Skip to main content

Advertisement

Log in

Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data analyzed and/or generated in this study are available upon reasonable request from the corresponding author.

References

  • Adekola SA, Akinlua A, Adeyemi SA (2021) Trace element characterization of selected tar sand samples from tar sand belt of southwestern Nigeria. Arab J Geosci 14(12):1–12

    Google Scholar 

  • Adeola AO, Forbes PBC (2021) Influence of natural organic matter fractions on PAH sorption by stream sediments and a synthetic graphene wool adsorbent. Environ Technol Innov 21:101202

    CAS  Google Scholar 

  • Ahmadkalaei SPJ, Gan S, Ng HK, Talib SA (2021) The role of humic acid in Fenton reaction for the removal of aliphatic fraction of total petroleum hydrocarbons (diesel range) in soil. Environ Sci Ecotechnology 7:100109

  • Akimbekov NS, Digel I, Tastambek KT, Sherelkhan DK, Jussupova DB, Altynbay NP (2021a) Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture 11(12):1261

    CAS  Google Scholar 

  • Akimbekov N, Digel I, Abdieva G, Ualieva P, Tastambek K (2021) Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data. Biofuels 12(3):247–258

    CAS  Google Scholar 

  • Almendros G (1995) Sorptive interactions of pesticides in soils treated with modified humic acids. Eur J Soil Sci 46(2):287–301

    CAS  Google Scholar 

  • Alvarez LH, Cervantes FJ (2012) Assessing the impact of alumina nanoparticles in an anaerobic consortium: methanogenic and humus reducing activity. Appl Microbiol Biotechnol 95:1323–1331

    CAS  Google Scholar 

  • Alvarez LH, Jimenez-Bermudez L, Hernandez-Montoya V, Cervantes FJ (2012) Enhanced dechlorination of carbon tetrachloride by immobilized fulvic acids on alumina particles. Water Air Soil Pollut 223:1911–1920

    CAS  Google Scholar 

  • Ampong K, Thilakaranthna MS, Gorim LY (2022) Understanding the role of humic acids on crop performance and soil health. Front Agron 4. https://doi.org/10.3389/fagro.2022.848621

  • Aristilde L, Sposito G (2010) Binding of ciprofloxacin by humic substances: a molecular dynamics study. Environ Toxicol Chem 29(1):90–98

    CAS  Google Scholar 

  • Ateia M, Ran J, Fujii M, Yoshimura C (2017) The relationship between molecular composition and fluorescence properties of humic substances. Int J Environ Sci Technol 14(4):867–880

    CAS  Google Scholar 

  • Baalousha M, Motelica-Heino M, Coustumer PL (2006) Conformation and size of humic substances: effects of major cation concentration and type, pH, salinity, and residence time. Colloids Surf, A 272(1–2):48–55. https://doi.org/10.1016/j.colsurfa.2005.07.010

    Article  CAS  Google Scholar 

  • Baltazar M, Correia S, Guinan KJ, Sujeeth N, Bragança R, Gonçalves B (2021) Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules 11(8):1096. https://doi.org/10.3390/biom11081096

    Article  CAS  Google Scholar 

  • Banach-Szott M, Debska B, Rosa E (2014) Effect of soil pollution with polycyclic aromatic hydrocarbons on the properties of humic acids. J Soils Sediments 14(6):1169–1178

    CAS  Google Scholar 

  • Bauer JE, Williams PM, Druffel ER (1992) 14C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea. Nature 357(6380):667–670

    CAS  Google Scholar 

  • Bernstein N, Gorelick J, Zerahia R, Koch S (2019) Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front Plant Sci 10:736

    Google Scholar 

  • Bitchong AM, Ottou JPB, Bitjong SA, Mandeng GN, Adatte T (2022) Preliminary source rock evaluation, paleo-depositional environment and hydrocarbon generation potential of the cretaceous organic-rich outcrops of Mayo-Figuil River, Babouri-Figuil Basin, Northern Benue Trough (Yola arm) Cameroon: insights from bulk geochemistry. J Afr Earth Sc 192:104568

