Skip to main content
Log in

Microplastics in water: types, detection, and removal strategies

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microplastics are one of the most concerning groups of contaminants that pollute most of the surroundings of the Earth. The abundance of plastic materials available in the environment moved the scientific community in defining a new historical era known as Plasticene. Regardless of their minuscule size, microplastics have posed severe threats to the life forms like animals, plants, and other species present in the ecosystem. Ingestion of microplastics could lead to harmful health effects like teratogenic and mutagenic abnormalities. The source of microplastics could be either primary or secondary in which the components of microplastics are directly released into the atmosphere and the breakdown of larger units to generate the smaller molecules. Though numerous physical and chemical techniques are reported for the removal of microplastics, their increased cost prevents the large-scale applicability of the process. Coagulation, flocculation, sedimentation, and ultrafiltration are some of the methods used for the removal of microplastics. Certain species of microalgae are known to remove microplastics by their inherent nature. One of the biological treatment strategies for microplastic removal is the activated sludge strategy that is used for the separation of microplastic. The overall microplastic removal efficiency is significantly high compared to conventional techniques. Thus, the reported biological avenues like the bio-flocculant for microplastic removal are discussed in this review article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM (2018) Production and characterization of a bioflocculant produced by Bacillus salmalaya 139SI-7 and its applications in wastewater treatment. Molecules 23(10):2689

    Article  Google Scholar 

  • Abuwatfa WH, Al-Muqbel D, Al-Othman A, Halalsheh N, Tawalbeh M (2021) Insights into the removal of microplastics from water using biochar in the era of COVID-19: a mini review. Case Stud Therm Eng 4:100151

    CAS  Google Scholar 

  • Afon A (2012) A survey of operational characteristics, socioeconomic and health effects of scavenging activity in Lagos, Nigeria. Waste Manag Res 30(7):664–671

    Article  Google Scholar 

  • Ahmed SJ, Nahiduzzaman KM, Rahaman KR (2002) Public environmental awareness regarding the use of polythene bags: before and after effects of the ban over their use & production. BAPA

    Google Scholar 

  • Akarsu C, Kumbur H, Kideys AE (2021) Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes. Water Sci Technol 84(7):1648–1662

    Article  CAS  Google Scholar 

  • Alabi OA, Ologbonjaye KI, Awosolu O, Alalade OE (2019) Public and environmental health effects of plastic wastes disposal: a review. J Appl Toxicol and Risk Assess 5(021):1–13

    Google Scholar 

  • Alagirusamy R, Das A (2011) Yarns: production, processability and properties. In: Fibrous and composite materials for civil engineering applications. Woodhead Publishing, pp 29–61

    Chapter  Google Scholar 

  • Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R So B: Biol Sci 364(1526):1977–1984

    Article  CAS  Google Scholar 

  • Araujo CF, Nolasco MM, Ribeiro AM, Ribeiro-Claro PJ (2018) Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res 142:426–440

    Article  CAS  Google Scholar 

  • Asamoah BO, Uurasjärvi E, Räty J, Koistinen A, Roussey M, Peiponen KE (2021) Towards the development of portable and in situ optical devices for detection of micro-and nanoplastics in water: a review on the current status. Polymers 13(5):730

    Article  CAS  Google Scholar 

  • Atis S, Tutluoglu B, Levent E, Ozturk C, Tunaci A, Sahin K, Saral A, Oktay I, Kanik A, Nemery B (2005) The respiratory effects of occupational polypropylene flock exposure. Eur Respir J 25(1):110–117

    Article  CAS  Google Scholar 

  • Badola N, Bahuguna A, Sasson Y, Chauhan JS (2022) Microplastics removal strategies: a step toward finding the solution. Front Environ Sci Eng 16(1):1–18

    Article  Google Scholar 

  • Bajt O (2021) From plastics to microplastics and organisms. FEBS Open bio 11(4):954–966

    Article  CAS  Google Scholar 

  • Batool A, Valiyaveettil S (2021) Surface functionalized cellulose fibers–a renewable adsorbent for removal of plastic nanoparticles from water. J Hazard Mater 413:125301

    Article  CAS  Google Scholar 

  • Bayo J, López-Castellanos J, Olmos S (2020) Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Mar Pollut Bull 156:111211

    Article  CAS  Google Scholar 

  • Begum SA, Rane AV, Kanny K (2020) Applications of compatibilized polymer blends in automobile industry. In: Compatibilization of polymer blends. Elsevier, pp 563–593

