Skip to main content
Log in

Comparative ecotoxicity of graphene, functionalized multi-walled CNTs, and their mixture in freshwater microalgae, Scenedesmus obliquus: analyzing the role of oxidative stress

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L−1, while graphene and f-MWCNTs were taken at 0.5 mg L−1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data employed in support of the outcomes of the study are included in the article.

References

  • Amado LL, Monserrat JM (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235

    Article  CAS  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA (2013) Review of potential environmental and health risks of the nanomaterial graphene. Hum Ecol Risk Assess Int J 19:873–887

    Article  CAS  Google Scholar 

  • Barbieri E, Campos-Garcia J, Martinez DS, da Silva JRM, Alves OL, Rezende KF (2016) Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal 22:1162–1169

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2013) Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions. J Hazard Mater 260:1032–1041

    Article  CAS  Google Scholar 

  • Borza C, Muntean D, Dehelean C, Săvoiu G, Şerban C, Simu G, Andoni M, Butur M, Drăgan S, (2013) Oxidative stress and lipid peroxidation–a lipid metabolism dysfunction. Lipid Metab 34:23–38

    Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:1–17

    Article  CAS  Google Scholar 

  • Chakraborty D, Ethiraj K, Chandrasekaran N, Mukherjee A (2021) Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: role of eco-corona. Environ Pollut 270:116049

    Article  CAS  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    Article  CAS  Google Scholar 

  • Cruces E, Barrios AC, Cahue YP, Januszewski B, Gilbertson LM, Perreault F (2021) Similar toxicity mechanisms between graphene oxide and oxidized multi-walled carbon nanotubes in Microcystis aeruginosa. Chemosphere 265:129137

    Article  CAS  Google Scholar 

  • Dallavalle M, Calvaresi M, Bottoni A, Melle-Franco M, Zerbetto F (2015) Graphene can wreak havoc with cell membranes. ACS Appl Mater Interfaces 7:4406–4414

    Article  CAS  Google Scholar 

  • Fang R, Gong J, Cao W, Chen Z, Huang D, Ye J, Cai Z (2022) The combined toxicity and mechanism of multi-walled carbon nanotubes and nano copper oxide toward freshwater algae: Tetradesmus obliquus. J Environ Sci 112:376–387

    Article  CAS  Google Scholar 

  • Finaud J, Lac G, Filaire E (2006) Oxidative stress. Sports Medicine 36:327–358

    Article  Google Scholar 

  • Freixa A, Acuña V, Sanchís J, Farré M, Barceló D, Sabater S (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619:328–337

    Article  Google Scholar 

  • Guo C, Song P, Cao X (2016) Effect of citric acid on toxicity of graphene towards freshwater algae (Chlorella pyrenoidosa), 2016 5th International Conference on Environment, Materials, Chemistry and Power Electronics. Atlantis Press

  • Guo X, Mei N (2014) Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 22:105–115

  • Guo Y-Y, Zhang J, Zheng Y-F, Yang J, Zhu X-Q (2011) Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res/Genet Toxicol Environ Mutagen 721:184–191

    Article  CAS  Google Scholar 

  • Hazeem LJ, Bououdina M, Dewailly E, Slomianny C, Barras A, Coffinier Y, Szunerits S, Boukherroub R (2017) Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp. during different growth stages. Environ Sci Pollut Res 24:4144–4152

    Article  CAS  Google Scholar 

  • Hu C, Wang Q, Zhao H, Wang L, Guo S, Li X (2015a) Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere 128:184–190

    Article  CAS  Google Scholar 

  • Hu L, Chen J, Wei Y, Wang M, Xu Y, Wang C, Gao P, Liu Y, Liu C, Song Y (2023) Photocatalytic degradation effect and mechanism of Karenia mikimotoi by non-noble metal modified TiO2 loading onto copper metal organic framework (SNP-TiO2@ Cu-MOF) under visible light. J Hazard Mater 442:130059

    Article  CAS  Google Scholar 

  • Hu X, Ouyang S, Mu L, An J, Zhou Q (2015b) Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles. Environ Sci Technol 49:10825–10833

    Article  CAS  Google Scholar 

  • Iswarya V, Bhuvaneshwari M, Alex SA, Iyer S, Chaudhuri G, Chandrasekaran PT, Bhalerao GM, Chakravarty S, Raichur AM, Chandrasekaran N (2015) Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic toxicology 161:154–169

  • Kim KY, Kim SM, Kim JY, Choi Y-E (2022) Elucidating the mechanisms underlying the cytotoxic effects of nano-/micro-sized graphene oxide on the microalgae by comparing the physiological and morphological changes in different trophic modes. Chemosphere 309:136539