    Google Scholar 

  • Blodau C (2002) Carbon cycling in peatlands a review of processes and controls. Environ Rev 10(2):111–134

    CAS  Google Scholar 

  • Bogan BW, Sullivan WR (2003) Physicochemical soil parameters affecting sequestration and mycobacterial biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 52(10):1717–1726

    CAS  Google Scholar 

  • Campitelli PA, Velasco MI, Ceppi SB (2006) Chemical and physicochemical characteristics of humic acids extracted from compost, soil and amended soil. Talanta 69(5):1234–1239

    CAS  Google Scholar 

  • Canellas LP, Olivares FL (2014) Physiological responses to humic substances as plant growth promoter. Chem Biol Technol Agric 1(1):3. https://doi.org/10.1186/2196-5641-1-3

    Article  CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27. https://doi.org/10.1016/j.scienta.2015.09.013

    Article  CAS  Google Scholar 

  • Cardeal Volpi MP, Julieth I, Corzo M, Bastos RG, Maria, ·, Santana HA (2019) Production of humic acids by solid-state fermentation of Trichoderma reesei in raw oil palm empty fruit bunch fibers. 3 Biotech 9(11):393. https://doi.org/10.1007/s13205-019-1925-z

  • Carlos L, Martire DO, Gonzalez MC, Gomis J, Bernabeu A, Amat AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46(15):4732–4740

    CAS  Google Scholar 

  • Cervantes FJ, Gonzalez-Estrella J, Márquez A, Alvarez LH, Arriaga S (2011) Immobilized humic substances on an anion exchange resin and their role on the redox biotransformation of contaminants. Biores Technol 102(2):2097–2100

    CAS  Google Scholar 

  • Cervantes FJ, Martínez CM, Gonzalez-Estrella J, Márquez A, Arriaga S (2013) Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids. Appl Microbiol Biotechnol 97:2671–2679

    CAS  Google Scholar 

  • Chen Y, Nobili M, Aviad T (2004) Stimulatory effects of humic substances on plant growth. In: Magdoff F, Ray RW (eds) Soil organic matter in sustainable agriculture. CRC Press Inc, Boca Raton USA, pp 103–129

    Google Scholar 

  • Chen Y, Aviad T (2015) Effects of humic substances on plant growth. Humic Substances in Soil and Crop Sciences: Selected Readings, 161–186. https://doi.org/10.2136/1990.humicsubstances.c7

  • Cheng G, Niu Z, Zhang C, Zhang X, Li X (2019) Extraction of humic acid from lignite by KOH-hydrothermal method. Appl Sci 9(7):1356

    CAS  Google Scholar 

  • Chianese S, Fenti A, Iovino P, Musmarra D, Salvestrini S (2020) Sorption of organic pollutants by humic acids: a review. Molecules 25(4):918

    CAS  Google Scholar 

  • Ciarkowska K, Sołek-Podwika K, Filipek-Mazur B, Tabak M (2017) Comparative effects of lignite-derived humic acids and FYM on soil properties and vegetable yield. Geoderma 303:85–92

    CAS  Google Scholar 

  • Coates JD, Ellis DJ, Blunt-Harris EL, Gaw CV, Roden EE, Lovley DR (1998) Recovery of humic-reducing bacteria from a diversity of environments. Appl Environ Microbiol 64(4):1504–1509

    CAS  Google Scholar 

  • Collado S, Oulego P, Suárez-Iglesias O, Díaz M (2018) Biodegradation of dissolved humic substances by fungi. Appl Microbiol Biotechnol 102(8):3497–3511

    CAS  Google Scholar 

  • Das T, Saikia BK, Baruah BP, Das D (2015) Characterizations of humic acid isolated from coals of two Nagaland coalfields of India in relation to their origin. J Geol Soc India 86(4):468–474