    Chapter  Google Scholar 

  • Bouzid N, Anquetil C, Dris R, Gasperi J, Tassin B, Derenne S (2022) Quantification of microplastics by pyrolysis coupled with gas chromatography and mass spectrometry in sediments: challenges and implications. Microplastics 1(2):229–239

    Article  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199

    Article  CAS  Google Scholar 

  • Chen YJ, Chen Y, Miao C, Wang YR, Gao GK, Yang RX, Zhu HJ, Wang JH, Li SL, Lan YQ (2020a) Metal–organic framework-based foams for efficient microplastics removal. J Mater Chem A 8(29):14644–14652

    Article  CAS  Google Scholar 

  • Chen Y, Awasthi AK, Wei F, Tan Q, Li J (2021a) Single-use plastics: production, usage, disposal, and adverse impacts. Sci Total Environ 752:141772

    Article  CAS  Google Scholar 

  • Chen Y, Wen D, Pei J, Fei Y, Ouyang D, Zhang H, Luo Y (2020b) Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: current status and future prospects. Curr Opin Environ Sci Health 18:14–19

    Article  Google Scholar 

  • Chen S, Zheng Y, Han C, Liu H, Chen Y, Zhou J, Su S (2021b) Production of a bioflocculant using old polyester fibre as a fermentation feedstock and its use in treatment of polyester alkali-peeling wastewater. J Environ Chem Eng 9(4):105455

    Article  CAS  Google Scholar 

  • Cheng YR, Wang HY (2022) Highly effective removal of microplastics by microalgae Scenedesmus abundans. Chem Eng J 435:135079

    Article  CAS  Google Scholar 

  • Chia SE, Tan KT, Kwok SK (1987) A study on the health hazard of toluene in the polythene printing industry in Singapore. Ann Acad Med Singap 16(2):294–299

    CAS  Google Scholar 

  • Corinaldesi C, Canensi S, Dell’Anno A, Tangherlini M, Di Capua I, Varrella S, Willis TJ, Cerrano C, Danovaro R (2021) Multiple impacts of microplastics can threaten marine habitat-forming species. Commun Biol 4(1):1–13

    Article  Google Scholar 

  • Cunha C, Silva L, Paulo J, Faria M, Nogueira N, Cordeiro N (2020a) Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environ Pollut 263:114385

    Article  CAS  Google Scholar 

  • Cortés C, Domenech J, Salazar M, Pastor S, Marcos R, Hernández A (2020) Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ Sci: Nano 7(1):272–285

    Google Scholar 

  • Cunha C, Silva L, Paulo J, Faria M, Nogueira N, Cordeiro N (2020b) Microalgal-based biopolymer for nano-and microplastic removal: a possible biosolution for wastewater treatment. Environ Pollut 263:114385

    Article  CAS  Google Scholar 

  • Cunsolo S, Williams J, Hale M, Read DS, Couceiro F (2021) Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions. Anal Bioanal Chem 413(14):3789–3799

    Article  CAS  Google Scholar 

  • Dey TK, Uddin M, Jamal M (2021) Detection and removal of microplastics in wastewater: evolution and impact. Environ Sci Pollut Res 28(14):16925–16947

    Article  CAS  Google Scholar 

  • Dümichen E, Eisentraut P, Bannick CG, Barthel AK, Senz R, Braun U (2017) Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 174:572–584

    Article  Google Scholar 

  • Elmaci G (2020) Microwave-assisted rapid synthesis of C@ Fe3O4 composite for removal of microplastics from drinking water. Adıyaman Univ J Sci 10(1):207–217

    Google Scholar 

  • Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J (2014) Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS One 9(12):e111913

    Article  Google Scholar 

  • Fang H, Wang J, Lynch RA (2017) Migration of di (2-ethylhexyl) phthalate (DEHP) and di-n-butylphthalate (DBP) from polypropylene food containers. Food Control 73:1298–1302

    Article  CAS  Google Scholar 

  • Faria M, Ribeiro JP, Kaufmann M, Ferreira A, Cordeiro N (2020) Blue-green microalgae-based exopolymers as an efficient bioflocculant for microplastics debris. Micro 2020 International Conference. 334868

  • Forrest A, Giacovazzi L, Dunlop S, Reisser J, Tickler D, Jamieson A, Meeuwig JJ (2019) Eliminating plastic pollution: how a voluntary contribution from industry will drive the circular plastics economy. Front Mar Sci 6:627

