Skip to main content
Log in

Advancements in low-temperature NH3-SCR of NOx using Ba-based catalysts: a critical review of preparation, mechanisms, and challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Presently, selective catalytic reduction (SCR), with either carbon monoxide, urea, hydrocarbons, hydrogen, or ammonia as a reductant, has become a nitrogen oxide (NOx) removal technology (NOx conversion) of many catalytic companies and diesel engine exhaust gas. Although, there exists a serious threat of low-temperature limitations. So far, certain scientists have shown that barium-based (Ba-based) catalysts have the potential to be highly effective at SCR of NOx at low temperatures when ammonia is used as the reducing agent. The process of NOx storage and reduction which alternate SCR is known as the Lean NOx trap. Herein, we give the condensed advancements and production of the catalysts that involve BaO in low-temperature NH3-SCR of NOx, the advantages of BaO catalysts compared to the recently hot electrocatalysis, the stability of BaO catalyst materials, and the condensed advancements and production of the catalysts that involve BaO in low-temperature NH3-SCR of NOx. These catalysts are viewed in the light of their preparation method, particulate, and posture in mixed oxides. Also, the characteristic features of Ba-based catalysts are carefully considered and briefed under the following areas: preparation method and precursor, crystallinity, calcination temperature, morphology, acid sites, the specific surface area for reaction, redox property, and activation energy of catalysts. More to these are the discussions on Eley–Rideal [E-R] and Langmuir–Hinshelwood [L–H] mechanisms, the H2O/SO2 and O2 permissiveness, and the NH3-SCR reaction mechanism over Ba-based catalysts highlighting their possible effects. Finally, we proposed the prospect and the likely future research plan for the low-temperature NH3-SCR of NOx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

Not applicable.

References

  • Amanpour J, Salari D, Niaei A, Mousavi SM, Panahi PN (2013) Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology. J Environ Sci Health Part A 48:879–886

    Article  CAS  Google Scholar 

  • Andana T, Rappé KG, Nelson NC, Gao F, Wang Y (2022) Selective catalytic reduction of NOx with NH3 over Ce-Mn oxide and Cu-SSZ-13 composite catalysts–Low temperature enhancement. Appl Catal B 316:121522

    Article  CAS  Google Scholar 

  • Anderson JA, Liu Z, García MF (2006) Use of in situ FT-IR and XAS/XRD to study SO2 poisoning over model Pt/Ba/Al2O3 NOx storage and reduction (NSR) catalysts. Catal Today 113:25–33

    Article  CAS  Google Scholar 

  • Armor J (1995) Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen: a review. Catal Today 26:147–158

    Article  CAS  Google Scholar 

  • Azzoni ME, Franchi FS, Usberti N, Nasello ND, Castoldi L, Nova I, Tronconi E (2022) Dual-layer AdSCR monolith catalysts: a new solution for NOx emissions control in cold start applications. Appl Catal B 315:121544

    Article  CAS  Google Scholar 

  • Bae YK, Kim T-W, Kim J-R, Kim Y, Ha K-S, Chae H-J (2021) Enhanced SO2 tolerance of V2O5-Sb2O3/TiO2 catalyst for NO reduction with co-use of ammonia and liquid ammonium nitrate. J Ind Eng Chem 96:277–283

    Article  CAS  Google Scholar 

  • Balle P, Geiger B, Kureti S (2009) Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust. Appl Catal B 85:109–119

    Article  CAS  Google Scholar 

  • Barth J-O, Jentys A, Iliopoulou EF, Vasalos IA, Lercher JA (2004) Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. J Catal 227:117–129

    Article  CAS  Google Scholar 

  • Beale AM, Gao F, Lezcano-Gonzalez I, Peden CH, Szanyi J (2015) Recent advances in automotive catalysis for NO x emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405

    Article  CAS  Google Scholar 

  • Boningari T, Ettireddy PR, Somogyvari A, Liu Y, Vorontsov A, McDonald CA, Smirniotis PG (2015) Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions. J Catal 325:145–155

    Article  CAS  Google Scholar 

  • Brandenberger S, Kröcher O, Tissler A, Althoff R (2008) The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts. Catalysis Reviews 50:492–531

    Article  CAS  Google Scholar 

  • Brandhorst M, Zajac J, Jones D, Roziere J, Womes M, Jiménez-Lopez A, Rodriguez-Castellon E (2005) Cobalt-, copper-and iron-containing monolithic aluminosilicate-supported preparations for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 55:267–276

    Article  CAS  Google Scholar 

  • Buciuman F-C, Joubert E, Menezo J-C, Barbier J (2001) Catalytic properties of La0. 8A0. 2MnO3 (A= Sr, Ba, K, Cs) and LaMn0. 8B0. 2O3 (B= Ni, Zn, Cu) perovskites: 2. Reduction of nitrogen oxides in the presence of oxygen. Appl Catal B 35:149–156

    Article  CAS  Google Scholar 

  • Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18:1–36

    Article  CAS  Google Scholar 

  • Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: chemical and mechanistic aspects. Catal Today 107:139–148

    Article  Google Scholar 

  • Cai M, Liu X, Zhu T, Zou Y, Tao W, Tian M (2020) Simultaneous removal of SO2 and NO using a spray dryer absorption (SDA) method combined with O3 oxidation for sintering/pelleting flue gas. J Environ Sci 96:64–71

    Article  CAS  Google Scholar 

  • Carrillo AJ, Sastre D, Serrano DP, Pizarro P, Coronado JM (2016) Revisiting the BaO 2/BaO redox cycle for solar thermochemical energy storage. Phys Chem Chem Phys 18:8039–8048

    Article  CAS  Google Scholar 

  • Castoldi L, Nova I, Lietti L, Forzatti P (2004) Study of the effect of Ba loading for catalytic activity of Pt–Ba/Al2O3 model catalysts. Catal Today 96:43–52

    Article  CAS  Google Scholar 

  • Chen C, Cao Y, Liu S, Chen J, Jia W (2018) Review on the latest developments in modified vanadium-titanium-based SCR catalysts. Chin J Catal 39:1347–1365