    Article  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  Google Scholar 

  • Kwok KW, Leung KM, Flahaut E, Cheng J, Cheng SH (2010) Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods. Nanomedicine 5:951–961

    Article  CAS  Google Scholar 

  • Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multi-walled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299

    Article  CAS  Google Scholar 

  • Li X, Qiu H, Zhang P, Song L, Romero-Freire A, He E (2023) Role of heteroaggregation and internalization in the toxicity of differently sized and charged plastic nanoparticles to freshwater microalgae. Environ Pollut 316:120517

  • Lin M-Y (2008) Interactions between titanium dioxide nanoparticles and algal cells at moderate particle concentration. University of Delaware, Newark, p 1457124

  • Liu W, Au DW, Anderson DM, Lam PK, Wu RS (2007) Effects of nutrients, salinity, pH and light: dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346:76–86

    Article  CAS  Google Scholar 

  • Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X (2022) Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. Sci Total Environ 838:156069

  • Long Z, Ji J, Yang K, Lin D, Wu F (2012) Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol 46:8458–8466

    Article  CAS  Google Scholar 

  • Lukhele LP, Mamba BB, Musee N, Wepener V (2015) Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. J Nanomater 2015:3–3

  • Lv B, Wang C, Hou J, Wang P, Miao L, Li Y, Ao Y, Yang Y, You G, Xu Y (2016) Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO 2) nanoparticles under different hydrochemical conditions. J Nanopart Res 18:1–12

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV (2015) Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress. J Appl Phycol 27:805–813

    Article  CAS  Google Scholar 

  • Malhotra N, Villaflores OB, Audira G, Siregar P, Lee J-S, Ger T-R, Hsiao C-D (2020) Toxicity studies on graphene-based nanomaterials in aquatic organisms: Current understanding. Molecules 25:3618

    Article  CAS  Google Scholar 

  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 5:1676–1684

    Article  CAS  Google Scholar 

  • Markus AA, Parsons JR, Roex EW, Voogt Pd, Laane RW (2016) Modelling the release, transport and fate of engineered nanoparticles in the aquatic environment–a review. Rev Environ Contam Toxicol 243:53–87

    Google Scholar 

  • Martín-de-Lucía I, Campos-Mañas MC, Agüera A, Leganés F, Fernández-Piñas F, Rosal R (2018) Combined toxicity of graphene oxide and wastewater to the green alga Chlamydomonas reinhardtii. Environ Sci Nano 5:1729–1744

    Article  Google Scholar 

  • Martinez D, Alves O, Barbieri E (2013) Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser 429:012043. IOP Publishing, Bristol

  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142:431–440

    Article  Google Scholar 

  • Mikhailov A, Härmälä-Braskén A-S, Hellman J, Meriluoto J, Eriksson JE (2003) Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem Biol Interact 142:223–237

    Article  CAS  Google Scholar 

  • Natarajan L, Omer S, Jetly N, Jenifer MA, Chandrasekaran N, Suraishkumar G, Mukherjee A (2020) Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Environ Res 188:109842

    Article  CAS  Google Scholar 

  • Nazari F, Jafarirad S, Movafeghi A, Kosari-Nasab M, Kazemi EM (2020) Toxicity of microwave-synthesized silver-reduced graphene oxide nanocomposites to the microalga Chlorella vulgaris: comparison with the hydrothermal method synthesized counterparts. J Environ Sci Health Part A 55:639–649

    Article  CAS  Google Scholar 

  • Nogueira P, Nakabayashi D, Zucolotto V (2015) The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat Toxicol 166:29–35

    Article  CAS  Google Scholar 

  • OECD (2004) 202: Daphnia sp. acute immobilisation test. OECD Guidelines for the Testing of Chemicals, Section 2

  • Owusu-Ansah E, Yavari A, Banerjee U et al (2008) A protocol for in vivo detection of reactive oxygen species. Protocol (Version 1) available at Protocol Exchange. https://doi.org/10.1038/nprot.2008.23

  • Parks A (2013) Contaminant interactions and biological effects of single-walled carbon nanotubes in a benthic estuarine system. dukespace.lib.duke.edu

  • Pikula K, Chaika V, Zakharenko A, Markina Z, Vedyagin A, Kuznetsov V, Gusev A, Park S, Golokhvast K (2020) Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae. Nanomaterials 10:485

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    Article  CAS  Google Scholar 

  • Politowski, Regnery P, Hennig MP, Siebers N, Ottermanns R, Schäffer A (2021) Fate of weathered multi-walled carbon nanotubes in an aquatic sediment system. Chemosphere 1(277):130319

