao S, Zhang L (2014) Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: a comparison among the upstream, midstream and downstream. J Asian Earth Sci 96:17–26

    Article  Google Scholar 

  • Feng M, Zhang W, Zhang S, Sun Z, Li Y, Huang Y, Wang W, Qi P, Zou Y, Jiang M (2022) The role of snowmelt discharge to runoff of an alpine watershed: evidence from water stable isotopes. J Hydrol 604:127209

    Article  CAS  Google Scholar 

  • Fillimonova E, Kharitonova N, Baranovskaya E, Aseeva AMA (2022) Geochemistry and therapeutic properties of Caucasian mineral waters: a review. Environ Geochem Hlth No.7:2281–2299

    Article  Google Scholar 

  • Fu H, Jian X, Liang H, Zhang W, Shen X, Wang L (2022) Tectonic and climatic forcing of chemical weathering intensity in the northeastern Tibetan Plateau since the middle Miocene. Catena 208:105785

    Article  CAS  Google Scholar 

  • Gabet EJ, Mudd SM (2009) A theoretical model coupling chemical weathering rates with denudation rates. Geology 37(2):151–154

    Article  CAS  Google Scholar 

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ, Probst J, Faure H, Veizer J (1999) Global silicate weathering and CO (sub 2) consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1-4):3–30

    Article  CAS  Google Scholar 

  • Garzanti E, Padoan M, Andò S, Resentini A, Vezzoli G, Lustrino M (2013) Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. J Geol 121(6):547–580

    Article  CAS  Google Scholar 

  • Garzanti E, Padoan M, Setti M, López-Galindo A, Villa IM (2014) Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chem Geol 366:61–74

    Article  CAS  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090

    Article  CAS  Google Scholar 

  • Guo WF, Liu JQ, Guo ZF (2014) Temporal variations and petrogenetic implications in Changbai basaltic rocks since the Pliocene. Acta Petrol Sin 30(12):3595–3611

    CAS  Google Scholar 

  • Han G, Liu C (2004) Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem Geol 204(1-2):1–21

    Article  CAS  Google Scholar 

  • Horton TW, Chamberlain CP, Fantle M, Blum JD (1999) Chemical weathering and lithologic controls of water chemistry in a high-elevation river system: Clark’s Fork of the Yellowstone River, Wyoming and Montana. Water Resour Res 35(5):1643–1655

    Article  CAS  Google Scholar 

  • Jiang H, Lee CA (2019) On the role of chemical weathering of continental arcs in long-term climate regulation: a case study of the Peninsular Ranges batholith, California (USA). Earth Planet Sci Lett 525:115733

    Article  CAS  Google Scholar 

  • Kump LR, Brantley SL, Arthur MA (2000) Chemical, weathering, atmospheric CO2, and climate. Annu Rev Earth Pl Sci 28:611–667

    Article  CAS  Google Scholar 

  • Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38(7):1862–1872

    Article  CAS  Google Scholar 

  • Lavrushin VY, Israfailov YG, Polyak BG, Pokrovsky BG, Bujakaite MI, Kamensky IL (2018) Conditions of the formation of thermomineral waters in the Talysh Fold Zone of the Lesser Caucasus (Azerbaijan) based on isotope-geochemical data (3He/4He, δ13CCO2, δ13CCH4, δ15NN2, 87Sr/86Sr, δDH2O, and δ18OH2O). Lithol Miner Resour No.1:53–75

    Article  Google Scholar 

  • Li D (2022) Genesis of metasilicate mineral water in the basalt area, Changbai Mountain: an experimental study on the kinetics of the water-rock interactions. Master Jilin University

    Google Scholar 

  • Li X, Han G, Liu M, Yang K, Liu J (2019) Hydro-geochemistry of the river water in the Jiulongjiang River Basin, Southeast China: implications of anthropogenic inputs and chemical weathering. Int J Environ Res Public Health 16(3):440