    Article  Google Scholar 

  • Frederiksen M, Vorkamp K, Thomsen M, Knudsen LE (2009) Human internal and external exposure to PBDEs–a review of levels and sources. Int J Hyg Environ Health 212(2):109–134

    Article  CAS  Google Scholar 

  • Funck M, Yildirim A, Nickel C, Schram J, Schmidt TC, Tuerk J (2020) Identification of microplastics in wastewater after cascade filtration using pyrolysis-GC–MS. MethodsX 7:100778

    Article  CAS  Google Scholar 

  • Ganguly S (2018) Plastic pollution and its adverse impact on environment and ecosystem. In: International Conference on Recent Trends in Arts, Science. Engineering and Technology

    Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  Google Scholar 

  • Ghatge S, Yang Y, Ahn JH, Hur HG (2020) Biodegradation of polyethylene: a brief review. Appl Biol Chem 63(1):1–14

    Article  Google Scholar 

  • Goedecke C, Dittmann D, Eisentraut P, Wiesner Y, Schartel B, Klack P, Braun U (2020) Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples. J Anal Appl Pyrolysis 152:104961

    Article  CAS  Google Scholar 

  • Greene JP (2021) Automotive plastics and composites. William Andrew Publishing, p 127

    Book  Google Scholar 

  • Grover A, Gupta A, Chandra S, Kumari A, Khurana SM (2015) Polythene and environment. Int J Environ Sci 5(6):1091–1105

    CAS  Google Scholar 

  • Guo YL, Lambert GH, Hsu CC, Hsu MM (2004) Yucheng: health effects of prenatal exposure to polychlorinated biphenyls and dibenzofurans. Int Arch Occup Environ Health 77(3):153–158

    Article  CAS  Google Scholar 

  • Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY (2020) A global perspective on microplastics. J Geophys Res Oceans 125(1):e2018JC014719

    Article  Google Scholar 

  • Heo Y, Lee EH, Lee SW (2022) Adsorptive removal of micron-sized polystyrene particles using magnetic iron oxide nanoparticles. Chemosphere 307:135672

  • Ho BT, Roberts TK, Lucas S (2018) An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit Rev Biotechnol 38(2):308–320

    Article  CAS  Google Scholar 

  • Horton AA (2022) Plastic pollution: when do we know enough? J Hazard Mater 422:126885

    Article  CAS  Google Scholar 

  • Hotz P, Guillemin MP, Lob M (1980) Study of some hepatic effects (induction and toxicity) caused by occupational exposure to styrene in the polyester industry. Scand J Work Environ Health:206–215

  • Huang PC, Liou SH, Ho IK, Chiang HC, Huang HI, Wang SL (2012) Phthalates exposure and endocrinal effects: an epidemiological review. J Food Drug Anal 20(4):23

    Google Scholar 

  • Huang Z, Bu J, Wang H (2022) Application of two modified kaolin materials in removing micro-plastics from water. J Mater Cycles Waste Manag 24:1460–1475

    Article  CAS  Google Scholar 

  • Iroegbu AOC, Ray SS, Mbarane V, Bordado JC, Sardinha JP (2021) Plastic pollution: a perspective on matters arising: challenges and opportunities. ACS Omega 6(30):19343–19355

    Article  CAS  Google Scholar 

  • Jaakkola JJ, Knight TL (2008) The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environ Health Perspect 116(7):845–853

    Article  CAS  Google Scholar 

  • Jiang J, Wang X, Ren H, Cao G, Xie G, Xing D, Liu B (2020) Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci Total Environ 746:141378

    Article  CAS  Google Scholar 

  • Joo SH, Liang Y, Kim M, Byun J, Choi H (2021) Microplastics with adsorbed contaminants: mechanisms and treatment. Environ Chall 3:100042

    Article  CAS  Google Scholar 

  • Khan MAQ, Khan SF, Shattari F (2008) Halogenated hydrocarbons. In: Encyclopedia ecology. Elsevier, pp 1831–1843

  • Khanam PN, AlMaadeed MAA (2015) Processing and characterization of polyethylene-based composites. Adv Manuf: Polym Compos Sci 1(2):63–79

    Google Scholar 

  • Kik K, Bukowska B, Sicińska P (2020) Polystyrene nanoparticles: sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut 262:114297

    Article  CAS  Google Scholar 

  • Koerner GR, Koerner RM (2018) Polymeric geomembrane components in landfill liners. Solid Waste Landfilling:313–341

