Skip to main content
Log in

A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Graphene-oxide (GO) is an oxidized derivative of graphene. GO has a large number of oxygen-containing functional groups, including hydroxyl, carboxyl, and epoxy groups. The introduction of these groups makes its physical and chemical properties more complicated. For example, although GO films are impermeable to other liquids and even gases, they exhibit abnormally high permeance of water through the GO film. As a three-dimensional hollow material, metal–organic frameworks (MOFs) have a very large specific surface area and pore volume, and have a wide range of applications in catalysis, adsorption, and separations. Combining GO with MOFs can alter the distance between the layers of the GO to affect the transport and screening of specific molecules. This gives composites many potential applications in areas such as gas treatment and water treatment. This review summarizes the current status of GO/MOF composites, expanding on the following aspects: (1) We begin by reviewing the current status of research on GO and MOF with a focus on the physical properties. The mechanical strength of single-layer graphene is very weak, and in most solvents, GO spontaneously aggregates and is very difficult to effectively disperse. On the other hand, MOFs have high specific surface area, high crystallinity, and high porosity, but relatively low stability. Their relative instability greatly limited their practical applications. The formation of GO/MOF composites can take advantage of desirable properties of both material types, while improving their physical characteristics. (2) We next review the characteristics, preparation and applications of GO/MOF composites. At present, various GO/MOF composite materials, such as GO/ZIF-8, GO/MOF-5 have been prepared by in-situ synthesis and other methods. They are widely used in gas adsorption and separation, wastewater treatment applications, and molecular sieve applications. (3) We conclude this review by summarizing the opportunities for achieving composites materials with hydrophilic, antifouling, high-throughput, and high-repulsion properties by efficient, controllable, and low-cost methods. As GO/MOF technology improves, we suggest that these versatile materials have additional prospective applications in other areas, including as materials for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Shen, X. Xiao, X. Xiao, J. Chen, Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 57, 5871–5879 (2021)

    Article  CAS  Google Scholar 

  2. X. Xiao et al., Bioinspired slippery cone for controllable manipulation of gas bubbles in low-surface-tension environment. ACS Nano 13, 4083–4090 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. X. Xiao et al., Bioinspired two-dimensional structure with asymmetric wettability barriers for unidirectional and long-distance gas bubble delivery underwater. Nano Lett. 21, 2117–2123 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. L. Jin et al., Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Lett. 20, 6404–6411 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. C. Zhang et al., Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. Green Chem. 21, 6579–6584 (2019)

    Article  CAS  Google Scholar 

  6. A. Tkaczyk, K. Mitrowska, A. Posyniak, Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717, 137222 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. S.H. Khan, B. Pathak, Zinc oxide based photocatalytic degradation of persistent pesticides: a comprehensive review. Environ. Nanotechnol. Monit. Manag. 13, 100290 (2020)

    Google Scholar 

  8. R. Lafi, L. Gzara, R.H. Lajimi, A. Hafiane, Treatment of textile wastewater by a hybrid ultrafiltration/electrodialysis process. Chem. Eng. Process. 132, 105–113 (2018)

    Article  CAS  Google Scholar 

  9. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697 (2018)

    Article  CAS  Google Scholar 

  10. S. Cotillas et al., Removal of procion red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim. Acta 263, 1–7 (2018)

    Article  CAS  Google Scholar 

  11. Y. Peng, Y. Zhang, H. Huang, C. Zhong, Flexibility induced high-performance MOF-based adsorbent for nitroimidazole antibiotics capture. Chem. Eng. J. 333, 678–685 (2018)

    Article  CAS  Google Scholar 

  12. L. Tang et al., Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem. Eng. J. 336, 160–169 (2018)

    Article  CAS  Google Scholar 

  13. Z. Meng et al., Polymer nanotube membranes synthesized via liquid deposition in anodic alumina. Colloid Interface Sci. Commun. 39, 100334 (2020)

    Article  CAS  Google Scholar 

  14. S. Kim et al., Removal of contaminants of emerging concern by membranes in water and wastewater: a review. Chem. Eng. J. 335, 896–914 (2018)

    Article  CAS  Google Scholar 

  15. H.Y. Yang et al., Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 4, 2220 (2013)

    Article  PubMed  CAS  Google Scholar 

  16. K. Goh et al., Carbon nanomaterials for advancing separation membranes: a strategic perspective. Carbon 109, 694–710 (2016)

    Article  CAS  Google Scholar 

  17. M. Nandi et al., Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. (Camb) 48, 10283–10285 (2012)

    Article  CAS  Google Scholar 

  18. A. Wahby et al., High-surface-area carbon molecular sieves for selective CO(2) adsorption. Chemsuschem 3, 974–981 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. F. Gholipour, M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: experimental and thermodynamic modeling. J. Supercrit. Fluids 111, 47–54 (2016)

    Article  CAS  Google Scholar 

  20. A. Möller, A. Pessoa-Guimaraes, R. Gläser, R. Staudt, Uptake-curves for the determination of diffusion coefficients and sorption equilibria for n-alkanes on zeolites. Microporous Mesoporous Mater. 125, 23–29 (2009)

    Article  CAS  Google Scholar 

  21. R. Krishna, J.M. van Baten, A comparison of the CO2 capture characteristics of zeolites and metal–organic frameworks. Sep. Purif. Technol. 87, 120–126 (2012)

    Article  CAS  Google Scholar 

  22. H. Oh et al., Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M=Mg2+, Ni2+). Int. J. Hydrogen Energy 42, 1027–1035 (2017)

    Article  CAS  Google Scholar 

  23. D. Jiang et al., The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 380, 471–483 (2019)

    Article  CAS  Google Scholar 

  24. J. Li, H. Wang, X. Yuan, J. Zhang, J.W. Chew, Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 404, 213116 (2020)

    Article  CAS  Google Scholar 

  25. A. Klechikov et al., Hydrogen storage in high surface area graphene scaffolds. Chem. Commun. (Camb) 51, 15280–15283 (2015)

    Article  CAS  Google Scholar 

  26. B. Li et al., Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines. J. Colloid Interface Sci. 478, 36–45 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. B. Szczęśniak, Ł Osuchowski, J. Choma, M. Jaroniec, Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO2, H2 and C6H6. J. Porous Mater. 25, 621–627 (2018)

    Article  CAS  Google Scholar 

  28. M.D. Firouzjaei et al., Exploiting synergetic effects of graphene oxide and a silver-based metal-organic framework to enhance antifouling and anti-biofouling properties of thin-film nanocomposite membranes. ACS Appl. Mater. Interfaces 10, 42967–42978 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. J. Li et al., Enhanced CO2 capture on graphene via N S dual-doping. Appl. Surf. Sci. 399, 420–425 (2017)

    Article  CAS  Google Scholar 

  30. M.J. Kalmutzki, N. Hanikel, O.M. Yaghi, Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. X.S. Xing et al., High proton conduction in an excellent water-stable gadolinium metal-organic framework. Chem. Commun. (Camb) 55, 1241–1244 (2019)