    Article  CAS  Google Scholar 

  • Chen L, Li J, Ge M (2009) Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NO x by NH3. J Phys Chem C 113:21177–21184

    Article  CAS  Google Scholar 

  • Chen W, Xu R (2010) Clean coal technology development in China. Energy Policy 38:2123–2130

    Article  Google Scholar 

  • Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B (2007) Reactivity of NO/NO2–NH3 SCR system for diesel exhaust aftertreatment: identification of the reaction network as a function of temperature and NO2 feed content. Appl Catal B 70:80–90

    Article  CAS  Google Scholar 

  • Clayton RD, Harold MP, Balakotaiah V (2008) Selective catalytic reduction of NO by H2 in O2 on Pt/BaO/Al2O3 monolith NOx storage catalysts. Appl Catal B 81:161–181

    Article  CAS  Google Scholar 

  • Corma A (1995) Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 95:559–614

    Article  CAS  Google Scholar 

  • Cui X, Tang C, Zhang Q (2018) A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater 8:1800369

    Article  Google Scholar 

  • Cumaranatunge L, Mulla S, Yezerets A, Currier N, Delgass W, Ribeiro F (2007) Ammonia is a hydrogen carrier in the regeneration of Pt/BaO/Al2O3 NOx traps with H2. J Catal 246:29–34

    Article  CAS  Google Scholar 

  • Del Valle SP, Marie O, Nguyen HP (2018) Effect of support material Al2O3 vs ZrO2-TiO2 on the Ba availability for NSR catalyst: an in situ and operando IR study. Appl Catal B 223:116–124

    Article  Google Scholar 

  • Doi Y, Haneda M, Ozawa M (2014) Direct decomposition of NO on Ba catalysts supported on rare earth oxides. J Mol Catal A: Chem 383:70–76

    Article  Google Scholar 

  • Dunn JP, Koppula PR, Stenger HG, Wachs IE (1998) Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Appl Catal B 19:103–117

    Article  CAS  Google Scholar 

  • Farrauto RJ, Heck RM (1999) Catalytic converters: state of the art and perspectives. Catal Today 51:351–360

    Article  CAS  Google Scholar 

  • Forzatti P (2001) Present status and perspectives in de-NOx SCR catalysis. Appl Catal A 222:221–236

    Article  CAS  Google Scholar 

  • Fu M, Li C, Lu P, Qu L, Zhang M, Zhou Y, Yu M, Fang Y (2014) A review on selective catalytic reduction of NO x by supported catalysts at 100–300 C—catalysts, mechanism, kinetics. Catal Sci Technol 4:14–25

    Article  CAS  Google Scholar 

  • Gan L, Li K, Xiong S, Zhang Y, Chen J, Peng Y, Li J (2018) MnOx-CeO2 catalysts for effective NOx reduction in the presence of chlorobenzene. Catal Commun 117:1–4

    Article  CAS  Google Scholar 

  • Gandi S, Chinta SR, Ghoshal P, Ravuri BR (2019) SnO-GeO2-Sb2O3 glass anode network mixed with different Ba2+ fractions: investigations on Na-ion storage capacity and stability. J Non-Cryst Solids 506:80–87

    Article  CAS  Google Scholar 

  • Gao G, Shi J-W, Fan Z, Gao C, Niu C (2017) MnM2O4 microspheres (M= Co, Cu, Ni) for selective catalytic reduction of NO with NH3: comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chem Eng J 325:91–100

    Article  CAS  Google Scholar 

  • Gao Y, Wu X, Liu S, Weng D, Ran R (2018) MnO x–CeO 2 mixed oxides for diesel soot oxidation: a review. Catal Surv Asia 22:230–240

    Article  CAS  Google Scholar 

  • GB13223 (2011) Air pollutant emission standards for thermal power plants [S]

  • Ghelamallah M, Granger P (2012) Impact of barium and lanthanum incorporation to supported Pt and Rh on α-Al2O3 in the dry reforming of methane. Fuel 97:269–276

    Article  CAS  Google Scholar 

  • Godoy ML, Milt VG, Miró EE, Banús ED (2022) Scaling-up of the catalytic stacked wire mesh filters for the abatement of diesel soot. Catal Today 394:434–444

    Article  Google Scholar 

  • Gramigni F, Selleri T, Nova I, Tronconi E (2019) Catalyst systems for selective catalytic reduction+ NO x trapping: from fundamental understanding of the standard SCR reaction to practical applications for lean exhaust after-treatment. React Chem Eng 4:1165–1178

    Article  CAS  Google Scholar 

  • Guo L-C, Lv Z, Ma W, Xiao J, Lin H, He G, Li X, Zeng W, Hu J, Zhou Y (2022) Contribution of heavy metals in PM2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. Chemosphere 297:134102

    Article  CAS  Google Scholar 

  • Guo W, Zhang K, Liang Z, Zou R, Xu Q (2019) Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chem Soc Rev 48:5658–5716

    Article  CAS  Google Scholar 

  • Hakeem AS, Khan M, Ahmed BA, Al Ghanim A, Patel F, Ehsan MA, Ali S, Laoui T, Ali S (2021) Synthesis and characterization of alkaline earth and rare earth doped sialon ceramics by spark plasma sintering. Int J Refract Metal Hard Mater 97:105500

    Article  CAS  Google Scholar 

  • Han A, Wang B, Kumar A, Qin Y, Jin J, Wang X, Yang C, Dong B, Jia Y, Liu J (2019a) Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 3:1800471

    Article  Google Scholar 

  • Han L, Cai S, Gao M, Hasegawa J-y, Wang P, Zhang J, Shi L, Zhang D (2019b) Selective catalytic reduction of NO x with NH3 by using novel catalysts: state of the art and future prospects. Chem Rev 119:10916–10976

    Article  CAS  Google Scholar 

  • Hasti VR, Lucht RP, Gore JP (2020) Large eddy simulation of hydrogen piloted CH4/air premixed combustion with CO2 dilution. J Energy Inst 93:1099–1109