  • Koerner GR, Hsuan YG, Koerner RM (2007) The durability of geosynthetics. In: Geosynthetics in Civil Engineering. Woodhead Published Limited Cambridge, UK, pp 36–65

    Chapter  Google Scholar 

  • Koshti R, Mehta L, Samarth N (2018) Biological recycling of polyethylene terephthalate: a mini-review. J Polym Environ 26(8):3520–3529

    Article  CAS  Google Scholar 

  • Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail NI, Hasan HA, Othman AR, Purwanti IF (2020) Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. Int J Environ Res Public Health 17(24):9312

    Article  CAS  Google Scholar 

  • Lanaro M, Booth L, Powell SK, Woodruff MA (2018) Electrofluidodynamic technologies for biomaterials and medical devices: melt electrospinning. In: Electrofluidodynamic technologies (EFDTs) for biomaterials and medical devices. Woodhead Publishing, pp 37–69

    Chapter  Google Scholar 

  • Lange K, Magnusson K, Viklander M, Blecken GT (2021) Removal of rubber, bitumen and other microplastic particles from stormwater by a gross pollutant trap-bioretention treatment train. Water Res 202:117457

    Article  CAS  Google Scholar 

  • Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5(1):1–11

    Article  Google Scholar 

  • Lee KT, Tanabe S, Koh CH (2001) Contamination of polychlorinated biphenyls (PCBs) in sediments from Kyeonggi Bay and nearby areas, Korea. Mar Pollut Bull 42(4):273–279

    Article  CAS  Google Scholar 

  • Lee M, Choi W, Lim G (2022) Electrokinetic-assisted filtration for fast and highly efficient removal of microplastics from water. Chem Eng J 452:139152

    Article  Google Scholar 

  • Li X, Jiang X, Song Y, Chang SX (2021) Coexistence of polyethylene microplastics and biochar increases ammonium sorption in an aqueous solution. J Hazard Mater 405:124260

    Article  CAS  Google Scholar 

  • Liu F, Nord NB, Bester K, Vollertsen J (2020a) Microplastics removal from treated wastewater by a biofilter. Water 12(4):1085

    Article  CAS  Google Scholar 

  • Liu N, Liu Y, Tan X, Li M, Liu S, Hu X, Zhang P, Dai M, Xu W, Wen J (2020b) Synthesis a graphene-like magnetic biochar by potassium ferrate for 17β-estradiol removal: effects of Al2O3 nanoparticles and microplastics. Sci Total Environ 715:136723

    Article  CAS  Google Scholar 

  • Liu T, Yu S, Zhu X, Liao R, Zhuo Z, He Y, Ma H (2021) In-situ detection method for microplastics in water by polarized light scattering. Front Mar Sci 8:739683

    Article  Google Scholar 

  • Ly NH, Kim MK, Lee H, Lee C, Son SJ, Zoh KD, Vasseghian Y, Joo SW (2022) Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. J Nanostructure Chem 12:865–888

    Article  CAS  Google Scholar 

  • Ma B, Xue W, Hu C, Liu H, Qu J, Li L (2019) Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem Eng J 359:159–167

    Article  CAS  Google Scholar 

  • MacLeod M, Arp HPH, Tekman MB, Jahnke A (2021) The global threat from plastic pollution. Science 373(6550):61–65

    Article  CAS  Google Scholar 

  • Maddah HA (2016) Polypropylene as a promising plastic: a review. J Appl Polym Sci 6(1):1–11

    CAS  Google Scholar 

  • Maes T, Jessop R, Wellner N, Haupt K, Mayes AG (2017) A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep 7(1):1–10

    Article  Google Scholar 

  • Magalhães S, Alves L, Medronho B, Romano A, Rasteiro MDG (2020) Microplastics in ecosystems: from current trends to bio-based removal strategies. Molecules 25(17):3954

    Article  Google Scholar 

  • Maharana T, Negi YS, Mohanty B (2007) Recycling of polystyrene. Polym-Plast Technol Eng 46(7):729–736

    Article  CAS  Google Scholar 

  • Manzoor S, Naqash N, Rashid G, Singh R (2021) Plastic material degradation and formation of microplastic in the environment: a review. Mater Today: Proc 56:3254–3260

    Article  Google Scholar 

  • Mariano S, Tacconi S, Fidaleo M, Rossi M, Dini L (2021) Micro and nanoplastics identification: classic methods and innovative detection techniques. Front Toxicol 3:636640