    Article  CAS  Google Scholar 

  32. C. Hu et al., Toughening mechanisms of epoxy resin using aminated metal-organic framework as additive. Mater. Lett. 240, 113–116 (2019)

    Article  CAS  Google Scholar 

  33. M.F. de Lange, K.J. Verouden, T.J. Vlugt, J. Gascon, F. Kapteijn, Adsorption-driven heat pumps: the potential of metal-organic frameworks. Chem. Rev. 115, 12205–12250 (2015)

    Article  PubMed  CAS  Google Scholar 

  34. U. Ryu et al., Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coord. Chem. Rev. 426, 213544 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. H. Li et al., Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem 1, 100006 (2019)

    Article  Google Scholar 

  36. B. Li, H.M. Wen, W. Zhou, B. Chen, Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014)

    Article  CAS  PubMed  Google Scholar 

  37. X. Li, X. Yang, H. Xue, H. Pang, Q. Xu, Metal–organic frameworks as a platform for clean energy applications. EnergyChem 2, 100027 (2020)

    Article  Google Scholar 

  38. P. Falcaro et al., A new method to position and functionalize metal-organic framework crystals. Nat. Commun. 2, 237 (2011)

    Article  PubMed  CAS  Google Scholar 

  39. H.R. Moon, D.W. Lim, M.P. Suh, Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 42, 1807–1824 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. V. Lykourinou, Y. Chen, X. Wang, L.J.J.A.C.S. Meng, T. Hoang, L.-J. Ming, R.L. Musselman, S. Ma, J. Am. Chem. Soc. 133, 10382–10385 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. L. Wang et al., Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications. ACS Appl. Mater. Interfaces 7, 24082–24093 (2015)

    Article  CAS  PubMed  Google Scholar 

  42. Y. Li, L.H. Wee, A. Volodin, J.A. Martens, I.F.J. Vankelecom, Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chem. Commun. 51, 918–920 (2015)

    Article  CAS  Google Scholar 

  43. R. Wang et al., In situ growth of ZIF-67 on ultrathin CoAl layered double hydroxide nanosheets for electrochemical sensing toward naphthol isomers. J. Colloid Interface Sci. 576, 313–321 (2020)

    Article  CAS  PubMed  Google Scholar 

  44. M.J.C. Ordoñez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 361, 28–37 (2010)

    Article  CAS  Google Scholar 

  45. Q.L. Zhu, Q. Xu, Metal-organic framework composites. Chem. Soc. Rev. 43, 5468–5512 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. F. Xiang, A.M. Marti, D.P. Hopkinson, Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. J. Membr. Sci. 556, 146–153 (2018)

    Article  CAS  Google Scholar 

  47. S.J. Yang et al., Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite. Chem. Mater. 21, 1893–1897 (2009)

    Article  CAS  Google Scholar 

  48. Y. Zhang, S. Zhang, T.S. Chung, Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 49, 10235–10242 (2015)

    Article  CAS  PubMed  Google Scholar 

  49. Y. Han, Y. Jiang, C. Gao, High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. S. Janakiram, J.L. Martín Espejo, X. Yu, L. Ansaloni, L. Deng, Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: effect of 2D filler properties. J. Membr. Sci. 616, 118626 (2020)

    Article  CAS  Google Scholar 

  51. Y. Liu et al., Core-shell noble-metal@ metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. 52, 3741–3745 (2013)

    Article  CAS  Google Scholar 

  52. Y. Zheng, S. Zheng, H. Xue, H. Pang, Metal-organic frameworks/graphene-based materials: preparations and applications. Adv. Funct. Mater. 28, 1804950 (2018)

    Article  CAS  Google Scholar 

  53. B. Szczęśniak, J. Choma, M. Jaroniec, Gas adsorption properties of hybrid graphene-MOF materials. J. Colloid Interface Sci. 514, 801–813 (2018)

    Article  PubMed  CAS  Google Scholar 

  54. W. Wei, Z. Liu, R. Wei, G.-C. Han, C. Liang, Synthesis of MOFs/GO composite for corrosion resistance application on carbon steel. RSC Adv. 10, 29923–29934 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  PubMed  Google Scholar 

  56. Y. Zhu et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. Y. Zhu et al., Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. R.D.P. Ji Won Suk, J. An, R.S. Ruoff, Mechanical properties of monolayer graphene oxide. ACSNANO 4, 6557–6564 (2010)

    Google Scholar 

  60. B. Szczęśniak, J. Choma, M. Jaroniec, Gas adsorption properties of graphene-based materials. Adv. Colloid Interface Sci. 243, 46–59 (2017)

    Article  PubMed  CAS  Google Scholar 

  61. J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)

    Article  CAS  Google Scholar 

  62. G. Liu, Graphene-based membranes. Chem. Soc. Rev. 44, 5016 (2015)

    Article  CAS  PubMed  Google Scholar 

  63. T.S. Sreeprasad, V. Berry, How do the electrical properties of graphene change with its functionalization? Small 9, 341–350 (2013)

    Article  CAS  PubMed  Google Scholar 

  64. V. Berry, Impermeability of graphene and its applications. Carbon 62, 1–10 (2013)

    Article  CAS  Google Scholar 

  65. R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012)

    Article  CAS  PubMed  Google Scholar 

  66. A.B. Bourlinos et al., Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003)

    Article  CAS  Google Scholar 

  67. Y. You, V. Sahajwalla, M. Yoshimura, R.K. Joshi, Graphene and graphene oxide for desalination. Nanoscale 8, 117–119 (2016)

    Article  CAS  PubMed  Google Scholar 

  68. H. Huang, Y. Ying, X. Peng, Graphene oxide nanosheet: an emerging star material for novel separation membranes. J. Mater. Chem. A 2, 13772–13782 (2014)

    Article  CAS  Google Scholar 

  69. E.N. Wang, R. Karnik, Graphene cleans up water. Nat. Nanotechnol. 7, 552–554 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. Z. Zhang et al., Theory and simulation developments of confined mass transport through graphene-based separation membranes. Phys. Chem. Chem. Phys. 22, 6032–6057 (2020)

    Article  CAS  PubMed  Google Scholar 

  71. M. Tanhaei, A.R. Mahjoub, V. Safarifard, Ultrasonic-assisted synthesis and characterization of nanocomposites from azine-decorated metal-organic framework and graphene oxide layers. Mater. Lett. 227, 318–321 (2018)

    Article  CAS  Google Scholar 

  72. G. Liu, W. Jin, N. Xu, Graphene-based membranes. Chem. Soc. Rev. 44, 5016–5030 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012)

    Article  CAS  PubMed  Google Scholar 

  74. B.W. Kyaw Sint, P. Kra, Selective ion passage through functionalized graphene nanopores. JACS 130, 16448 (2008)

    Article  CAS  Google Scholar 

  75. A.A. Balandin et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. Z. Li et al., Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 5, 160–168 (2020)