    Article  CAS  Google Scholar 

  • Li Y, Bian J, Li J, Ma Y, Anguiano JHH (2022) Hydrochemistry and stable isotope indication of natural mineral water in Changbai Mountain, China. J Hydrol Reg Stud 40:101047

    Article  Google Scholar 

  • Liu Z, Dreybrodt W, Liu H (2011) Atmospheric CO2 sink: silicate weathering or carbonate weathering? Appl Geochem 26:S292–S294

    Article  CAS  Google Scholar 

  • Ma H, Yang Q, Pan X, Wu C, Chen C (2015) Origin of Early Pleistocene basaltic lavas in the Erdaobaibe River basin, Changbaishan region. Acta P etrologica Sinica 31(11):3484–3494

    CAS  Google Scholar 

  • Maher K, Chamberlain CP (2014) Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343(6178):1502–1504

    Article  CAS  Google Scholar 

  • Marandi A, Shand P (2018) Groundwater chemistry and the Gibbs diagram. Appl Geochem 97:209–212

    Article  CAS  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401

    Article  CAS  Google Scholar 

  • Moon S, Huh Y, Qin J, van Pho N (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim Cosmochim Ac 71(6):1411–1430

    Article  CAS  Google Scholar 

  • Negrel P, Casanova J, Blomqvist R, Kaija J, Frape S (2003) Strontium isotopic characterization of the Palmottu hydrosystem (Finland): water-rock interaction and geochemistry of groundwaters. Geofluids 3(3):161–175

    Article  CAS  Google Scholar 

  • Negrel P, Pauwels H (2004) Interaction between different groundwaters in Brittany catchments (France): characterizing multiple sources through strontium- and sulphur isotope tracing. Water Air Soil Pollut 151(1-4):261–285

    Article  CAS  Google Scholar 

  • Negrel P, Pauwels H, Chabaux F (2018) Characterizing multiple water-rock interactions in the critical zone through Sr-isotope tracing of surface and groundwater. Appl Geochem 93:102–112

    Article  CAS  Google Scholar 

  • Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J Geol 104(5):525–542

    Article  CAS  Google Scholar 

  • Oliva P, Viers J, Dupre B (2003) Chemical weathering in granitic environments. Chem Geol 202(3-4):225–256

    Article  CAS  Google Scholar 

  • Pang H, Pan B, Garzanti E, Gao H, Zhao X, Chen D (2018) Mineralogy and geochemistry of modern Yellow River sediments: implications for weathering and provenance. Chem Geol 488:76–86

    Article  CAS  Google Scholar 

  • Panno SV, Kelly WR, Askari Z, Hackley KC, Krothe J (2022) Stratigraphic and structural controls on the occurrence of saline springs within the Illinois Basin, U.S. J Hydrol 610:127823

    Article  CAS  Google Scholar 

  • Paytan A, Griffith EM, Eisenhauer A, Hain MP, Wallmann K, Ridgwell A (2021) A 35-million-year record of seawater stable Sr isotopes reveals a fluctuating global carbon cycle. Science 371(6536):1346–1350

    Article  CAS  Google Scholar 

  • Riebe CS, Hahm WJ, Brantley SL (2017) Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surf Process Landf 42(1):128–156

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sc Lett 224(3-4):547–562

    Article  CAS  Google Scholar 

  • Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Ac 63(9):1277–1292

    Article  CAS  Google Scholar 

  • Ryu JS, Lee KS, Chang HW (2007) Hydrogeochemical and isotopic investigations of the Han River Basin, South Korea. J Hydrol 345(1-2):50–60

    Article  Google Scholar 

  • Santoni S, Huneau F, Garel E, Aquilina L, Vergnaud-Ayraud V, Labasque T, Celle-Jeanton H (2016) Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal-aquifer of Bonifacio (Corsica, France). Sci Total Environ 573:233–246

    Article  CAS  Google Scholar 

  • Shand, P., Darbyshire, DPF, Love, AJ, & Edmunds, WM. (2009). Sr isotopes in natural waters: Applications to source characterisation and water–rock interaction in contrasting landscapes. Appl Geochem, 24(4), 574-586.