    Article  CAS  Google Scholar 

  • Heck RM (1999) Catalytic abatement of nitrogen oxides–stationary applications. Catal Today 53:519–523

    Article  CAS  Google Scholar 

  • Hong W-J, Iwamoto S, Inoue M (2011) Direct NO decomposition over a Ce–Mn mixed oxide modified with alkali and alkaline earth species and CO2-TPD behavior of the catalysts. Catal Today 164:489–494

    Article  CAS  Google Scholar 

  • Hu Q, Zheng Q-M, Liu J-L, Qin L, Zhu H-J, Yang X, Wang Y-Q, Zhang M-D (2022) Implanted cobalt ions in two zinc-based frameworks: improved electrocatalyst for hydrogen evolution reaction. Chem Eng J 427:130952

    Article  CAS  Google Scholar 

  • Hu X, Sun T, Jia L, Wei J, Sun Z (2020) Preparation of metal-organic framework based carbon materials and its application to adsorptive removal of cefepime from aqueous solution. J Hazard Mater 390:122190

    Article  CAS  Google Scholar 

  • Huang Z, Zhu Z, Liu Z (2002) Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl Catal B 39:361–368

    Article  CAS  Google Scholar 

  • Hummatov R, Gülseren Ou, Ozensoy E, Toffoli D, Üstünel H (2012) First-principles investigation of NO x and SO x adsorption on anatase-supported BaO and Pt overlayers. J Phys Chem C 116:6191–6199

    Article  CAS  Google Scholar 

  • Husnain N, Wang E, Li K, Anwar MT, Mehmood A, Gul M, Li D, Mao J (2019) Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3. Rev Chem Eng 35:239–264

    Article  CAS  Google Scholar 

  • Iguchi E, Yonezawa Y (1990) Overlapping repulsive energies between ions (Y3+, Ba2+, Cu3+, Cu2+ and O2−) and their effects on the nature of the bonds in Y2O3, BaO, CuO and YBa2Cu3Ox. J Phys Chem Solids 51:313–322

    Article  CAS  Google Scholar 

  • Ilinitch O, Nosova L, Gorodetskii V, Ivanov V, Trukhan S, Gribov E, Bogdanov S, Cuperus F (2000) Catalytic reduction of nitrate and nitrite ions by hydrogen: investigation of the reaction mechanism over Pd and Pd–Cu catalysts. J Mol Catal a: Chem 158:237–249

    Article  CAS  Google Scholar 

  • Iojoiu E, Lauga V, Abboud J, Legros G, Bonnety J, Da Costa P, Schobing J, Brillard A, Leyssens G, Tschamber V (2018) Biofuel impact on diesel engine after-treatment: deactivation mechanisms and soot reactivity. Emission Control Sci Technol 4:15–32

    Article  CAS  Google Scholar 

  • Irfan MF, Kim SD, Usman MR (2009) Modeling of NO removal over CuO/γ-Al2O3 catalyst in a bubbling fluidized bed reactor. Ind Eng Chem Res 48:7959–7964

    Article  CAS  Google Scholar 

  • Ishihara T, Goto K (2011) Direct decomposition of NO over BaO/Y2O3 catalyst. Catal Today 164:484–488

    Article  CAS  Google Scholar 

  • Jagannathan S (2019) Open education in the World Bank: a significant dividend for development. In: MOOCs and Open Education in the Global South. Routledge, pp 273–285

  • Jensen WB (2009) Misapplying the periodic law. J Chem Educ 86:1186

    Article  CAS  Google Scholar 

  • Ji Y, Toops TJ, Crocker M (2007) Effect of ceria on the storage and regeneration behavior of a model lean NO x trap catalyst. Catal Lett 119:257–264

    Article  CAS  Google Scholar 

  • Ji Y, Choi J-S, Toops TJ, Crocker M, Naseri M (2008) Influence of ceria on the NOx storage/reduction behavior of lean NOx trap catalysts. Catal Today 136:146–155

    Article  CAS  Google Scholar 

  • Ji Y, Toops TJ, Pihl JA, Crocker M (2009) NOx storage and reduction in model lean NOx trap catalysts studied by in situ DRIFTS. Appl Catal B 91:329–338

    Article  CAS  Google Scholar 

  • Ji Y, Fisk C, Easterling V, Graham U, Poole A, Crocker M, Choi J-S, Partridge W, Wilson K (2010) NOx storage–reduction characteristics of Ba-based lean NOx trap catalysts subjected to simulated road aging. Catal Today 151:362–375

    Article  CAS  Google Scholar 

  • Jiang B, Li Z, Lee S-c (2013) Mechanism study of the promotional effect of O2 on low-temperature SCR reaction on Fe–Mn/TiO2 by DRIFT. Chem Eng J 225:52–58

    Article  CAS  Google Scholar 

  • Jin Q, Chen M, Tao X, Lu B, Shen J, Shen Y, Zeng Y (2020) Component synergistic catalysis of Ce-Sn-W-Ba-Ox/TiO2 in selective catalytic reduction of NO with ammonia. Appl Surf Sci 512:145757

    Article  CAS  Google Scholar 

  • Kabin KS, Muncrief RL, Harold MP (2004) NOx storage and reduction on a Pt/BaO/alumina monolithic storage catalyst. Catal Today 96:79–89

    Article  CAS  Google Scholar 

  • Kang M, Kim DJ, Park ED, Kim JM, Yie JE, Kim SH, Hope-Weeks L, Eyring EM (2006) Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures. Appl Catal B 68:21–27

    Article  CAS  Google Scholar 

  • Kato A, Matsuda S, Kamo T, Nakajima F, Kuroda H, Narita T (1981) Reaction between nitrogen oxide (NOx) and ammonia on iron oxide-titanium oxide catalyst. J Phys Chem 85:4099–4102

    Article  CAS  Google Scholar 

  • Kato S, Yoshizawa T, Kakuta N, Akiyama S, Ogasawara M, Wakabayashi T, Nakahara Y, Nakata S (2008) Preparation of apatite-type-silicate-supported precious metal catalysts for selective catalytic reduction of NO x. Res Chem Intermed 34:703–708