    Article  CAS  Google Scholar 

  77. Y.-C. Du et al., Preparation of graphene oxide/silica hybrid composite membranes and performance studies in water treatment. J. Mater. Sci. 55, 11188–11202 (2020)

    Article  CAS  Google Scholar 

  78. Y. Zhang et al., The preparation and study of ethylene glycol-modified graphene oxide membranes for water purification. Polym (Basel) 11, 188 (2019)

    Article  CAS  Google Scholar 

  79. Z. Zhang et al., Bioinspired graphene oxide membranes with pH-responsive nanochannels for high-performance nanofiltration. ACS Nano (2021). https://doi.org/10.1021/acsnano.1c02719

    Article  PubMed  PubMed Central  Google Scholar 

  80. Y.C. Du et al., Recent developments in graphene-based polymer composite membranes: preparation, mass transfer mechanism, and applications. J. Appl. Polym. Sci. 136, 47761 (2019)

    Article  CAS  Google Scholar 

  81. K. Yang et al., Graphene oxide/nanometal composite membranes for nanofiltration: synthesis, mass transport mechanism, and applications. New J. Chem. 43, 2846–2860 (2019)

    Article  CAS  Google Scholar 

  82. M.-M. Cheng et al., Reduced graphene oxide–gold nanoparticle membrane for water purification. Sep. Sci. Technol. 54, 1079–1085 (2019)

    Article  CAS  Google Scholar 

  83. M.-M. Cheng et al., Synthesis of graphene oxide/polyacrylamide composite membranes for organic dyes/water separation in water purification. J. Mater. Sci. 54, 252–264 (2019)

    Article  CAS  Google Scholar 

  84. G.-F. Liu et al., Preparation of a graphene/silver hybrid membrane as a new nanofiltration membrane. RSC Adv. 7, 49159–49165 (2017)

    Article  CAS  Google Scholar 

  85. Y.-C. Zhao et al., Synthesis of graphene oxide/rare-earth complex hybrid luminescent materials via π-π stacking and their pH-dependent luminescence. J. Alloys Compd. 687, 95–103 (2016)

    Article  CAS  Google Scholar 

  86. L.-J. Huang et al., Graphene/silver nanocomposites stabilize Mg-Ni-La electrode alloys and enhance electrochemical performance. J. Alloys Compd. 694, 1140–1148 (2017)

    Article  CAS  Google Scholar 

  87. A.U. Alam, M.J. Deen, Bisphenol a electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal. Chem. 92, 5532–5539 (2020)

    Article  CAS  PubMed  Google Scholar 

  88. J. Sethi et al., A label-free biosensor based on graphene and reduced graphene oxide dual-layer for electrochemical determination of beta-amyloid biomarkers. Microchim. Acta 187, 288 (2020)

    Article  CAS  Google Scholar 

  89. J. Wu et al., Graphene oxide for integrated photonics and flat optics. Adv. Mater. 33, 2006415 (2021)

    Article  CAS  Google Scholar 

  90. S. Biswas et al., Nonlinear optical properties and temperature dependent photoluminescence in hbn-go heterostructure 2D material. J. Phys. Chem. C 121, 8060–8069 (2017)

    Article  CAS  Google Scholar 

  91. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces. Science 339, 1232009 (2013)

    Article  PubMed  CAS  Google Scholar 

  92. F. Aieta et al., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012)

    Article  CAS  PubMed  Google Scholar 

  93. G. Fadillah, W.P. Wicaksono, I. Fatimah, T.A. Saleh, A sensitive electrochemical sensor based on functionalized graphene oxide/SnO2 for the determination of eugenol. Microchem. J. 159, 105353 (2020)

    Article  CAS  Google Scholar 

  94. H. Kalita, V.S. Palaparthy, M.S. Baghini, M. Aslam, Electrochemical synthesis of graphene quantum dots from graphene oxide at room temperature and its soil moisture sensing properties. Carbon 165, 9–17 (2020)

    Article  CAS  Google Scholar 

  95. Q. Zheng, Z. Li, J. Yang, J.-K. Kim, Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 64, 200–247 (2014)

    Article  CAS  Google Scholar 

  96. M. Fu, Z. Zhu, W. Chen, H. Yu, Q. Liu, Microwave-assisted synthesis of MoS2/graphene composites for supercapacitors. J. Mater. Sci. 55, 16385–16393 (2020)

    Article  CAS  Google Scholar 

  97. M. Fu et al., Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. J. Alloys Compds. 862, 158006 (2021)

    Article  CAS  Google Scholar 

  98. M. Fu et al., In situ growth of manganese ferrite nanorods on graphene for supercapacitors. Ceram. Int. 46, 28200–28205 (2020)

    Article  CAS  Google Scholar 

  99. M. Fu et al., Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors. J. Colloid Interface Sci. 588, 795–803 (2021)

    Article  CAS  PubMed  Google Scholar 

  100. J. Wang et al., Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance. ACS Appl. Mater. Interfaces 8, 25508–25519 (2016)

    Article  CAS  PubMed  Google Scholar 

  101. Y. Wei et al., Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016)

    Article  CAS  Google Scholar 

  102. N. Song et al., A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437, 59–72 (2018)

    Article  CAS  Google Scholar 

  103. S.L. James, Metal-organic frameworks. Chem. Soc. Rev. 32, 276–288 (2003)

    Article  CAS  PubMed  Google Scholar 

  104. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

  105. J.R. Long, O.M. Yaghi, The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1213–1214 (2009)

    Article  CAS  PubMed  Google Scholar 

  106. U. Mueller et al., Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)

    Article  CAS  Google Scholar 

  107. X.L. Liu et al., An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angew. Chem. Int. Ed. Engl. 50, 10636–10639 (2011)

    Article  CAS  PubMed  Google Scholar 

  108. R. Zhang et al., Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes. Angew. Chem. Int. Ed. Engl. 53, 9775–9779 (2014)

    Article  CAS  PubMed  Google Scholar 

  109. O.M. Yaghi, H.L. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)

    Article  CAS  Google Scholar 

  110. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  CAS  Google Scholar 

  111. O.K. Farha et al., Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)

    Article  CAS  PubMed  Google Scholar 

  112. T. Zhang, W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014)

    Article  CAS  PubMed  Google Scholar 

  113. A. Dhakshinamoorthy, H. Garcia, Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 43, 5750–5765 (2014)

    Article  CAS  PubMed  Google Scholar 

  114. T.A. Makal, J.R. Li, W. Lu, H.C. Zhou, Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012)

    Article  CAS  PubMed  Google Scholar 

  115. T.L. Hu et al., Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat. Commun. 6, 7328 (2015)

    Article  CAS  PubMed  Google Scholar 

  116. S. Chaemchuen, N.A. Kabir, K. Zhou, F. Verpoort, Metal-organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chem. Soc. Rev. 42, 9304–9332 (2013)