    Google Scholar 

  • Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 57:204–211

    Article  CAS  Google Scholar 

  • Shi D, Tan H, Chen X, Rao W, Basang R (2021) Uncovering the mechanisms of seasonal river–groundwater circulation using isotopes and water chemistry in the middle reaches of the Yarlungzangbo River. Tibet J Hydrol 603:127010

    Article  CAS  Google Scholar 

  • Spence J, Telmer K (2005) The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, delta C-13(DIC), and delta S-34(SO4) in rivers of the Canadian Cordillera. Geochim Cosmochim Ac 69(23):5441–5458

    Article  CAS  Google Scholar 

  • Spence J, Telmer K (2006) The role of sulfur in chemical weathering and atmospheric CO2 fluxes: evidence from major ions, δ13CDIC, and δ34SSO4 in rivers of the Canadian Cordillera. Geochim Cosmochim Ac No.23:5441–5458

    Google Scholar 

  • Suchet PA, Probst JL (1995) A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus B 47(1-2):273–280

    Article  Google Scholar 

  • Sun M, Wu W, Ji X, Wang X, Qu S (2019) Silicate weathering rate and its controlling factors: a study from small granitic watersheds in the Jiuhua Mountains. Chem Geol 504:253–266

    Article  CAS  Google Scholar 

  • Tao Z, Gao QZ, Wang ZG, Zhang SH, Xie CJ, Lin PS, Ruan XB, Li SH, Mao HR (2011) Estimation of carbon sinks in chemical weathering in a humid subtropical mountainous basin. Chin Sci Bull 56(35):3774–3782

    Article  CAS  Google Scholar 

  • Tian M, Wang Z, Bai R, Sun C, Wang D (2014) Geochemistry of pedogenesis of dark brown soil in Changbai Mountain area. Glob Geol 3:695–701

    Google Scholar 

  • Toth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7(1):1–14

    Article  Google Scholar 

  • van der Aa M (2003) Classification of mineral water types and comparison with drinking water standards. Environ Geol 44(5):554–563

    Article  Google Scholar 

  • Vaughn, B.H., Fountain, A.G., 2005. MacAyeal, D.R. (ed), pp. 107-112, International symposium on ice and water interactions.

  • Wang G, Xiao C, Qi Z, Lai Q, Meng F, Liang X (2021b) Research on the exploitation and utilization degree of mineral water based on ecological base flow in the Changbai Mountain basalt area, northeast China. Environ Geochem Hlth.

  • Wang RF, Wu X, Zhai YL, Su YX, Liu CH (2021a) An experimental study on the sources of strontium in mineral water and general rules of its dissolution-a case study of Chengde. Hebei Water-Sui 13(5)

  • Wang Y, Guo Q, Su C, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328(3-4):592–603

    Article  CAS  Google Scholar 

  • Wimpenny J, Yin Q, Tollstrup D, Xie L, Sun J (2014) Using Mg isotope ratios to trace Cenozoic weathering changes: a case study from the Chinese Loess Plateau. Chem Geol 376:31–43

    Article  CAS  Google Scholar 

  • Wu W, Zheng H, Yang J, Luo C, Zhou B (2013) Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic-hosted watershed. Chem Geol 356:141–150

    Article  CAS  Google Scholar 

  • Wu Y, Luo Z, Luo W, Ma T, Wang Y (2018) Multiple isotope geochemistry and hydrochemical monitoring of karst water in a rapidly urbanized region. J Contam Hydrol 218:44–58

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y (2014) Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China. Environ Sci Process Impacts 16(6):1469–1479