    Article  Google Scholar 

  • Mathieu-Denoncourt J, Wallace SJ, de Solla SR, Langlois VS (2015) Plasticizer endocrine disruption: highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen Comp Endocrinol 219:74–88

    Article  CAS  Google Scholar 

  • Matsumoto M, Hirata-Koizumi M, Ema M (2008) Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul Toxicol Pharmacol 50(1):37–49

    Article  CAS  Google Scholar 

  • McGivney E, Cederholm L, Barth A, Hakkarainen M, Hamacher-Barth E, Ogonowski M, Gorokhova E (2020) Rapid physicochemical changes in microplastic induced by biofilm formation. Front Bioeng Biotechnol 8:205

    Article  Google Scholar 

  • McKeen LW (2020) The effect of radiation on properties of polymers. William Andrew

    Google Scholar 

  • Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes. Philos Trans R Soc B: Biol Sci 364(1526):2097–2113

    Article  CAS  Google Scholar 

  • Menyhárd A, Menczel JD, Abraham T (2020) Polypropylene fibers. In: Thermal analysis of textiles and fibers. Woodhead Publishing, pp 205–222

    Chapter  Google Scholar 

  • Michaels AS, Bixler HJ (1961) Flow of gases through polyethylene. J Polym Sci 50(154):413–439

    Article  CAS  Google Scholar 

  • Nava V, Frezzotti ML, Leoni B (2021) Raman spectroscopy for the analysis of microplastics in aquatic systems. Appl Spectrosc 75(11):1341–1357

    Article  CAS  Google Scholar 

  • Negrete Velasco A, Ramseier Gentile S, Zimmermann S, Stoll S (2022) Contamination and removal efficiency of microplastics and synthetic fibres in a conventional drinking water treatment plant. Front Water 4:835451

    Article  Google Scholar 

  • Ngema SS (2018) Synthesis, characterization and application of polyacrylamide grafted bioflocculants (TMT-1-g-PAM 2 and TST-1-g-PAM 3). Doctoral dissertation, University of Zululand

    Google Scholar 

  • Niaounakis M (2020) 3—polymers used in flexible packaging. Niaounakis MBT-R of FPP:57–96

  • Nisticò R (2020) Polyethylene terephthalate (PET) in the packaging industry. Polym Test 90:106707

    Article  Google Scholar 

  • Nofar M (2021) PLA binary blends with petroleum-based nondegradable thermoplastics. In: Multiphase polylactide blends: toward a sustainable and green environment, 1st edn. Elsevier, Amsterdam Oxford Cambridge, pp 233–263

    Chapter  Google Scholar 

  • Ohlson CG, Hardell L (2000) Testicular cancer and occupational exposures with a focus on xenoestrogens in polyvinyl chloride plastics. Chemosphere 40(9-11):1277–1282

    Article  CAS  Google Scholar 

  • Olesen KB, van Alst N, Simon M, Vianello A, Liu F, Vollertsen J (2017) Analysis of microplastics using FTIR imaging: application note. Agilent Application Note Environment

    Google Scholar 

  • Padervand M, Lichtfouse E, Robert D, Wang C (2020) Removal of microplastics from the environment. Environ Chem Lett 18(3):807–828

    Article  CAS  Google Scholar 

  • Park JW, Lee SJ, Hwang DY, Seo S (2021) Removal of microplastics via tannic acid-mediated coagulation and in vitro impact assessment. RSC Adv 11(6):3556–3566

    Article  CAS  Google Scholar 

  • Pascault JP, Williams RJJ (2012) Overview of thermosets: Structure, properties and processing for advanced applications. In Thermosets (pp 3–27). Woodhead Publishing

  • Patel RM (2016) Polyethylene. In: Multilayer flexible packaging. William Andrew Publishing, pp 17–34

    Chapter  Google Scholar 

  • Peng G, Xiang M, Wang W, Su Z, Liu H, Mao Y, Chen Y, Zhang P (2022) Engineering 3D graphene-like carbon-assembled layered double oxide for efficient microplastic removal in a wide pH range. J Hazard Mater 433:128672

    Article  CAS  Google Scholar 

  • Peng Y, Wu P, Schartup AT, Zhang Y (2021) Plastic waste release caused by COVID-19 and its fate in the global ocean. Proc Natl Acad Sci 118(47):e2111530118

    Article  CAS  Google Scholar 

  • Pizzichetti ARP, Pablos C, Álvarez-Fernández C, Reynolds K, Stanley S, Marugán J (2021) Evaluation of membranes performance for microplastic removal in a simple and low-cost filtration system. Case Stud Chem Environ Eng 3:100075