    Article  CAS  PubMed  Google Scholar 

  117. Z. Hu, B.J. Deibert, J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014)

    Article  CAS  PubMed  Google Scholar 

  118. X.-W. Liu, T.-J. Sun, J.-L. Hu, S.-D. Wang, Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. J. Mater. Chem. A 4, 3584–3616 (2016)

    Article  CAS  Google Scholar 

  119. J. Li et al., Experimental and theoretical study on selenate uptake to zirconium metal–organic frameworks: effect of defects and ligands. Chem. Eng. J. 330, 1012–1021 (2017)

    Article  CAS  Google Scholar 

  120. P. Yang et al., Interfacial growth of a metal–organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi). J. Mater. Chem. A 5, 17933–17942 (2017)

    Article  CAS  Google Scholar 

  121. Y. Peng, H. Huang, D. Liu, C. Zhong, Radioactive barium ion trap based on metal-organic framework for efficient and irreversible removal of barium from nuclear wastewater. ACS Appl. Mater. Interfaces 8, 8527–8535 (2016)

    Article  CAS  PubMed  Google Scholar 

  122. A.A. Tiba, A.V. Tivanski, L.R. MacGillivray, Size-dependent mechanical properties of a metal-organic framework: increase in flexibility of ZIF-8 by crystal downsizing. Nano Lett. 19, 6140–6143 (2019)

    Article  CAS  PubMed  Google Scholar 

  123. M.C. McCarthy, V. Varela-Guerrero, G.V. Barnett, H.K. Jeong, Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 26, 14636–14641 (2010)

    Article  CAS  PubMed  Google Scholar 

  124. Z. Ni, R.I. Masel, Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)

    Article  CAS  PubMed  Google Scholar 

  125. W.J. Rieter, K.M.L. Taylor, H.Y. An, W.L. Lin, W.B. Lin, Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024–9025 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. W. Sun, X. Zhai, L. Zhao, Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 289, 59–64 (2016)

    Article  CAS  Google Scholar 

  127. S. Duan et al., HF-free synthesis of nanoscale metal-organic framework NMIL-100(Fe) as an efficient dye adsorbent. ACS Sustain. Chem. Eng. 4, 3368–3378 (2016)

    Article  CAS  Google Scholar 

  128. Y. Hu et al., Metal–organic framework membranes fabricated via reactive seeding. Chem. Commun. 47, 737–739 (2011)

    Article  CAS  Google Scholar 

  129. F. Millange, C. Serre, G. Ferey, Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C–C6H4-CO2).(HO2C-C6H4-CO2H)x. Chem. Commun. (Camb) 8, 822–823 (2002)

    Article  CAS  Google Scholar 

  130. T.R. Whitfield, X. Wang, L. Liu, A.J. Jacobson, Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci. 7, 1096–1103 (2005)

    Article  CAS  Google Scholar 

  131. T. Loiseau et al., A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry 10, 1373–1382 (2004)

    Article  CAS  PubMed  Google Scholar 

  132. P. Horcajada et al., Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. 118, 6120–6124 (2006)

    Article  Google Scholar 

  133. N.A. Khan, J.S. Lee, J. Jeon, C.-H. Jun, S.H. Jhung, Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous Mesoporous Mater. 152, 235–239 (2012)

    Article  CAS  Google Scholar 

  134. P.J.Y. Horcajada, Y.K. Seo, J.S. Chang et al., Chem. Commun. 27, 2820–2822 (2007)

    Article  Google Scholar 

  135. D. Lupu et al., Synthesis and hydrogen adsorption properties of a new iron based porous metal-organic framework. Int. J. Hydrogen Energy 36, 3586–3592 (2011)

    Article  CAS  Google Scholar 

  136. D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254–4260 (2014)

    Article  CAS  Google Scholar 

  137. Q. Fang et al., A metal-organic framework with the zeolite MTN topology containing large cages of volume 2.5 nm3. Angew. Chem. Int. Ed. Engl. 44, 3845–3848 (2005)

    Article  CAS  PubMed  Google Scholar 

  138. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 103, 10186–10191 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. H. Wu et al., Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation. RSC Adv. 6, 6915–6920 (2016)

    Article  CAS  Google Scholar 

  140. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. JACS 130, 13850 (2008)

    Article  CAS  Google Scholar 

  141. S.J. Garibay, S.M. Cohen, Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun. (Camb) 46, 7700–7702 (2010)

    Article  CAS  Google Scholar 

  142. E. Sutter et al., In situ microscopy of the self-assembly of branched nanocrystals in solution. Nat. Commun. 7, 11213 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. P. Li et al., Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability. J. Am. Chem. Soc. 138, 8052–8055 (2016)

    Article  CAS  PubMed  Google Scholar 

  144. K. Wang et al., A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 136, 13983–13986 (2014)

    Article  CAS  PubMed  Google Scholar 

  145. L. Sun, J. Xie, Z. Chen, J. Wu, L. Li, Reversible lithium storage in a porphyrin-based MOF (PCN-600) with exceptionally high capacity and stability. Dalton Trans. 47, 9989 (2018)

    Article  CAS  PubMed  Google Scholar 

  146. D. Feng et al., Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 6, 5979 (2015)

    Article  PubMed  CAS  Google Scholar 

  147. D. Feng et al., A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores. Angew. Chem. Int. Ed. Engl. 54, 149–154 (2015)

    Article  CAS  PubMed  Google Scholar 

  148. O.K. Farha et al., Gas-sorption properties of cobalt(II)–carborane-based coordination polymers as a function of morphology. Small 5, 1727–1731 (2009)

    Article  CAS  PubMed  Google Scholar 

  149. W. Cho, H.J. Lee, M. Oh, Growth-controlled formation of porous coordination polymer particles. J. Am. Chem. Soc. 130, 16943–16946 (2008)

    Article  CAS  PubMed  Google Scholar 

  150. A. Carne, C. Carbonell, I. Imaz, D. Maspoch, Nanoscale metal-organic materials. Chem. Soc. Rev. 40, 291–305 (2011)

    Article  CAS  PubMed  Google Scholar 

  151. K.S. Park et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186–10191 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. S. Tanaka, K. Kida, M. Okita, Y. Ito, Y. Miyake, Size-controlled synthesis of zeolitic imidazolate framework-8 (ZIF-8) crystals in an aqueous system at room temperature. Chem. Lett. 41, 1337–1339 (2012)

    Article  CAS  Google Scholar 

  153. S.R. Venna, J.B. Jasinski, M.A. Carreon, Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 132, 18030–18033 (2010)

    Article  CAS  PubMed  Google Scholar 

  154. J. Cravillon et al., Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009)

    Article  CAS  Google Scholar 

  155. I.M. Shane-Pawsey, J. Ripmeester, Hyperpolarized 129Xe nuclear magnetic resonance studies of isoreticular metal-organic frameworks. J. Phys. Chem. C 111, 6060 (2007)

    Article  CAS  Google Scholar 

  156. J.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, J. Li, Microporous metal-organic frameworks with high gas sorption and separation capacity. Adv. Funct. Mater. 17, 1255–1262 (2007)