    Article  CAS  Google Scholar 

  • Kieger S, Delahay G, Coq B (2000) Influence of co-cations in the selective catalytic reduction of NO by NH3 over copper exchanged faujasite zeolites. Appl Catal B 25:1–9

    Article  CAS  Google Scholar 

  • Kikuchi E, Ogura M, Terasaki I, Goto Y (1996) Selective reduction of nitric oxide with methane on gallium and indium containing H-ZSM-5 catalysts: formation of active sites by solid-state ion exchange. J Catal 161:465–470

    Article  CAS  Google Scholar 

  • Ko S, Tang X, Gao F, Zhou Y, Zhang R, Liu Y, Liu H (2021) The optimization of hydrothermal synthesis of MnxCo3-xO4/GC catalyst for low temperature NH3-SCR/using design of experiments. J Chem Technol Biotechnol 96:2965–2975

    Article  CAS  Google Scholar 

  • Kobayashi T, Yamada T, Kayano K (2001) Effect of basic metal additives on NOx reduction property of Pd-based three-way catalyst. Appl Catal B 30:287–292

    Article  CAS  Google Scholar 

  • Kondawar SE, Patil CR, Rode CV (2017) Tandem synthesis of glycidol via transesterification of glycerol with DMC over Ba-mixed metal oxide catalysts. ACS Sustain Chem Eng 5:1763–1774

    Article  CAS  Google Scholar 

  • Koppmann, R (2020) Chemistry of volatile organic compounds in the atmosphere. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate, pp 811–822

  • Kumar GR, Jayasankar K, Das SK, Dash T, Dash A, Jena BK, Mishra BK (2016) Shear-force-dominated dual-drive planetary ball milling for the scalable production of graphene and its electrocatalytic application with Pd nanostructures. RSC Adv 6:20067–20073

    Article  CAS  Google Scholar 

  • Kumaresh S, Kim MY (2019) Numerical investigation of catalytic combustion in a honeycomb monolith with lean methane and air premixtures over the platinum catalyst. Int J Therm Sci 138:304–313

    Article  CAS  Google Scholar 

  • Labhsetwar N, Minamino H, Mukherjee M, Mitsuhashi T, Rayalu S, Dhakad M, Haneda H, Subrt J, Devotta S (2007) Catalytic properties of Ru-mordenite for NO reduction. J Mol Catal a: Chem 261:213–217

    Article  CAS  Google Scholar 

  • Lan L, Chen S, Cao Y, Wang S, Wu Q, Zhou Y, Huang M, Gong M, Chen Y (2015) Promotion of CeO2–ZrO2–Al2O3 composite by selective doping with barium and its supported Pd-only three-way catalyst. J Mol Catal a: Chem 410:100–109

    Article  CAS  Google Scholar 

  • Lei C, Zhichun S, Xiaodong W, Duan W, Rui R, Jun Y (2014) Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: a review. J Rare Earths 32:907–917

    Article  Google Scholar 

  • Li J, Chang H, Ma L, Hao J, Yang RT (2011) Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catal Today 175:147–156

    Article  CAS  Google Scholar 

  • Li P, Li W, Wang K, Hu F, Ding C, Guo J, Liu Z (2020) Experiments and kinetic modeling of NO reburning by CH4 under high CO2 concentration in a jet-stirred reactor. Fuel 270:117476

    Article  CAS  Google Scholar 

  • Li R, Xiang K, Liu Z, Peng Z, Zou Y, Wang S (2022) Recent advances in upgrading of low-cost oxidants to value-added products by electrocatalytic reduction reaction. Adv Func Mater 32:2208212

    Article  CAS  Google Scholar 

  • Li W, Wang S, Li J (2019) Highly effective Ru/BaCeO3 catalysts on supports with strong basic sites for ammonia synthesis. Chem–An Asian J 14:2815–2821

  • Liang J, Liu Q, Alshehri AA, Sun X (2022) Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy 1:e9120010

    Article  Google Scholar 

  • Liang Z, Ma X, Lin H, Tang Y (2011) The energy consumption and environmental impacts of SCR technology in China. Appl Energy 88:1120–1129

    Article  CAS  Google Scholar 

  • Lietti L, Nova I, Tronconi E, Forzatti P (1998) Transient kinetic study of the SCR-DeNOx reaction. Catal Today 45:85–92

    Article  CAS  Google Scholar 

  • Lin F, Wu X, Weng D (2011) Effect of barium loading on CuOx–CeO2 catalysts: NOx storage capacity, NO oxidation ability and soot oxidation activity. Catal Today 175:124–132

    Article  CAS  Google Scholar 

  • Liu Z, Li Y, Zhu T, Su H, Zhu J (2014) Selective catalytic reduction of NO x by NH3 over Mn-promoted V2O5/TiO2 catalyst. Ind Eng Chem Res 53:12964–12970

    Article  CAS  Google Scholar 

  • Liu Z, Ihl Woo S (2006) Recent advances in catalytic DeNOx science and technology. Catal Rev 48:43–89

    Article  CAS  Google Scholar 

  • Liu B, Xu X, Xue Y, Liu L, Yang F (2020) Simultaneous desulfurization and denitrification from flue gas by catalytic ozonation combined with NH3/(NH4) 2S2O8 absorption: mechanisms and recovery of compound fertilizer. Sci Total Environ 706:136027

    Article  CAS  Google Scholar 

  • Liu C, Shi J-W, Gao C, Niu C (2016a) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A 522:54–69

    Article  CAS  Google Scholar 

  • Liu Z, Liu Y, Li Y, Su H, Ma L (2016b) WO3 promoted Mn–Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem Eng J 283:1044–1050

    Article  CAS  Google Scholar 

  • Liu Z, Yi Y, Zhang S, Zhu T, Zhu J, Wang J (2013) Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures. Catal Today 216:76–81