    CAS  Google Scholar 

  • de Castro TAVT, Berbara RLL, Tavares OCH, da Graça Mello DF, Pereira EG, de Souza CDCB, Espinosa LM, García AC (2021) Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol Biochem 162:171–184

    Google Scholar 

  • de Melo BAG, Motta FL, Santana MHA (2016) Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng, C 62:967–974

    Google Scholar 

  • de Melo Benites V, de Sá Mendonça E, Schaefer CEG, Novotny EH, Reis EL, Ker JCJG (2005) Properties of black soil humic acids from high altitude rocky complexes in Brazil. Geoderma 127(1–2):104–113

    Google Scholar 

  • De Souza F, Bragança SR (2018) Extraction and characterization of humic acid from coal for the application as a dispersant of ceramic powders. J Market Res 7(3):254–260. https://doi.org/10.1016/J.JMRT.2017.08.008

    Article  Google Scholar 

  • Doskočil L, Burdíková-Szewieczková J, Enev V, Kalina L, Wasserbauer J (2018) Spectral characterization and comparison of humic acids isolated from some European lignites. Fuel 213:123–132

    Google Scholar 

  • Erro J, Urrutia O, Baigorri R, Fuentes M, Zamarreño AM, Garcia-Mina JM (2016) Incorporation of humic-derived active molecules into compound NPK granulated fertilizers: main technical difficulties and potential solutions. Chem Biol Technol Agric 3(1). https://doi.org/10.1186/s40538-016-0071-7

  • Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:25–64

    Google Scholar 

  • Fatima N, Jamal A, Huang Z, Liaquat R, Ahmad B, Haider R, Ali MI, Shoukat T, ALOthman ZA, Ouladsmane M (2021) Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. Sustainability 13(16):8969

    CAS  Google Scholar 

  • Fuentes M, Baigorri R, González-Gaitano G, García-Mina JM (2018) New methodology to assess the quantity and quality of humic substances in organic materials and commercial products for agriculture. J Soils Sediments 18(4):1389–1399

    CAS  Google Scholar 

  • García AC, van Tol de Castro TA, Santos LA, Tavares OCH, Castro RN, Berbara RLL, García-Mina JM (2019) Structure–property–function relationship of humic substances in modulating the root growth of plants: a review. J Environ Qual 48(6):1622–1632

    Google Scholar 

  • García AC, de Souza LGA, Pereira MG, Castro RN, García-Mina JM, Zonta E, Lisboa FJG, Berbara RLL (2016) Structure-property-function relationship in humic substances to explain the biological activity in plants. Sci Rep 6(1). https://doi.org/10.1038/srep20798

  • Gerke J (2021) Review Article: The effect of humic substances on phosphate and iron acquisition by higher plants: Qualitative and quantitative aspects. J Plant Nutr Soil Sci 184(3):329–338. https://doi.org/10.1002/jpln.202000525

    Article  CAS  Google Scholar 

  • Gollenbeek L, van der Weide R (2020) Prospects for humic acid products from digestate in the Netherlands: quickscan (No. WPR-867). Stichting Wageningen Research, Wageningen Plant Research, Business unit Open Teelten

  • González-Márquez LC, Hansen AM, González-Farias FA (2018) Effect of mono and divalent salts on the conformation and composition of a humic acid and on atrazine adsorption. Environ Sci Pollut Res Int 25(18):17509–17518. https://doi.org/10.1007/S11356-018-1939-9

    Article  Google Scholar 

  • Gubin AS, Sukhanov PT, Kushnir AA (2019) Extraction of phenols from aqueous solutions by magnetic sorbents modified with humic acids. Mosc Univ Chem Bull 74(5):257–264

    Google Scholar 

  • Guo P, Zhang C, Wang Y, Yu X, Zhang Z, Zhang D (2018) Effect of long-term fertilization on humic redox mediators in multiple microbial redox reactions. Environ Pollut 234:107–114