    Article  CAS  Google Scholar 

  • Poerio T, Piacentini E, Mazzei R (2019) Membrane processes for microplastic removal. Molecules 24(22):4148

    Article  CAS  Google Scholar 

  • Prata JC, da Costa JP, Duarte AC, Rocha-Santos T (2019) Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends Anal Chem 110:150–159

    Article  CAS  Google Scholar 

  • Proshad R, Kormoker T, Islam MS, Haque MA, Rahman MM, Mithu MMR (2018) Toxic effects of plastic on human health and environment: a consequences of health risk assessment in Bangladesh. Int J Health 6(1):1–5

    Article  Google Scholar 

  • Rajala K, Grönfors O, Hesampour M, Mikola A (2020) Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals. Water Res 183:116045

    Article  CAS  Google Scholar 

  • Rhodes CJ (2018) Plastic pollution and potential solutions. Sci Prog 101(3):207–260

    Article  Google Scholar 

  • Ritchie H, Roser M (2018) Plastic pollution. Our World in Data

    Google Scholar 

  • Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155

    Article  CAS  Google Scholar 

  • Ronca S (2017) Polyethylene. In: Brydson’s plastics materials. Butterworth-Heinemann, pp 247–278

    Chapter  Google Scholar 

  • Rustagi N, Pradhan SK, Singh R (2011) Public health impact of plastics: an overview. Indian J Occup Environ Med 15(3):100

    Article  Google Scholar 

  • Ryan PG, Connell AD, Gardner BD (1988) Plastic ingestion and PCBs in seabirds: is there a relationship? Mar Pollut Bull 19(4):174–176

    Article  CAS  Google Scholar 

  • Rytelewska S, Dąbrowska A (2022) The Raman spectroscopy approach to different freshwater microplastics and quantitative characterization of polyethylene aged in the environment. Microplastics 1(2):263–281

    Article  Google Scholar 

  • Qian W, Guo Y, Wang X, Qiu X, Ji X, Wang L, Li Y (2022) Quantification and assessment of chemical footprint of VOCs in polyester fabric production. J Clean Prod 339:130628

    Article  CAS  Google Scholar 

  • Sastri VR (2010) Chapter 6 - commodity thermoplastics: polyvinyl chloride, polyolefins, and polystyrene. In: Sastri VR (ed) Plastics design library, plastics in medical devices. William Andrew Publishing, pp 73–119

  • Sathyanarayana S (2008) Phthalates and children’s health. Curr Probl Pediatr Adolesc Health Care 2(38):34–49

    Article  Google Scholar 

  • Schwarz AE, Ligthart TN, Boukris E, Van Harmelen T (2019) Sources, transport, and accumulation of different types of plastic litter in aquatic environments: a review study. Mar Pollut Bull 143:92–100

    Article  CAS  Google Scholar 

  • Sembiring E, Fajar M, Handajani M (2021a) Performance of rapid sand filter–single media to remove microplastics. Water Supply 21(5):2273–2284

    Article  Google Scholar 

  • Sembiring E, Mahapati WOSW, Hidayat S (2021b) Microplastics particle size affects cloth filter performance. J Water Process Eng 42:102166

    Article  Google Scholar 

  • Shahadat M, Teng TT, Rafatullah M, Shaikh ZA, Sreekrishnan TR, Ali SW (2017) Bacterial bioflocculants: a review of recent advances and perspectives. Chem Eng J 328:1139–1152

    Article  CAS  Google Scholar 

  • Shen M, Hu T, Huang W, Song B, Zeng G, Zhang Y (2021) Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: performance, mechanism and utilization. Chem Eng J 421:129918

    Article  CAS  Google Scholar 

  • Sheng X, Wang J, Zhang W, Zuo Q (2021) The Potential for PE microplastics to affect the removal of carbamazepine medical pollutants from aqueous environments by multiwalled carbon nanotubes. Toxics 9(6):139

    Article  CAS  Google Scholar 

  • Shi B, Patel M, Yu D, Yan J, Li Z, Petriw D, Pruyn T, Smyth K, Passeport E, Miller RD, Howe JY (2022a) Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning. Sci Total Environ 825:153903

    Article  CAS  Google Scholar 

  • Shi C, Zhang S, Zhao J, Ma J, Wu H, Sun H, Cheng S (2022b) Experimental study on removal of microplastics from aqueous solution by magnetic force effect on the magnetic sepiolite. In: Separation and Purification Technology. Elsevier, p 120564