    Article  CAS  Google Scholar 

  • Xiao M, Wu F (2014) A review of environmental characteristics and effects of low-molecular weight organic acids in the surface ecosystem. J Environ Sci-China 26(5):935–954

    Article  CAS  Google Scholar 

  • Yan B, Qiu S, Xiao C, Liang X (2019) Characteristics of mineral fluids and geothermal reservoir in Changbai Mountain, northeast of China. Geochem Int 57(1):83–97

    Article  Google Scholar 

  • Yan B, Xiao C, Liang X, Wei R, Wu S (2015) Characteristics and genesis of mineral water from Changbai Mountain, Northeast China. Environ Earth Sci 73(8):4819–4829

    Article  CAS  Google Scholar 

  • Yan B, Xiao C, Liang X, Wu S (2016) Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China. Environ Geochem Hlth 38(1):291–307

    Article  CAS  Google Scholar 

  • Yan B, Xiao C, Liang X, Wu S (2017) Influences of pH and CO2 on the formation of metasilicate mineral water in Changbai Mountain, Northeast China. Appl Water Sci 7(4):1657–1667

    Article  CAS  Google Scholar 

  • Zeng Q, Liu Z (2017) Is basalt weathering a major mechanism for atmospheric CO2 consumption? Chin Sci Bull 62(10):1041–1049

    Article  Google Scholar 

  • Zhang H, Wu Y, Luo W, Chen W, Liu H (2020) Hydrogeochemical investigations of groundwater in the Lingbei area, Leizhou Peninsula. Huan jing ke xue= Huanjing kexue 41(11):4924–4935

    Google Scholar 

  • Zhang S, Han G, Zeng J, Xiao X, Malem F (2021) A strontium and hydro-geochemical perspective on human impacted tributary of the Mekong River Basin: sources identification, fluxes, and CO2 consumption. Water-Sui 13(21):3137

    CAS  Google Scholar 

  • Zhang X, Xu Z, Liu W, Moon S, Zhao T, Zhou X, Zhang J, Wu Y, Jiang H, Zhou L (2019) Hydro-geochemical and Sr isotope characteristics of the Yalong River Basin, Eastern Tibetan Plateau: implications for chemical weathering and controlling factors. Geochem Geophys Geosyst 20(3):1221–1239

    Article  CAS  Google Scholar 

  • Zhao R, Shan X, Wu C, Yi J, Hao G, Wang P (2019) Formation and evolution of the Changbaishan volcanic geothermal system in a convergent plate boundary back-arc region constrained by boron isotope and gas data. J Hydrol 569:188–202

    Article  CAS  Google Scholar 

  • Zhao R, Yi J (2021) Geochemistry of thermal waters in the Changbaishan volcanic geothermal system, Northeast China—implications for vapor-liquid separation controls on geothermal fluid composition. Arab J Geosci 14(6):419

    Article  CAS  Google Scholar 

  • Zhou Z, Jiang C, Li B (1998) Geochemical features of Sr, Nd and Pb isotopes of volcanic rocks in Cenozoic era in Tengchong, Changbaishan and Wudalianchi, China. J Seismol Res 21:89–97

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (grant number: 2019YFC0409103) and Graduate Innovation Fund of Jilin University (grant number: 2023CX099).

Author information

Authors and Affiliations

Authors

Contributions

Yihan Li: methodology, formal analysis, writing—original draft. Jianmin Bian: project administration. Peng Xu: data curation. Xiaoqing Sun: writing—review and editing. Wenhao Sun: data curation.

Corresponding author

Correspondence to Jianmin Bian.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Christian Gagnon

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ., Bian, J., Xu, P. et al. Hydrochemistry and strontium isotope fingerprints of solute sources and CO2 consumption in Changbai Mountain area, Northeast China. Environ Sci Pollut Res 30, 91929–91944 (2023). https://doi.org/10.1007/s11356-023-28837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28837-7

Keywords

Navigation