    CAS  Google Scholar 

  • Hamada GM (2016) Comprehensive evaluation and development of unconventional hydrocarbon re-serves as energy resource. Petro and Envi Biotech, APEB-102. https://doi.org/10.29011/2574-7614.100102

  • Hartz TK, Bottoms TG (2010) Humic substances generally ineffective in improving vegetable crop nutrient uptake or productivity. HortScience 45(6):906–910. https://doi.org/10.21273/hortsci.45.6.906

    Article  Google Scholar 

  • Hayes MH, Swift RS (2020) Vindication of humic substances as a key component of organic matter in soil and water. Adv Agron 163:1–37

    Google Scholar 

  • Hernandez OL, Calderín A, Huelva R, Martínez-Balmori D, Guridi F, Aguiar NO, Olivares FL, Canellas LP (2014) Humic substances from vermicompost enhance urban lettuce production. Agron Sustain Dev 35(1):225–232. https://doi.org/10.1007/s13593-014-0221-x

    Article  CAS  Google Scholar 

  • Hu ZT, Liang YN, Zhao J, Zhang Y, Yang EH, Chen J, Lim TT (2018) Ultra-effective integrated technologies for water disinfection with a novel 0D–2D-3D nanostructured rGO-AgNP/Bi2Fe4O9 composite. Appl Catal B Environ 227:548–556

    CAS  Google Scholar 

  • Huang Z, Zeng Z, Song Z, Chen A, Zeng G, Xiao R, He K, Yuan L, Li H, Chen G (2020) Antimicrobial efficacy and mechanisms of silver nanoparticles against Phanerochaete chrysosporium in the presence of common electrolytes and humic acid. J Hazard Mater 383:121153

  • Huculak-Mączka M, Hoffmann J, Hoffmann K (2018) Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers. J Soils Sediments 18(8):2868–2880

    Google Scholar 

  • IHSS (2018) What are humic substances? Int. Humic Substances Soc. https://humic-substances.org/ Accessed 22 September 2022

  • Jia J, Zhang Y, Liu Q, Huang G, Xing B, Zhang C, Guo H, Pan J, Cao Y (2020) Characterization of coal-based humic acids in relation to their preparation methods. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–11. https://doi.org/10.1080/15567036.2020.1824034

  • Jin X, Zheng M, Sarkar B, Naidu R, Chen Z (2016) Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2, 4-dichlorophenol from aqueous solution. Appl Clay Sci 134:89–94

    CAS  Google Scholar 

  • Jindo K, Canellas L, Albacete A, de Figueiredo Santos L, Frinhani Rocha R, Carvalho Baia D, Oliveira Aguiar Canellas N, Goron T, Olivares F (2020) Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy 10(5):640. https://doi.org/10.3390/agronomy10050640

    Article  CAS  Google Scholar 

  • Khadem AF, Azman S, Plugge CM, Zeeman G, van Lier JB, Stams AJ (2017) Effect of humic acids on the activity of pure and mixed methanogenic cultures. Biomass Bioenergy 99:21–30

    CAS  Google Scholar 

  • Klavins M, Eglite L, Zicmanis A (2006) Immobilized humic substances as sorbents. Chemosphere 62(9):1500–1506

    CAS  Google Scholar 

  • Kleber M, Lehmann J (2019) Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems. J Environ Qual 48(2):207–216

    CAS  Google Scholar 

  • Klüpfel L, Piepenbrock A, Kappler A, Sander M (2014) Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat Geosci 7(3):195–200

    Google Scholar 

  • Kobierski M, Kondratowicz-Maciejewska K, Banach-Szott M, Wojewódzki P, Peñas Castejón JM (2018) Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J Soils Sediments 18(8):2777–2789

    CAS  Google Scholar 

  • Koesnarpadi S, Santosa SJ, Siswanta D, Rudiarso B (2019) Modifying humic acids on magnetite nanoparticles to sorption of p-chlorophenol. J Phys: Conf Ser 1277(1):012007