    Google Scholar 

  • Shi X, Zhang X, Gao W, Zhang Y, He D (2022c) Removal of microplastics from water by magnetic nano-Fe3O4. Sci Total Environ 802:149838

    Article  CAS  Google Scholar 

  • Shim WJ, Hong SH, Eo SE (2017) Identification methods in microplastic analysis: a review. Anal Methods 9(9):1384–1391

    Article  CAS  Google Scholar 

  • Shukri ZNA, Chik CENCE, Hossain S, Othman R, Endut A, Lananan F, Terkula IB, Kamaruzzan AS, Rahim AIA, Draman AS, Kasan NA (2022) A novel study on the effectiveness of bioflocculant-producing bacteria Bacillus enclensis, isolated from biofloc-based system as a biodegrader in microplastic pollution. Chemosphere 308:136410

    Article  Google Scholar 

  • Sierra I, Chialanza MR, Faccio R, Carrizo D, Fornaro L, Pérez-Parada A (2020) Identification of microplastics in wastewater samples by means of polarized light optical microscopy. Environ Sci Pollut Res 27(7):7409–7419

    Article  CAS  Google Scholar 

  • Siipola V, Pflugmacher S, Romar H, Wendling L, Koukkari P (2020) Low-cost biochar adsorbents for water purification including microplastics removal. Appl Sci 10(3):788

    Article  CAS  Google Scholar 

  • Simon M, Vianello A, Vollertsen J (2019) Removal of> 10 μm microplastic particles from treated wastewater by a disc filter. Water 11(9):1935

    Article  CAS  Google Scholar 

  • Singh S, Kalyanasundaram M, Diwan V (2021) Removal of microplastics from wastewater: available techniques and way forward. Water Sci Technol 84(12):3689–3704

    Article  CAS  Google Scholar 

  • Sun C, Wang Z, Chen L, Li F (2020) Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups. Chem Eng J 393:124796

    Article  CAS  Google Scholar 

  • Sun C, Wang Z, Zheng H, Chen L, Li F (2021) Biodegradable and re-usable sponge materials made from chitin for efficient removal of microplastics. J Hazard Mater 420:126599

    Article  CAS  Google Scholar 

  • Sun J, Wang Y, He Y, Liu J, Xu L, Zeng Z, Song Y, Qiu J, Huang Z, Cui L (2022) Effective removal of nanoplastics from water by cellulose/MgAl layered double hydroxides composite beads. Carbohydr Polym 298:120059

    Article  CAS  Google Scholar 

  • Šunta U, Trebše P, Kralj MB (2021) Simply applicable method for microplastics determination in environmental samples. Molecules 26(7):1840

    Article  Google Scholar 

  • Tang Y, Zhang S, Su Y, Wu D, Zhao Y, Xie B (2021) Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem Eng J 406:126804

    Article  CAS  Google Scholar 

  • Thompson RC, Moore CJ, Vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B: Biol Sci 364(1526):2153–2166

    Article  CAS  Google Scholar 

  • Thornton J (2002) Environmental impacts of polyvinyl chloride (PVC) building materials. Healthy Building Network, Washington, DC

    Google Scholar 

  • Tomić NZ, Marinković AD (2020) Compatibilization of polymer blends by the addition of graft copolymers. In: Compatibilization of polymer blends. Elsevier, pp 103–144

    Chapter  Google Scholar 

  • Tripathi D (2002) Practical guide to polypropylene. iSmithers Rapra Publishing

    Google Scholar 

  • Uurasjärvi E, Sainio E, Setälä O, Lehtiniemi M, Koistinen A (2021) Validation of an imaging FTIR spectroscopic method for analyzing microplastics ingestion by Finnish lake fish (Percafluviatilis and Coregonus albula). Environ Pollut 288:117780

    Article  Google Scholar 

  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30(1):75–95

    Article  CAS  Google Scholar 

  • Vriend P, Hidayat H, van Leeuwen J, Cordova MR, Purba NP, Löhr AJ, Faizal I, Ningsih NS, Agustina K, Husrin S, Suryono DD (2021) Plastic pollution research in Indonesia: state of science and future research directions to reduce impacts. Front Environ Sci 9:187

    Article  Google Scholar 

  • Wang J, Sun C, Huang QX, Chi Y, Yan JH (2021) Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars. J Hazard Mater 419:126486