    Article  CAS  Google Scholar 

  • Locci C, Vervisch L, Farcy B, Domingo P, Perret N (2018) Selective non-catalytic reduction (SNCR) of nitrogen oxide emissions: a perspective from numerical modeling. Flow Turbul Combust 100:301–340

    Article  CAS  Google Scholar 

  • Lu P, Li C, Zeng G, He L, Peng D, Cui H, Li S, Zhai Y (2010) Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria. Appl Catal B 96:157–161

    Article  CAS  Google Scholar 

  • Lu P, Zeng Z, Li C, Zeng G, Guo J, Jiang X, Zhai Y, Fan X (2012) Room temperature removal of NO by activated carbon fibres loaded with urea and La2O3. Environ Technol 33:1029–1036

    Article  CAS  Google Scholar 

  • Lu P, Li C, Zeng G, Zhao Y, Zhan Q, Song J, Fan X (2013) Removal of black carbon particles from experimental flue gas by surfactant solution in a new type of umbrella plate scrubber. Environ Technol 34:101–111

    Article  Google Scholar 

  • Luo J-Y, Hou X, Wijayakoon P, Schmieg SJ, Li W, Epling WS (2011) Spatially resolving SCR reactions over a Fe/zeolite catalyst. Appl Catal B 102:110–119

    Article  CAS  Google Scholar 

  • Lv L, Wang X, Shen M, Zhang Q, Wang J (2013) The lean NOx traps behavior of (1–5%) BaO/CeO2 mixed with Pt/Al2O3 at low temperature (100–300° C): The effect of barium dispersion. Chem Eng J 222:401–410

    Article  CAS  Google Scholar 

  • Ma R, Xu B, Zhang X (2019) Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—a review. Catal Today 338:18–30

    Article  CAS  Google Scholar 

  • Machida M, Eguchi K, Arai H (1987) Effect of additives on the surface area of oxide supports for catalytic combustion. J Catal 103:385–393

    Article  CAS  Google Scholar 

  • Maeno Z, Yasumura S, Liu C, Toyao T, Kon K, Nakayama A, Hasegawa J-y, Shimizu K-i (2019) Experimental and theoretical study of multinuclear indium–oxo clusters in CHA zeolite for CH 4 activation at room temperature. Phys Chem Chem Phys 21:13415–13427

    Article  CAS  Google Scholar 

  • Maffei N, Nossova L, Turnbull M, Caravaggio G, Burich R (2020) Doped barium cerate perovskite catalysts for simultaneous NOx storage and soot oxidation. Appl Catal A 600:117465

    Article  CAS  Google Scholar 

  • Marín P, Fissore D, Barresi AA, Ordóñez S (2009) Simulation of an industrial-scale process for the SCR of NOx based on the loop reactor concept. Chem Eng Process 48:311–320

    Article  Google Scholar 

  • Mathiarasu RR, Manikandan A, Baby JN, Panneerselvam K, Subashchandrabose R, George M, Slimani Y, Almessiere M, Baykal A (2021) Hexagonal basalt-like ceramics LaxMg1-xTiO3 (x= 0 and 0.5) contrived via deep eutectic solvent for selective electrochemical detection of dopamine. Physica B: Condensed Matter 615:413068

    Article  CAS  Google Scholar 

  • Meng D, Zhan W, Guo Y, Guo Y, Wang L, Lu G (2015) A highly effective catalyst of Sm-MnO x for the NH3-SCR of NO x at low temperature: promotional role of Sm and its catalytic performance. ACS Catal 5:5973–5983

    Article  CAS  Google Scholar 

  • Mentré O, Iorgulescu M, Huvé M, Kabbour H, Renaut N, Daviero-Minaud S, Colis S, Roussel P (2015) BaCoO 2.22: the most oxygen-deficient certified cubic perovskite. Dalton Trans 44:10728–10737

    Article  Google Scholar 

  • Middleburgh SC, Lagerlof KPD, Grimes RW (2013) Accommodation of Excess Oxygen in Group II Monoxides. J Am Ceram Soc 96:308–311

    Article  CAS  Google Scholar 

  • Mishra SR, Ahmaruzzaman M (2021) Cerium oxide and its nanocomposites: structure, synthesis, and wastewater treatment applications. Mater Today Comm 28:102562

    Article  CAS  Google Scholar 

  • Mousavi SM, Niaei A, Salari D, Panahi PN, Samandari M (2013) Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques. Environ Technol 34:1377–1384

    Article  CAS  Google Scholar 

  • Muncrief RL, Khanna P, Kabin KS, Harold MP (2004) Mechanistic and kinetic studies of NOx storage and reduction on Pt/BaO/Al2O3. Catal Today 98:393–402

    Article  CAS  Google Scholar 

  • Mutin PH, Popa AF, Vioux A, Delahay G, Coq B (2006) Nonhydrolytic vanadia-titania xerogels: synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH3. Appl Catal B 69:49–57

    Article  CAS  Google Scholar 

  • Nakajima F, Hamada I (1996) The state-of-the-art technology of NOx control. Catal Today 29:109–115

    Article  CAS  Google Scholar 

  • Nakano N, Torimoto M, Sampei H, Yamashita R, Yamano R, Saegusa K, Motomura A, Nagakawa K, Tsuneki H, Ogo S (2022) Elucidation of the reaction mechanism on dry reforming of methane in an electric field by in situ DRIFTs. RSC Adv 12:9036–9043

    Article  CAS  Google Scholar 

  • Olsson L, Fridell E (2002) The influence of Pt oxide formation and Pt dispersion on the reactions NO2⇔ NO+ 1/2 O2 over Pt/Al2O3 and Pt/BaO/Al2O3. J Catal 210:340–353

    Article  CAS  Google Scholar 

  • Omori Y, Shigemoto A, Sugihara K, Higo T, Uenishi T, Sekine Y (2021) Electrical promotion-assisted automotive exhaust catalyst: highly active and selective NO reduction to N 2 at low-temperatures. Catal Sci Technol 11:4008–4011

