Skip to main content
Log in

The beneficial effects of bare and CMC-supported α-FeOOH, Fe3O4, and α-Fe2O3 nanoparticles on growth, nutrient content, and essential oil of summer savory (Satureja hortensis L.) under Cd, Pb and Zn stresses

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This research studies the impacts of iron oxide nanoparticles (FeONPs) on alleviating the toxic effects of cadmium (Cd), lead (Pb), and zinc (Zn) on summer savory (Satureja hortensis L.). Different types of soil additives, including bare and carboxymethylcellulose (CMC)-supported hematite (α-Fe2O3), goethite (α-FeOOH), and magnetite (Fe3O4), were applied at three rates (0, 0.25, and 0.5% w/w) to a Cd, Pb, and Zn-contaminated soil sample. The experimental results showed that the application of FeONPs increased plant height, dry weights of shoot and root, and yield and content of essential oil. Bare and CMC-supported FeONPs increased the content of K, P, and Fe in the aerial parts of summer savory. However, these soil additives reduced the contents of Cd, Pb, and Zn in plant tissues. CMC-supported FeONPs proved to be more efficient additives in diminishing the toxic effects of Cd, Pb, and Zn in summer savory compared to their bare forms. Bare and CMC-supported goethite NPs were able to restrict the uptake of Cd, Pb, and Zn by summer savory roots in the metal-contaminated soil. The application of CMC-supported goethite at an application dose of 0.5% (w/w) increased shoot dry weight, shoot concentrations of K, P, and Fe, and yield of essential oil by about 62.6, 76.6, 77.1, 210, and 230%, respectively. Conversely, they reduced shoot concentrations of Cd, Pb, and Zn by about 64.6, 68.7, and 40.6%, respectively, compared to the control. These are significant results and indicate that CMC-supported goethite is likely to be the most effective soil additive in diminishing the toxicity of Cd, Pb, and Zn to metal-stressed summer savory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The case and research samples presented in the content of this research report shall be collected and sampled after approval.

Notes

  1. Field Capacity

  2. World Health Organization

  3. Food and Agriculture Organization

References

Download references

Acknowledgements

We are grateful to Prof. Ravi Naidu for review and editing manuscript.

Funding

This work was supported by University of Zanjan

Author information

Authors and Affiliations

Authors

Contributions

Solmaz Bidast: Methodology, Formal analysis, Investigation, Resources, Writing (Original Draft and Editing).

Ahmad Golchin: Methodology, Conceptualization, Supervision, Resources.

Amir Mohseni: Writing (Review and Editing).

Corresponding author

Correspondence to Solmaz Bidast.

Ethics declarations

Ethical Approval

Not applicable.

Consent to participate

Yes.

Consent to publish

Yes.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Gangrong Shi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 13 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidast, S., Golchin, A. & Mohseni, A. The beneficial effects of bare and CMC-supported α-FeOOH, Fe3O4, and α-Fe2O3 nanoparticles on growth, nutrient content, and essential oil of summer savory (Satureja hortensis L.) under Cd, Pb and Zn stresses. Environ Sci Pollut Res 30, 78182–78197 (2023). https://doi.org/10.1007/s11356-023-28008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-28008-8

Keywords

Navigation