    Article  CAS  Google Scholar 

  157. B. Szczesniak, J. Choma, M. Jaroniec, Gas adsorption properties of graphene-based materials. Adv. Colloid Interface Sci. 243, 46–59 (2017)

    Article  CAS  PubMed  Google Scholar 

  158. Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 353, 549–556 (2011)

    Article  CAS  PubMed  Google Scholar 

  159. S.-H. Huo, X.-P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449–7455 (2012)

    Article  CAS  Google Scholar 

  160. R.M. Rego, G. Kuriya, M.D. Kurkuri, M. Kigga, MOF based engineered materials in water remediation: recent trends. J. Hazard. Mater. 403, 123605 (2021)

    Article  CAS  PubMed  Google Scholar 

  161. M. Bosch, M. Zhang, H.-C. Zhou, Increasing the stability of metal-organic frameworks. Adv. Chem. 2014, 182327 (2014)

    Article  CAS  Google Scholar 

  162. E. Yılmaz, E. Sert, F.S. Atalay, Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). J. Taiwan Inst. Chem. Eng. 65, 323–330 (2016)

    Article  CAS  Google Scholar 

  163. E. Haque et al., Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 181, 535 (2010)

    Article  CAS  Google Scholar 

  164. E. Haque, J.W. Jun, S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 185, 507–511 (2011)

    Article  CAS  PubMed  Google Scholar 

  165. S.-H. Huo, X.-P. Yan, Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J. Mater. Chem. 22, 7449 (2012)

    Article  CAS  Google Scholar 

  166. M. Thi Thanh et al., Synthesis of iron doped zeolite imidazolate framework-8 and its remazol deep black RGB dye adsorption ability. J. Chem. 2017, 5045973 (2017)

    Article  CAS  Google Scholar 

  167. Y. Han et al., In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorg. Chem. Front. 4, 1870–1880 (2017)

    Article  CAS  Google Scholar 

  168. X.-L. Wang et al., Metal ions induced various polymolybdate-based metal–organic complexes with a pyridyl-amide-carboxylate ligand: synthesis, structures and selective separation of cationic dyes. Polyhedron 126, 92–99 (2017)

    Article  CAS  Google Scholar 

  169. Y. Xu et al., Fabrication of hybrid magnetic HKUST-1 and its highly efficient adsorption performance for Congo red dye. RSC Adv. 5, 19199–19202 (2015)

    Article  CAS  Google Scholar 

  170. Q. Yang et al., Three dimensional reduced graphene oxide/ZIF-67 aerogel: effective removal cationic and anionic dyes from water. Chem. Eng. J. 348, 202–211 (2018)

    Article  CAS  Google Scholar 

  171. R. Bibi et al., Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks. J. Chem. Eng. Data 62, 1615–1622 (2017)

    Article  CAS  Google Scholar 

  172. Y. Pan et al., Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 140, 2610–2618 (2018)

    Article  CAS  PubMed  Google Scholar 

  173. H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020)

    Article  CAS  PubMed  Google Scholar 

  174. A. Corma, H. García, F.X. Llabrés I Xamena, Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010)

    Article  CAS  PubMed  Google Scholar 

  175. A. Li, W. Zhu, C. Li, T. Wang, J. Gong, Rational design of yolk–shell nanostructures for photocatalysis. Chem. Soc. Rev. 48, 1874–1907 (2019)

    Article  CAS  PubMed  Google Scholar 

  176. A. Walther, A.H.E. Müller, Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013)

    Article  CAS  PubMed  Google Scholar 

  177. K. Jayaramulu et al., Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 33, 2004560 (2021)

    Article  CAS  Google Scholar 

  178. Z. Lu et al., Water stable metal-organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 12, 1081–1084 (2012)

    Article  CAS  Google Scholar 

  179. M. Peplow, Swiss-cheese-like materials called metal–organic frameworks have long promised to improve gas storage, separation and catalysis Now they are coming of age. Nature 520, 148–150 (2015)

    Article  CAS  PubMed  Google Scholar 

  180. S. Park et al., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)

    Article  CAS  PubMed  Google Scholar 

  181. K.C. Kemp et al., Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5, 3149–3171 (2013)

    Article  CAS  PubMed  Google Scholar 

  182. T.J. Bandosz, C. Petit, MOF/graphite oxide hybrid materials: exploring the new concept of adsorbents and catalysts. Adsorption 17, 5–16 (2011)

    Article  CAS  Google Scholar 

  183. X. Zhou et al., A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. J. Mater. Chem. A 2, 4722–4730 (2014)

    Article  CAS  Google Scholar 

  184. M.D. Firouzjaei et al., Exploiting synergetic effects of graphene oxide and a silver-based metal-organic framework to enhance antifouling and anti-biofouling properties of thin-film nanocomposite membranes. ACS Appl. Mater. Interfaces 10, 42967–42978 (2018)

    Article  CAS  PubMed  Google Scholar 

  185. G. Wyszogrodzka, B. Marszałek, B. Gil, P. Dorożyński, Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discov. Today 21, 1009–1018 (2016)

    Article  CAS  PubMed  Google Scholar 

  186. J. Tang et al., Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms. ACS Appl. Mater. Interfaces 5, 3867–3874 (2013)

    Article  CAS  PubMed  Google Scholar 

  187. M. Muschi, C. Serre, Progress and challenges of graphene oxide/metal-organic composites. Coord. Chem. Rev. 387, 262–272 (2019)

    Article  CAS  Google Scholar 

  188. H.X. Zhong et al., ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed. Engl. 53, 14235–14239 (2014)

    Article  CAS  PubMed  Google Scholar 

  189. X. Qiu, X. Wang, Y. Li, Controlled growth of dense and ordered metal-organic framework nanoparticles on graphene oxide. Chem. Commun. (Camb) 51, 3874–3877 (2015)

    Article  CAS  Google Scholar 

  190. Y. Hu et al., Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes. Angew. Chem. Int. Ed. Engl. 55, 2048–2052 (2016)

    Article  CAS  PubMed  Google Scholar 

  191. Y. Cao, Y. Zhao, Z. Lv, F. Song, Q. Zhong, Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 27, 102–107 (2015)

    Article  CAS  Google Scholar 

  192. S. Liu et al., Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 6, 818–823 (2013)

    Article  CAS  Google Scholar 

  193. C. Petit, T.J. Bandosz, Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. J. Colloid Interface Sci. 447, 139–151 (2015)

    Article  CAS  PubMed  Google Scholar 

  194. C. Petit, T.J. Bandosz, Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))–graphite oxide composites: exploring the limits of materials fabrication. Adv. Funct. Mater. 21, 2108–2117 (2011)

    Article  CAS  Google Scholar 

  195. B. Chen, Y. Zhu, Y. Xia, Controlled in situ synthesis of graphene oxide/zeolitic imidazolate framework composites with enhanced CO2 uptake capacity. RSC Adv. 5, 30464–30471 (2015)