    Article  CAS  Google Scholar 

  • Onrubia-Calvo JA, Pereda-Ayo B, De-La-Torre U, González-Velasco JR (2017) Key factors in Sr-doped LaBO3 (B= Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification. Appl Catal B 213:198–210

    Article  Google Scholar 

  • Onrubia-Calvo JA, Pereda-Ayo B, Cabrejas I, De-La-Torre U, González-Velasco JR (2020) Ba-doped vs. Sr-doped LaCoO3 perovskites as base catalyst in diesel exhaust purification. Mol Catal 488:110913

    Article  CAS  Google Scholar 

  • Pan Y, Shen Y, Jin Q, Zhu S (2018) Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J Mater Res 33:2414–2422

    Article  CAS  Google Scholar 

  • Pan Y, Jin Q, Lu B, Ding Y, Xu X, Shen Y, Zeng Y (2021) New insights into MnCe (Ba) Ox/TiO2 composite oxide catalyst: barium additive accelerated ammonia conversion. J Rare Earths 39:532–540

    Article  CAS  Google Scholar 

  • Panagiotopoulou P, Kondarides DI (2011) Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Appl Catal B 101:738–746

    Article  CAS  Google Scholar 

  • Panahi PN, Salari D, Niaei A, Mousavi S (2013) NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM. J Ind Eng Chem 19:1793–1799

    Article  CAS  Google Scholar 

  • Patnaik P (2003). Handbook of inorganic chemicals, vol 529. McGraw-Hill, New York

    Google Scholar 

  • Peralta M, Milt V, Cornaglia L, Querini C (2006) Stability of Ba, K/CeO2 catalyst during diesel soot combustion: effect of temperature, water, and sulfur dioxide. J Catal 242:118–130

    Article  CAS  Google Scholar 

  • Pereda-Ayo B, González-Velasco JR (2013) NOx storage and reduction for diesel engine exhaust after treatment. Diesel Engine-Combustion, Emissions and Condition Monitoring

  • Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS (2008) SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Appl Catal B 78:301–308

    Article  CAS  Google Scholar 

  • Prinetto F, Ghiotti G, Nova I, Lietti L, Tronconi E, Forzatti P (2001) FT-IR and TPD Investigation of the NO x storage properties of BaO/Al2O3 and Pt− BaO/Al2O3 Catalysts. J Phys Chem B 105:12732–12745

    Article  CAS  Google Scholar 

  • Qi G, Yang RT (2005) Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B 60:13–22

    Article  CAS  Google Scholar 

  • Qiao Z, Li S, Li Y, Wang J (2021) Properties of barium zirconate sintered from different barium and zirconium sources. Ceram Int 47:31194–31201

    Article  CAS  Google Scholar 

  • Qin C, Wang J, Yang D, Li B, Zhang C (2016) Proton exchange membrane fuel cell reversal: a review. Catalysts 6:197

    Article  Google Scholar 

  • Qu H-j, Huang L-j, Han Z-y, Wang Y-x, Zhang Z-j, Wang Y, Chang Q-r, Wei N, Kipper MJ, Tang J-g (2021) A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications. J Porous Mater 28:1837–1865

    Article  CAS  Google Scholar 

  • Radojevic M (1998) Reduction of nitrogen oxides in flue gases. Environ Pollut 102:685–689

    Article  CAS  Google Scholar 

  • Raj SP, Solomon PR, Thangaraj B (2022) Biodiesel from Flowering Plants. Springer

    Book  Google Scholar 

  • Ramachandran R, Chen T-W, Veerakumar P, Anushya G, Chen S-M, Kannan R, Mariyappan V, Chitra S, Ponmurugaraj N, Boominathan M (2022) Recent development and challenges in fuel cells and water electrolyzer reactions: an overview. RSC Adv 12:28227–28244

    Article  CAS  Google Scholar 

  • Roy S, Marimuthu A, Deshpande PA, Hegde M, Madras G (2008) Selective catalytic reduction of NO x: mechanistic perspectives on the role of base metal and noble metal ion substitution. Ind Eng Chem Res 47:9240–9247

    Article  CAS  Google Scholar 

  • Roy S, Hegde M, Madras G (2009) Catalysis for NOx abatement. Appl Energy 86:2283–2297

    Article  CAS  Google Scholar 

  • Shammas NK, Wang LK, Wang M-HS (2020) Sources, chemistry and control of acid rain in the environment, Handbook of environment and waste management: acid rain and greenhouse gas pollution control. World Scientific, pp. 1–26

  • Shan W, Song H (2015) Catalysts for the selective catalytic reduction of NO x with NH 3 at low temperature. Catal Sci Technol 5:4280–4288

    Article  CAS  Google Scholar 

  • Shan W, Yu Y, Zhang Y, He G, Peng Y, Li J, He H (2021) Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NOx with NH3. Catal Today 376:292–301

    Article  CAS  Google Scholar 

  • Shao B, Liu Z, Zeng G, Wang H, Liang Q, He Q, Cheng M, Zhou C, Jiang L, Song B (2020) Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8:7508–7535

    Article  CAS  Google Scholar 

  • Shi Q, Du X, Wang X, Yang G, Wan Y, Chen Y, Song L, Xue Z, Zhang L (2021) Recycling of waste SCR catalysts using a catalytic filter: a study on the catalytic performance for NO x abatement. Ind Eng Chem Res 60:4622–4629

    Article  CAS  Google Scholar 

  • Skalska K, Miller JS, Ledakowicz S (2010) Trends in NOx abatement: a review. Sci Total Environ 408:3976–3989

    Article  CAS  Google Scholar 

  • Song JH, Han SJ, Yoo J, Park S, Kim DH, Song IK (2016) Hydrogen production by steam reforming of ethanol over Ni–X/Al2O3–ZrO2 (X= Mg, Ca, Sr, and Ba) xerogel catalysts: effect of alkaline earth metal addition. J Mol Catal a: Chem 415:151–159

    Article  CAS  Google Scholar 

  • Song W, Ji J, Guo K, Wang X, Wei X, Cai Y, Tan W, Li L, Sun J, Tang C (2022) Solid-phase impregnation promotes Ce doping in TiO2 for boosted denitration of CeO2/TiO2 catalysts. Chin Chem Lett 33:935–938