    Article  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2019) Oxidative damage and antioxidative system in algae. Toxicol Rep 6:1309–1313

    Article  CAS  Google Scholar 

  • Romanowska-Duda Z, Grzesik M, Janas R (2019) Maximal efficiency of PSII as a marker of sorghum development fertilized with waste from a biomass biodigestion to methane. Front Plant Sci 9:1920

    Article  Google Scholar 

  • Roy B, Chandrasekaran H, Krishnan SP, Chandrasekaran N, Mukherjee A (2018) UVΑ pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environ Sci Pollut Res 25:16729–16742

    Article  CAS  Google Scholar 

  • Roy B, Suresh P, Chandrasekaran N, Mukherjee A (2020) UVB pre-irradiation of titanium dioxide nanoparticles is more detrimental to freshwater algae than UVA pre-irradiation. J Environ Chem Eng 8:104076

    Article  CAS  Google Scholar 

  • Roy B, Suresh P, Chandrasekaran N, Mukherjee A (2021) Antibiotic tetracycline enhanced the toxic potential of photo catalytically active P25 titanium dioxide nanoparticles towards freshwater algae Scenedesmus obliquus. Chemosphere 267:128923

    Article  CAS  Google Scholar 

  • Rudi H, Regel JMF, Ganf GG, Brookes JD (2002) Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquat Toxicol 59:209–223

    Article  Google Scholar 

  • Saravanan N, Rajasekar R, Mahalakshmi S, Sathishkumar T, Sasikumar K, Sahoo S (2014) Graphene and modified graphene-based polymer nanocomposites–a review. J Reinf Plast Compos 33:1158–1170

    Article  Google Scholar 

  • Saxena P, Sangela V, Ranjan S, Dutta V, Dasgupta N, Phulwaria M, Rathore DS (2020) Aquatic nanotoxicology: impact of carbon nanomaterials on algal flora. Energy Ecol Environ 5:240–252

    Article  Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L, Knauer K (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45:6136–6144

    Article  CAS  Google Scholar 

  • Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47:7012–7019

    Article  CAS  Google Scholar 

  • Segal M (2009) Selling graphene by the ton. Nat Nanotechnol 4:612–614

    Article  CAS  Google Scholar 

  • Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    Article  CAS  Google Scholar 

  • Sousa CA, Soares HM, Soares EV (2018) Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata. Aquat Toxicol 204:80–90

    Article  CAS  Google Scholar 

  • Stanley JK, Laird JG, Kennedy AJ, Steevens JA (2016) Sublethal effects of multi-walled carbon nanotube exposure in the invertebrate Daphnia magna. Environ Toxicol Chem 35:200–204

    Article  Google Scholar 

  • Thiagarajan V, Iswarya V, Seenivasan R, Chandrasekaran N, Mukherjee A (2019) Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat Toxicol 207:208–216

    Article  CAS  Google Scholar 

  • Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, Kaiser J-P, Krug HF, Rothen-Rutishauser B, Wick P (2011) A comparison of acute and long-term effects of industrial multi-walled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 200:176–186

    Article  CAS  Google Scholar 

  • Van der Paal J, Neyts EC, Verlackt CC, Bogaerts A (2016) Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem Sci 7:489–498

    Article  Google Scholar 

  • Vargas-Estrada L, Torres-Arellano S, Longoria A, Arias DM, Okoye PU, Sebastian P (2020) Role of nanoparticles on microalgal cultivation: a review. Fuel 280:118598

    Article  CAS  Google Scholar 

  • Wang H, Jin M, Mao W, Chen C, Fu L, Li Z, Du S, Liu H (2020) Photosynthetic toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) on green algae Scenedesmus obliquus. Sci Total Environ 707:136176

    Article  CAS  Google Scholar 

  • Wang M, Chen J, Hu L, Wei Y, Xu Y, Wang C, Gao P, Liu Y, Liu C, Song Y (2023) Heterogeneous interfacial photocatalysis for the inactivation of Karenia mikimotoi by Bi2O3 loaded onto a copper metal organic framework (Bi2O3@ Cu-MOF) under visible light. Chem Eng J 456:141154

    Article  CAS  Google Scholar 

  • Wang Z, Gao Y, Wang S, Fang H, Xu D, Zhang F (2016) Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity. Environ Sci Pollut Res 23:10938–10945

    Article  CAS  Google Scholar 

  • Wang Z, Zhang F, Vijver MG, Peijnenburg WJ (2021) Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere 276:130015

    Article  CAS  Google Scholar 

  • Wei L, Thakkar M, Chen Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multi-walled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201