    Article  CAS  Google Scholar 

  196. Y. Ying et al., High-flux graphene oxide membranes intercalated by metal-organic framework with highly selective separation of aqueous organic solution. ACS Appl. Mater. Interfaces 9, 1710–1718 (2017)

    Article  CAS  PubMed  Google Scholar 

  197. X. Qin et al., In situ growing triethanolamine-functionalized metal-organic frameworks on two-dimensional carbon nanosheets for electrochemiluminescent immunoassay. ACS Sens. 4, 2351–2357 (2019)

    Article  CAS  PubMed  Google Scholar 

  198. K.-Y. Andrew Lin, F.-K. Hsu, W.-D. Lee, Magnetic cobalt–graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J. Mater. Chem. A 3, 9480–9490 (2015)

    Article  CAS  Google Scholar 

  199. A. Huang, Q. Liu, N. Wang, Y. Zhu, J. Caro, Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. J. Am. Chem. Soc. 136, 14686–14689 (2014)

    Article  CAS  PubMed  Google Scholar 

  200. C. Petit, T.J. Bandosz, Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL(Fe))-graphite oxide composites: exploring the limits of materials fabrication. Adv. Func. Mater. 21, 2108–2117 (2011)

    Article  CAS  Google Scholar 

  201. Z. Bian et al., Interfacial growth of metal organic framework/graphite oxide composites through pickering emulsion and their CO(2) capture performance in the presence of humidity. Langmuir 31, 7410–7417 (2015)

    Article  CAS  PubMed  Google Scholar 

  202. F. Zhang et al., Pickering emulsions stabilized by a metal–organic framework (MOF) and graphene oxide (GO) for producing MOF/GO composites. Soft Matter 13, 7365–7370 (2017)

    Article  CAS  PubMed  Google Scholar 

  203. M. Muschi et al., Formation of a single-crystal aluminum-based MOF nanowire with graphene oxide nanoscrolls as structure-directing agents. Angew. Chem. Int. Ed. 59, 10353–10358 (2020)

    Article  CAS  Google Scholar 

  204. K. Yang et al., Graphene oxide nanofiltration membranes containing silver nanoparticles: tuning separation efficiency via nanoparticle size. Nanomater. (Basel) 10, 454 (2020)

    Article  CAS  Google Scholar 

  205. M. Ramezanzadeh, B. Ramezanzadeh, M. Mahdavian, G. Bahlakeh, Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 161, 231–251 (2020)

    Article  CAS  Google Scholar 

  206. N. Bhoria et al., Functionalization effects on HKUST-1 and HKUST-1/graphene oxide hybrid adsorbents for hydrogen sulfide removal. J. Hazard. Mater. 394, 122565 (2020)

    Article  CAS  PubMed  Google Scholar 

  207. S. Kumaraguru, J. Yesuraj, S. Mohan, Reduced graphene oxide-wrapped micro-rod like Ni/Co organic-inorganic hybrid nanocomposite as an electrode material for high-performance supercapacitor. Compos. B 185, 107767 (2020)

    Article  CAS  Google Scholar 

  208. K. Zuo et al., A hybrid metal-organic framework–reduced graphene oxide nanomaterial for selective removal of chromate from water in an electrochemical process. Environ. Sci. Technol. 54, 13322–13332 (2020)

    Article  CAS  PubMed  Google Scholar 

  209. X. Liu et al., Optimizing the supercapacitive performance via encasing MOF-derived hollow (Ni, Co)Se2 nanocubes into reduced graphene oxide. Chem. Eng. J. 399, 125789 (2020)

    Article  CAS  Google Scholar 

  210. Q. Wei et al., MOF-derived α-Fe2O3 porous spindle combined with reduced graphene oxide for improvement of TEA sensing performance. Sens. Actuators B 304, 127306 (2020)

    Article  CAS  Google Scholar 

  211. R. Mo et al., MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sens. Actuators B 330, 129326 (2021)

    Article  CAS  Google Scholar 

  212. Q. Li et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16, 2003905 (2020)

    Article  CAS  Google Scholar 

  213. L. Yaqoob et al., Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: an efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renew. Energy 156, 1040–1054 (2020)

    Article  CAS  Google Scholar 

  214. Y. Liu et al., Enhanced peroxydisulfate oxidation via Cu(III) species with a Cu-MOF-derived Cu nanoparticle and 3D graphene network. J. Hazard. Mater. 403, 123691 (2021)

    Article  CAS  PubMed  Google Scholar 

  215. C. Wang et al., Hierarchical MOF-derived layered Fe3O4 QDs@C imbedded on graphene sheets as a high-performance anode for Lithium-ion storage. Appl. Surf. Sci. 509, 144882 (2020)

    Article  CAS  Google Scholar 

  216. Y. Zhong et al., Homogeneous nickel metal-organic framework microspheres on reduced graphene oxide as novel electrode material for supercapacitors with outstanding performance. J. Colloid Interface Sci. 561, 265–274 (2020)

    Article  CAS  PubMed  Google Scholar 

  217. Z.L. Chen et al., Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 30, 10 (2018)

    PubMed Central  Google Scholar 

  218. L. Jiao, Y.-X. Zhou, H.-L. Jiang, Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 7, 1690–1695 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. L. Yan et al., A freestanding 3D heterostructure film stitched by MOF-derived carbon nanotube microsphere superstructure and reduced graphene oxide sheets: a superior multifunctional electrode for overall water splitting and Zn–Air batteries. Adv. Mater. 32, 2003313 (2020)

    Article  CAS  Google Scholar 

  220. B. Szczesniak, J. Choma, M. Jaroniec, Gas adsorption properties of hybrid graphene-MOF materials. J. Colloid Interface Sci. 514, 801–813 (2018)

    Article  CAS  PubMed  Google Scholar 

  221. S. Zhao et al., Synthesis of graphene oxide/metal–organic frameworks hybrid materials for enhanced removal of Methylene blue in acidic and alkaline solutions. J. Chem. Technol. Biotechnol. 93, 698–709 (2018)

    Article  CAS  Google Scholar 

  222. M. Tanhaei, A.R. Mahjoub, V. Safarifard, Sonochemical synthesis of amide-functionalized metal-organic framework/graphene oxide nanocomposite for the adsorption of methylene blue from aqueous solution. Ultrason. Sonochem. 41, 189–195 (2018)

    Article  CAS  PubMed  Google Scholar 

  223. K. Guan et al., 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. J. Membr. Sci. 542, 41–51 (2017)

    Article  CAS  Google Scholar 

  224. L. Yang, B. Tang, P. Wu, Metal–organic framework–graphene oxide composites: a facile method to highly improve the proton conductivity of PEMs operated under low humidity. J. Mater. Chem. A 3, 15838–15842 (2015)

    Article  CAS  Google Scholar 

  225. Z.H. Liu, Z.M. Wang, X. Yang, K. Ooi, Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 18, 4926 (2002)

    Article  CAS  Google Scholar 

  226. M. Green, G. Marom, J. Li, J.-K. Kim, The electrical conductivity of graphite nanoplatelet filled conjugated polyacrylonitrile. Macromol. Rapid Commun. 29, 1254–1258 (2008)