    Article  CAS  Google Scholar 

  • Song Y, Wang W, Ge L, Xu X, Zhang Z, Julião PSB, Zhou W, Shao Z (2017) Rational design of a water-storable hierarchical architecture decorated with amorphous barium oxide and nickel nanoparticles as a solid oxide fuel cell anode with excellent sulfur tolerance. Adv Sci 4:1700337

    Article  Google Scholar 

  • Su Y, Amiridis MD (2004) In situ FTIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts. Catal Today 96:31–41

    Article  CAS  Google Scholar 

  • Sultana A, Fujitani T, Iki N (2022) Development and validation of rare earth modified Fe-BEA SCR catalyst for mitigation of NOx from NH3 gas turbine. Clean Mater 4:100096

    Article  CAS  Google Scholar 

  • Syono Y, Akimoto S-i, Kohn K (1969) Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J Phys Soc Jpn 26:993–999

    Article  CAS  Google Scholar 

  • Szailer T, Kwak JH, Kim DH, Hanson JC, Peden CH, Szanyi J (2006) Reduction of stored NOx on Pt/Al2O3 and Pt/BaO/Al2O3 catalysts with H2 and CO. J Catal 239:51–64

    Article  CAS  Google Scholar 

  • Szanyi J, Kwak JH, Chimentao RJ, Peden CH (2007) Effect of H2O on the adsorption of NO2 on γ-Al2O3: an in situ FTIR/MS study. J Phys Chem C 111:2661–2669

    Article  CAS  Google Scholar 

  • Tan W, Wang J, Cai Y, Li L, Xie S, Gao F, Liu F, Dong L (2022) Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2 catalyst for NOx removal. Catal Today 397:475–483

    Article  Google Scholar 

  • Tang Q, Denison M, Adams B, Brown D (2009) Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NOx burners using finite-rate chemistry. Proc Combust Inst 32:2649–2657

    Article  CAS  Google Scholar 

  • Tarach KA, Jabłońska M, Pyra K, Liebau M, Reiprich B, Glaeser R, Gora-Marek K (2021) Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl Catal B 284:119752

    Article  CAS  Google Scholar 

  • Theologides CP, Savva PG, Costa CN (2011) Catalytic removal of nitrates from waters in a continuous flow process: the remarkable effect of liquid flow rate and gas feed composition. Appl Catal B 102:54–61

    Article  CAS  Google Scholar 

  • Tsujimoto S, Wang X, Masui T, Imanaka N (2011) Direct decomposition of NO into N2 and O2 on C-type cubic Y2O3–ZrO2 and Y2O3–ZrO2–BaO. Bull Chem Soc Jpn 84:807–811

    Article  CAS  Google Scholar 

  • Valdés-Solís T, Marbán G, Fuertes AB (2004) Kinetics and mechanism of low-temperature SCR of NO x with NH3 over vanadium oxide supported on carbon− ceramic cellular monoliths. Ind Eng Chem Res 43:2349–2355

    Article  Google Scholar 

  • Wang C, Bao Y, Yao Q, Long D, Xiao X, Fan X, Kang H, Zeng J, Sha L, Zhang H (2022) Fine mapping of the reduced height gene Rht22 in tetraploid wheat landrace Jianyangailanmai (Triticum turgidum L.). Theor Appl Genet 135:3643–3660

    Article  CAS  Google Scholar 

  • Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L (2021) Electrocatalysis for CO 2 conversion: from fundamentals to value-added products. Chem Soc Rev 50:4993–5061

    Article  CAS  Google Scholar 

  • Wang H, Dong J, Allard LF, Lee S, Oh S, Wang J, Li W, Shen M, Yang M (2019) Single-site Pt/La-Al2O3 stabilized by barium as an active and stable catalyst in purifying CO and C3H6 emissions. Appl Catal B 244:327–339

    Article  CAS  Google Scholar 

  • Weiss BM, Caldwell KB, Iglesia E (2011) NO x interactions with dispersed BaO: adsorption kinetics, chemisorbed species, and effects of oxidation catalyst sites. J Phys Chem C 115:6561–6570

    Article  CAS  Google Scholar 

  • Wu X, Liu S, Weng D, Lin F, Ran R (2011) MnOx–CeO2–Al2O3 mixed oxides for soot oxidation: activity and thermal stability. J Hazard Mater 187:283–290

    Article  CAS  Google Scholar 

  • Xiao P, Xu X, Zhu J, Zhu Y (2020) In situ generation of perovskite oxides and carbon composites: a facile, effective and generalized route to prepare catalysts with improved performance. J Catal 383:88–96

    Article  CAS  Google Scholar 

  • Xie G, Liu Z, Zhu Z, Liu Q, Ge J, Huang Z (2004) Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: II. Promotion of SCR activity by SO2 at high temperatures. J Catal 224:42–49

    Article  CAS  Google Scholar 

  • Xie S, Rosynek MP, Lunsford JH (1999a) Catalytic reactions of NO over 0–7 mol% Ba/MgO catalysts: II. reduction with CH4 and CO. J Catal 188:32–39

    Article  CAS  Google Scholar 

  • Xie S, Rosynek MP, Lunsford JH (1999b) Catalytic reactions of NO over 0–7 mol% Ba/MgO catalysts: I. The direct decomposition of NO. J Catal 188:24–31

    Article  CAS  Google Scholar 

  • Xu J, Clayton R, Balakotaiah V, Harold MP (2008) Experimental and microkinetic modeling of steady-state NO reduction by H2 on Pt/BaO/Al2O3 monolith catalysts. Appl Catal B 77:395–408

    Article  CAS  Google Scholar 

  • Xue Y, Yao T, Boone AA, Diallo I, Liu Y, Zeng X, Lau WK, Sugimoto S, Tang Q, Pan X (2021) Impact of initialized land surface temperature and snowpack on subseasonal to seasonal prediction project, phase I (LS4P-I): organization and experimental design. Geoscientific Model Dev 14:4465–4494