    Article  CAS  Google Scholar 

  • Yin J, Dong Z, Liu Y, Wang H, Li A, Zhuo Z, Feng W, Fan W (2020a) Toxicity of reduced graphene oxide modified by metals in microalgae: effect of the surface properties of algal cells and nanomaterials. Carbon 169:182–192

    Article  CAS  Google Scholar 

  • Yin J, Fan W, Du J, Feng W, Dong Z, Liu Y, Zhou T (2020b) The toxicity of graphene oxide affected by algal physiological characteristics: a comparative study in cyanobacterial, green algae, diatom. Environ Pollut 260:113847

    Article  CAS  Google Scholar 

  • Zhang L, Lei C, Chen J, Yang K, Zhu L, Lin D (2015) Effect of natural and synthetic surface coatings on the toxicity of multi-walled carbon nanotubes toward green algae. Carbon 83:198–207

    Article  CAS  Google Scholar 

  • Zhang L, Li J, Yang K, Liu J, Lin D (2016) Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environ Pollut 211:132–140

    Article  CAS  Google Scholar 

  • Zhang Y, Meng T, Shi L, Guo X, Si X, Yang R, Quan X (2019) The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna. Sci Total Environ 649:163–171

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48:9995–10009

    Article  CAS  Google Scholar 

  • Zhao J, Cao X, Wang Z, Dai Y, Xing B (2017) Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res 111:18–27

    Article  CAS  Google Scholar 

  • Zhao J, Lin M, Wang Z, Cao X, Xing B (2021) Engineered nanomaterials in the environment: are they safe? Crit Rev Environ Sci Technol 51(14):1443–1478

    Article  Google Scholar 

  • Zhou D, Bennett SW, Keller AA (2012) Increased mobility of metal oxide nanoparticles due to photo and thermal induced disagglomeration. PLoS ONE 7:e37363

    Article  CAS  Google Scholar 

  • Zhu S, Zhu B, Huang A, Hu Y, Wang G, Ling F (2016) Toxicological effects of multi-walled carbon nanotubes on Saccharomyces cerevisiae: the uptake kinetics and mechanisms and the toxic responses. J Hazard Mater 318:650–662

    Article  CAS  Google Scholar 

  • Zhu X, Tan L, Zhao T, Huang W, Guo X, Wang J, Wang J (2022) Alone and combined toxicity of ZnO nanoparticles and graphene quantum dots on microalgae Gymnodinium. Environ Sci Pollut Res 29(31):47310–47322. https://doi.org/10.1007/s11356-022-19267-y

  • Zindler F, Glomstad B, Altin D, Liu J, Jenssen BM, Booth AM (2016) Phenanthrene bioavailability and toxicity to Daphnia magna in the presence of carbon nanotubes with different physicochemical properties. Environ Sci Technol 50:12446–12454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Centre for Fire, Explosives, and Environment Safety, Timarpur, Delhi 110054, India, and the Vellore Institute of Technology (VIT) for providing the nanomaterials and SEM facilities used in this study.

Funding

The study was carried out using the funds provided by CFEES-DRDO (Sanction No. CFEES/TCP/EnSG/CARS(P)/DG(SAM)/FTS-ERAF/VIT-VELLORE). The authors would also like to thank Sh. Rajiv Narang (Outstanding Scientist and Director), Centre for Fire, Explosives, and Environment Safety-Defence Research and Development Organisation (CFEES-DRDO) for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

Soupam Das: investigation, methodology, visualization, formal analysis, writing—review and editing. Sayani Giri: writing—original draft. Gaurav Wadhwa: investigation and methodology. Mrudula Pulimi: conceptualization, methodology, supervision, writing—review and editing. Shalini Anand: conceptualization, methodology, supervision, writing—review and editing. Natarajan Chandrasekaran: formal analysis, resources. Seyed Ali Johari: formal analysis, writing—review and editing. Pramod Kumar Rai: conceptualization, methodology, supervision, writing—review and editing. Amitava Mukherjee: conceptualization, methodology, supervision, project administration, writing—review and editing.

Corresponding author

Correspondence to Amitava Mukherjee.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

It is declared that the study involved no human participants.

Consent for publication

All authors have given consent to the publication of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Wei Liu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1675 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Giri, S., Wadhwa, G. et al. Comparative ecotoxicity of graphene, functionalized multi-walled CNTs, and their mixture in freshwater microalgae, Scenedesmus obliquus: analyzing the role of oxidative stress. Environ Sci Pollut Res 30, 70246–70259 (2023). https://doi.org/10.1007/s11356-023-27367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27367-6

Keywords

Navigation