    Article  CAS  Google Scholar 

  227. C. Petit, T.J. Bandosz, MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv. Mater. 21, 4753–4757 (2009)

    Article  CAS  Google Scholar 

  228. Z.-H. Liu, Z.-M. Wang, X. Yang, K. Ooi, Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 18, 4926–4932 (2002)

    Article  CAS  Google Scholar 

  229. Y. Fang et al., All-in-one conformal epidermal patch for multimodal biosensing. Matter 4, 1102–1105 (2021)

    Article  CAS  Google Scholar 

  230. X. Chu et al., Air-stable conductive polymer ink for printed wearable micro-supercapacitors. Small (Weinheim an der Bergstrasse, Germany) 17, 2100956 (2021)

    Article  CAS  Google Scholar 

  231. T. Zelenka, Adsorption and desorption of nitrogen at 77 K on micro- and meso- porous materials: Study of transport kinetics. Microporous Mesoporous Mater. 227, 202–209 (2016)

    Article  CAS  Google Scholar 

  232. J. Pokhrel et al., CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)

    Article  CAS  Google Scholar 

  233. R. Balasubramanian, S. Chowdhury, Recent advances and progress in the development of graphene-based adsorbents for CO2 capture. J. Mater. Chem. A 3, 21968–21989 (2015)

    Article  CAS  Google Scholar 

  234. C. Zhang et al., Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment. ACS Nano 12, 2048–2055 (2018)

    Article  CAS  PubMed  Google Scholar 

  235. R. Kumar, K. Jayaramulu, T.K. Maji, C.N. Rao, Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem. Commun. (Camb) 49, 4947–4949 (2013)

    Article  CAS  Google Scholar 

  236. L.C. Lin, D. Paik, J. Kim, Understanding gas adsorption in MOF-5/graphene oxide composite materials. Phys. Chem. Chem. Phys. 19, 11639–11644 (2017)

    Article  CAS  PubMed  Google Scholar 

  237. Y. Hu et al., Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes. Angew. Chem. 128, 2088–2092 (2016)

    Article  Google Scholar 

  238. K.S. Park et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. 103, 10186 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. H. Zhou et al., High-capacity room-temperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst. Int. J. Hydrogen Energy 40, 12275–12285 (2015)

    Article  CAS  Google Scholar 

  240. X. Zhou et al., Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture. Chem. Eng. J. 266, 339–344 (2015)

    Article  CAS  Google Scholar 

  241. X. Sun, Q. Xia, Z. Zhao, Y. Li, Z. Li, Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chem. Eng. J. 239, 226–232 (2014)

    Article  CAS  Google Scholar 

  242. X. Sun, Y. Li, H. Xi, Q. Xia, Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes. RSC Adv. 4, 56216–56223 (2014)

    Article  CAS  Google Scholar 

  243. Y. Zhao, Y. Cao, Q. Zhong, CO2 capture on metal-organic framework and graphene oxide composite using a high-pressure static adsorption apparatus. J. Clean Energy Technol. 2, 34–37 (2014)

    Article  CAS  Google Scholar 

  244. Y. Li et al., Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity. Chem. Eng. J. 298, 191–197 (2016)

    Article  CAS  Google Scholar 

  245. C. Petit et al., Toward understanding reactive adsorption of ammonia on Cu-MOF/graphite oxide nanocomposites. Langmuir 27, 13043–13051 (2011)

    Article  CAS  PubMed  Google Scholar 

  246. C. Petit, B. Mendoza, T.J. Bandosz, Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites. ChemPhysChem 11, 3678–3684 (2010)

    Article  CAS  PubMed  Google Scholar 

  247. Y. Zhao, H. Ding, Q. Zhong, Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture. Appl. Surf. Sci. 284, 138–144 (2013)

    Article  CAS  Google Scholar 

  248. G.-Q. Liu, M.-X. Wan, Z.-H. Huang, F.-Y. Kang, Preparation of graphene/metal-organic composites and their adsorption performance for benzene and ethanol. New Carbon Mater. 30, 566–571 (2015)

    Article  CAS  Google Scholar 

  249. A. Policicchio, Y. Zhao, Q. Zhong, R.G. Agostino, T.J. Bandosz, Cu-BTC/Aminated graphite oxide composites as high-efficiency CO2 capture media. ACS Appl. Mater. Interfaces 6, 101–108 (2014)

    Article  CAS  PubMed  Google Scholar 

  250. Y. Chen et al., A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation. Chem. Eng. J. 308, 1065–1072 (2017)

    Article  CAS  Google Scholar 

  251. J.R. Werber, C.O. Osuji, M.J.N.R.M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 1–15 (2016)

    Article  CAS  Google Scholar 

  252. P. Sun, K. Wang, H.J.A.M. Zhu, Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016)

    Article  CAS  PubMed  Google Scholar 

  253. Y. Ying et al., High-flux graphene oxide membranes intercalated by metal–organic framework with highly selective separation of aqueous organic solution. ACS Appl. Mater. Interface 9, 1710–1718 (2017)

    Article  CAS  Google Scholar 

  254. K.H. Thebo et al., Highly stable graphene-oxide-based membranes with superior permeability. Nature 9, 1–8 (2018)

    CAS  Google Scholar 

  255. M. Jahan, Q. Bao, J.X. Yang, K.P. Loh, Structure-directing role of graphene in the synthesis of metal− organic framework nanowire. J. Am. Chem. Soc. 132, 14487 (2010)

    Article  CAS  PubMed  Google Scholar 

  256. X. Li et al., Metal–organic frameworks based membranes for liquid separation. Chem. Soc. Rev. 46, 7124–7144 (2017)

    Article  CAS  PubMed  Google Scholar 

  257. X. Sui et al., The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon 148, 277–289 (2019)

    Article  CAS  Google Scholar 

  258. C. Foroutan-Nejad, R. Marek, Potential energy surface and binding energy in the presence of an external electric field: modulation of anion-pi interactions for graphene-based receptors. Phys. Chem. Chem. Phys. 16, 2508–2514 (2014)

    Article  CAS  PubMed  Google Scholar 

  259. J. Ma, X. Guo, Y. Ying, D. Liu, C. Zhong, Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 313, 890–898 (2017)

    Article  CAS  Google Scholar 

  260. Q. Ma, H. Cheng, A.G. Fane, R. Wang, H. Zhang, Recent development of advanced materials with special wettability for selective oil/water separation. Small 12, 2186–2202 (2016)

    Article  CAS  PubMed  Google Scholar 

  261. J. Gu, H. Fan, C. Li, J. Caro, H. Meng, Robust superhydrophobic/superoleophilic wrinkled microspherical MOF@rGO composites for efficient oil-water separation. Angew. Chem. Int. Ed. Engl. 58, 5297–5301 (2019)