    Article  Google Scholar 

  • Yang C, Yang J, Jiao Q, Zhao D, Zhang Y, Liu L, Hu G, Li J (2020) Promotion effect and mechanism of MnOx doped CeO2 nano-catalyst for NH3-SCR. Ceram Int 46:4394–4401

    Article  CAS  Google Scholar 

  • Yang L, Yang X, Zhou R (2016) Probing BaO doping effect on the structure and catalytic performance of Pd/Ce x Zr1–x O2 (x= 0.2–0.8) catalysts for automobile emission control. J Phys Chem C 120:2712–2723

    Article  CAS  Google Scholar 

  • Yoshioka T, Iwase K, Nakanishi S, Hashimoto K, Kamiya K (2016) Electrocatalytic reduction of nitrate to nitrous oxide by a copper-modified covalent triazine framework. J Phys Chem C 120:15729–15734

    Article  CAS  Google Scholar 

  • Yuan S, Li Y, Peng J, Questell-Santiago YM, Akkiraju K, Giordano L, Zheng DJ, Bagi S, Román-Leshkov Y, Shao-Horn Y (2020) Conversion of methane into liquid fuels—bridging thermal catalysis with electrocatalysis. Adv Energy Mater 10:2002154

    Article  CAS  Google Scholar 

  • Yusuff AS, Bhonsle AK, Bangwal DP, Atray N (2021) Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: process optimization by design of experiment. Renew Energy 177:1253–1264

    Article  CAS  Google Scholar 

  • Zeng Z, Lu P, Li C, Zeng G, Jiang X, Zhai Y, Fan X (2012) Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 C: The SCR mechanism. Environ Technol 33:1331–1337

    Article  CAS  Google Scholar 

  • Zhang S, Zhang B, Liu B, Sun S (2017) A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NO x with NH 3: reaction mechanism and catalyst deactivation. RSC Adv 7:26226–26242

    Article  CAS  Google Scholar 

  • Zhang X, Walters AB, Vannice MA (1996) NO decomposition and reduction by CH4 over Sr/La2O3. Appl Catal B 7:321–336

    Article  CAS  Google Scholar 

  • Zhang X, Li X, Wu J, Yang R, Zhang Z (2009) Selective catalytic reduction of NO by ammonia on V 2 O 5/TiO 2 catalyst prepared by sol–gel method. Catal Lett 130:235–238

    Article  CAS  Google Scholar 

  • Zhang Y, Cai N, Yang J, Xu B (2008) Experimental and modeling study of the effect of CH4 and pulverized coal on selective non-catalytic reduction process. Chemosphere 73:650–656

    Article  CAS  Google Scholar 

  • Zhang Y, Vangaever S, Theis G, Henneke M, Heynderickx GJ, Van Geem KM (2021) Feasibility of biogas and oxy-fuel combustion in steam cracking furnaces: experimental and computational study. Fuel 304:121393

    Article  CAS  Google Scholar 

  • Zhang Z, Tian J, Li J, Cao C, Wang S, Lv J, Zheng W, Tan D (2022) The development of diesel oxidation catalysts and the effect of sulfur dioxide on catalysts of metal-based diesel oxidation catalysts: a review. Fuel Process Technol 233:107317

    Article  CAS  Google Scholar 

  • Zhao K, Hu C, Yuan Z, Xu D, Zhang S, Luo H, Wang J, Jiang R (2021) A modeling study of the impact of stratospheric intrusion on ozone enhancement in the lower troposphere over the Hong Kong regions, China. Atmos Res 247:105158

    Article  CAS  Google Scholar 

  • Zhao Y, Lu P, Li C, Fan X, Wen Q, Zhan Q, Shu X, Xu T, Zeng G (2013) Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations. Environ Technol 34:201–207

    Article  Google Scholar 

  • Zhicheng H (2014) Shanghai Environmental Protection Bureau and Bureau of Quality and Technical Supervision jointly released the new “Emission Standards of Air Pollutants for Boilers.” Heilongjiang Paper 42.4 (2014): 61–61. (DB31/387–2007) 42, 61–61

  • Zhou X-Y, Wu Y-W, Cai Q, Mi T-G, Zhang B, Zhao L, Lu Q (2022) Interaction mechanism between lead species and activated carbon in MSW incineration flue gas: role of different functional groups. Chem Eng J 436:135252

    Article  CAS  Google Scholar 

  • Zhu Y, Zhou W, Xia C, Hou Q (2022) Application and development of selective catalytic reduction technology for marine low-speed diesel engine: trade-off among high sulfur fuel, high thermal efficiency, and low pollution emission. Atmosphere 13:731

    Article  CAS  Google Scholar 

  • Zuo J, Chen Z, Wang F, Yu Y, Wang L, Li X (2014) Low-temperature selective catalytic reduction of NO x with NH3 over novel Mn–Zr mixed oxide catalysts. Ind Eng Chem Res 53:2647–2655

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Fund of China (grant no. 50676057).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The creation of the idea was done by Paul Chinonso Ogugua, Huihui Su, and Enlu Wang. The literature work was done by Paul Chinonso Ogugua and Jinyang Zhou. Finally, the editing was done by Paul Chinonso Ogugua and Qi Wang.

Corresponding author

Correspondence to Enlu Wang.

Ethics declarations

Ethical approval

The authors maintained the journal’s ethical responsibilities.

Consent to participate

The authors are fully in support of the idea to publish this article in the Environmental Science and Pollution Research journal.

Consent for publication

We hereby applied for the publication of this article.

Competing interests

The authors declare no competing financial interest.

Additional information

Responsible Editor: George Z. Kyzas

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogugua, P.C., Wang, E., Jinyang, Z. et al. Advancements in low-temperature NH3-SCR of NOx using Ba-based catalysts: a critical review of preparation, mechanisms, and challenges. Environ Sci Pollut Res 30, 84972–84998 (2023). https://doi.org/10.1007/s11356-023-27703-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27703-w

Keywords

Navigation