    Article  CAS  Google Scholar 

  • Wang Q, Zhang M, Li R (2022) The COVID-19 pandemic reshapes the plastic pollution research–a comparative analysis of plastic pollution research before and during the pandemic. Environ Res 208:112634

    Article  CAS  Google Scholar 

  • Wang Z, Lin T, Chen W (2020a) Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci Total Environ 700:134520

    Article  CAS  Google Scholar 

  • Wang Z, Sedighi M, Lea-Langton A (2020b) Filtration of microplastic spheres by biochar: removal efficiency and immobilisation mechanisms. Water Res 184:116165

    Article  CAS  Google Scholar 

  • Wayman C, Niemann H (2021) The fate of plastic in the ocean environment–a minireview. Environ Sci Process Impacts 23(2):198–212

    Article  CAS  Google Scholar 

  • Winkler DE (1959) Mechanism of polyvinyl chloride degradation and stabilization. J Polym Sci 35(128):3–16

    Article  CAS  Google Scholar 

  • Wujcik EK, Duirk SE, Chase GG, Monty CN (2016) A visible colorimetric sensor based on nanoporous polypropylene fiber membranes for the determination of trihalomethanes in treated drinking water. Sensors Actuators B Chem 223:1–8

    Article  CAS  Google Scholar 

  • Xu JL, Thomas KV, Luo Z, Gowen AA (2019) FTIR and Raman imaging for microplastics analysis: state of the art, challenges and prospects. TrAC Trends Anal Chem 119:115629

    Article  CAS  Google Scholar 

  • Yang L, Cao X, Cui J, Wang Y, Zhu Z, Sun H, Liang W, Li J, Li A (2022) Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water. J Colloid Interface Sci 617:673–682

    Article  CAS  Google Scholar 

  • Yuan F, Yue L, Zhao H, Wu H (2020) Study on the adsorption of polystyrene microplastics by three-dimensional reduced graphene oxide. Water Sci Technol 81(10):2163–2175

    Article  CAS  Google Scholar 

  • Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JK, Wu C, Lam PK (2021a) Understanding plastic degradation and microplastic formation in the environment: a review. Environ Pollut 274:116554

    Article  CAS  Google Scholar 

  • Zhang Y, Jia Y (2018) Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM 2.5 removal. RSC Adv 8(55):31471–31477

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao J, Liu Z, Tian S, Lu J, Mu R, Yuan H (2021b) Coagulation removal of microplastics from wastewater by magnetic magnesium hydroxide and PAM. J Water Process Eng 43:102250

    Article  Google Scholar 

  • Zhang Z, Jiang P, Liu D, Feng S, Zhang P, Wang Y, Fu J, Agus H (2021c) Research progress of novel bio-based plasticizers and their applications in poly (vinyl chloride). J Mater Sci 56(17):10155–10182

    Article  CAS  Google Scholar 

  • Zhao H, Huang X, Wang L, Zhao X, Yan F, Yang Y, Li G, Gao P, Ji P (2022) Removal of polystyrene nanoplastics from aqueous solutions using a novel magnetic material: adsorbability, mechanism, and reusability. Chem Eng J 430:133122

    Article  CAS  Google Scholar 

  • Zheng B, Li B, Wan H, Lin X, Cai Y (2022) Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment. J Hazard Mater 431:128611

    Article  CAS  Google Scholar 

  • Zhou F, Wang X, Wang G, Zuo Y (2022) A rapid method for detecting microplastics based on fluorescence lifetime imaging technology (FLIM). Toxics 10(3):118

    Article  CAS  Google Scholar 

  • Zhuang J, Rong N, Wang X, Chen C, Xu Z (2022) Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water. Sep Purif Technol 293:121133

    Article  CAS  Google Scholar 

Download references

Funding

Ms. Shalini Mohan acknowledge the DBT-JRF (DBT/2022-23/KARE/2059).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Lakshmanan Muthulakshmi, and all authors commented on previous versions of the manuscript. Lakshmanan Muthulakshmi: writing-review and editing; Shalini Mohan: writing-review and editing; Tetiana Tatarchuk: writing-review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tetiana Tatarchuk.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

The authors have no relevant financial or non-financial interests to disclose.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthulakshmi, L., Mohan, S. & Tatarchuk, T. Microplastics in water: types, detection, and removal strategies. Environ Sci Pollut Res 30, 84933–84948 (2023). https://doi.org/10.1007/s11356-023-28460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28460-6

Keywords

Navigation