    Article  CAS  PubMed  Google Scholar 

  262. R. Chang et al., Hierarchically assembled graphene oxide composite membrane with self-healing and high-efficiency water purification performance. ACS Appl. Mater. Interfaces 11, 46251–46260 (2019)

    Article  CAS  PubMed  Google Scholar 

  263. P.K. Samantaray, G. Madras, S. Bose, Water remediation aided by a graphene-oxide-anchored metal organic framework through pore- and charge-based sieving of ions. ACS Sustain. Chem. Eng. 7, 1580–1590 (2019)

    Article  CAS  Google Scholar 

  264. Y. Bai, S. Zhang, S. Feng, M. Zhu, S. Ma, The first ternary Nd-MOF/GO/Fe3O4 nanocomposite exhibiting an excellent photocatalytic performance for dye degradation. Dalton Trans. 49, 10745–10754 (2020)

    Article  CAS  PubMed  Google Scholar 

  265. Y. Liu et al., A polydopamine-modified reduced graphene oxide (RGO)/MOFs nanocomposite with fast rejection capacity for organic dye. Chem. Eng. J. 359, 47–57 (2019)

    Article  CAS  Google Scholar 

  266. Y. Liu et al., Bioinspired dopamine modulating graphene oxide nanocomposite membrane interposed by super-hydrophilic UiO-66 with enhanced water permeability. Sep. Purif. Technol. 253, 117552 (2020)

    Article  CAS  Google Scholar 

  267. M. Dadashi Firouzjaei, F. Akbari Afkhami, M. Rabbani Esfahani, C.H. Turner, S. Nejati, Experimental and molecular dynamics study on dye removal from water by a graphene oxide-copper-metal organic framework nanocomposite. J. Water Process Eng. 34, 101180 (2020)

    Article  Google Scholar 

  268. Q. Yang et al., Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem. Eng. J. 313, 19–26 (2017)

    Article  CAS  Google Scholar 

  269. L. Li et al., A MOF/graphite oxide hybrid (MOF: HKUST-1) material for the adsorption of methylene blue from aqueous solution. J. Mater. Chem. A 1, 10292 (2013)

    Article  CAS  Google Scholar 

  270. S. Zhao et al., Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrason. Sonochem. 39, 845–852 (2017)

    Article  CAS  PubMed  Google Scholar 

  271. Y. Sun et al., Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial Uio-66-(OH)2/GO. Appl. Surf. Sci. 525, 146614 (2020)

    Article  CAS  Google Scholar 

  272. A.S. Eltaweil, E.M. Abd-El-Monaem, G.M. El-Subruiti, M.M. Abd-El-Latif, A.M. Omer, Fabrication of UiO-66/MIL-101(Fe) binary MOF/carboxylated-GO composite for adsorptive removal of methylene blue dye from aqueous solutions. RSC Adv. 10, 19008–19019 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. J. Abdi, M. Vossoughi, N.M. Mahmoodi, I. Alemzadeh, Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chem. Eng. J. 326, 1145–1158 (2017)

    Article  CAS  Google Scholar 

  274. C. Yang, S. Wu, J. Cheng, Y. Chen, Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution. J. Alloys Compd. 687, 804–812 (2016)

    Article  CAS  Google Scholar 

  275. L. Li et al., The adsorption on magnetic hybrid Fe3O4/HKUST-1/GO of methylene blue from water solution. J. Mater. Chem. A 2, 1795–1801 (2014)

    Article  CAS  Google Scholar 

  276. R. Kumar, D. Raut, U. Ramamurty, C.N. Rao, Remarkable improvement in the mechanical properties and CO2 uptake of MOFs brought about by covalent linking to graphene. Angew. Chem. Int. Ed. Engl. 55, 7857–7861 (2016)

    Article  CAS  PubMed  Google Scholar 

  277. S. Liu et al., Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 6, 818 (2013)

    Article  CAS  Google Scholar 

  278. X. Xiao, X. Xiao, Y. Lan, J. Chen, Learning from nature for healthcare, energy, and environment. Innovation 2, 100135 (2021)

    PubMed  PubMed Central  Google Scholar 

  279. S. Zhang et al., Leveraging triboelectric nanogenerators for bioengineering. Matter 4, 845–887 (2021)

    Article  CAS  Google Scholar 

  280. C. Chung et al., Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46, 2211–2224 (2013)

    Article  CAS  PubMed  Google Scholar 

  281. Z. Karimzadeh, S. Javanbakht, H. Namazi, Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. Bioimpacts 9, 5–13 (2019)

    Article  CAS  PubMed  Google Scholar 

  282. A. Borenstein et al., Carbon-based composite materials for supercapacitor electrodes: a review. J. Mater. Chem. A 5, 12653–12672 (2017)

    Article  CAS  Google Scholar 

  283. H.G.A.A. Corma, F.X. Llabres I Xamena, Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2009)

    Article  CAS  Google Scholar 

  284. J.H. Lee et al., Fluorescent composite hydrogels of metal-organic frameworks and functionalized graphene oxide. Chemistry (Weinheim an der Bergstrasse, Germany) 18, 765–769 (2012)

    CAS  Google Scholar 

  285. J. Luo et al., Graphene oxide nanocolloids. J. Am. Chem. Soc. 132, 17667–17669 (2010)

    Article  CAS  PubMed  Google Scholar 

  286. X. Cao et al., Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695–4701 (2015)

    Article  CAS  PubMed  Google Scholar 

  287. Y. Wu, H. Luo, H. Wang, Synthesis of iron(iii)-based metal–organic framework/graphene oxide composites with increased photocatalytic performance for dye degradation. RSC Adv. 4, 40435–40438 (2014)

    Article  CAS  Google Scholar 

  288. S. Zhang, Q. Yang, W. Wang, C. Wang, Z. Wang, Covalent bonding of metal-organic framework-5/graphene oxide hybrid composite to stainless steel fiber for solid-phase microextraction of triazole fungicides from fruit and vegetable samples. J. Agric. Food Chem. 64, 2792–2801 (2016)

    Article  CAS  PubMed  Google Scholar 

  289. J. Zhang, Z. Li, X. Qi, W. Zhang, D.-Y. Wang, Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos. B 188, 107881 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the (1) Natural Scientific Foundation of China (Grant Nos. 51878361, 52070104, 51503112); Natural Scientific Foundation of Shandong Province (Grant No. ZR2019MEM048); (2) State Key Project of International Cooperation Research (2016YFE0110800, 2017YFE0108300); the National Program for Introducing Talents of Discipline to Universities (“111” plan); 1st class discipline program of Materials Science of Shandong Province, The Double-Hundred Foreign Expert Program of Shandong Province(2019-2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-jun Huang, Yan-xin Wang or Jian-guo Tang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Hj., Huang, Lj., Han, Zy. et al. A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications. J Porous Mater 28, 1837–1865 (2021). https://doi.org/10.1007/s10934-021-01125-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01125-w

Keywords

Navigation