  • Kong X, Jiang Z, Han C, Zhang R (2020) Organic matter enrichment and hydrocarbon accumulation models of the marlstone in the Shulu Sag, Bohai Bay Basin, Northern China. Int J Coal Geol 217:103350

    CAS  Google Scholar 

  • Kyzas GZ, Bikiaris DN, Lambropoulou DA (2017) Effect of humic acid on pharmaceuticals adsorption using sulfonic acid grafted chitosan. J Mol Liq 230:1–5

    CAS  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    CAS  Google Scholar 

  • León-Buitimea A, Garza-Cárdenas CR, Garza-Cervantes JA, Lerma-Escalera JA, Morones-Ramírez JR (2020) The demand for new antibiotics: antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol 11:1669. https://doi.org/10.3389/fmicb.2020.01669

    Article  Google Scholar 

  • Leone V, Iovino P, Salvestrini S, Capasso S (2014) Sorption of non-ionic organic pollutants onto a humic acids-zeolitic tuff adduct: thermodynamic aspects. Chemosphere 95:75–80

    CAS  Google Scholar 

  • Leone V, Iovino P, Capasso S, Trifuoggi M, Musmarra D (2018) Sorption of benzene derivatives onto insolubilized humic acids. Chem Pap 72(4):929–935

    CAS  Google Scholar 

  • Li Y, Yuan S (2021) Influence of addition of KOH on the yield and characteristics of humic acids extracted from lignite using NaOH. SN Appl Sci 3(1):1–10

    Google Scholar 

  • Li J, Zhen M, Chen X, Li D, Wang S, Song T (2016) Connotation analysis, source-reservoir assemblage types and development potential of unconventional hydrocarbons in China. Petroleum Research 1(2):135–148

    Google Scholar 

  • Li C, Ostadhassan M, Gentzis T, Kong L, Carvajal-Ortiz H, Bubach B (2018) Nanomechanical characterization of organic matter in the Bakken formation by microscopy-based method. Mar Pet Geol 96:128–138

    CAS  Google Scholar 

  • Liang Y, Sorensen DL, McLean JE, Sims RC (2008) Pyrene fate affected by humic acid amendment in soil slurry systems. J Biol Eng 2(1):1–7

    CAS  Google Scholar 

  • Lim VH, Yamashita Y, Ogawa K, Adachi Y (2021) Inhibitory mechanisms of humic substances and polyacrylic acid during the initial stage of polycation-induced flocculation. J Environ Chem Eng 9(6):106481

    CAS  Google Scholar 

  • Liu H, Guo J, Qu J, Lian J, Guo Y, Jefferson W, Yang J (2012) Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator. Biores Technol 107:144–150

    CAS  Google Scholar 

  • Liu Y, Qiao J, Sun Y, Guan X (2022) Simultaneous sequestration of humic acid-complexed Pb (II), Zn (II), Cd (II), and As (V) by sulfidated zero-valent iron: performance and stability of sequestration products. Environ Sci Technol 56(5):3127–3137

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJ, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382(6590):445–448

    CAS  Google Scholar 

  • Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26(3):152–157

    CAS  Google Scholar 

  • Lu S, Liu W, Wang Y, Zhang Y, Li P, Jiang D, Fang C, Li Y (2019) An adsorbent based on humic acid and carboxymethyl cellulose for efficient dye removal from aqueous solution. Int J Biol Macromol 135:790–797

    CAS  Google Scholar 

  • Lukyanov N, Syroezhko A, Slavoshevskaya N, Strakhov V (2015) Humic acids from Belorussian lignite of Brinev and Zhitkovichi deposits. Coke Chem 58(12):476–481

    Google Scholar 

  • McCarthy MD, Bronk DA (2008) Analytical methods for the study of nitrogen. In: Bronk DA, Mulholland MR, Carpenter EJ (eds) Capone DG. Nitrogen in the marine environment, Elsevier, pp 1219–1275

    Google Scholar 

  • Mirza MA, Agarwal SP, Rahman MA, Rauf A, Ahmad N, Alam A, Iqbal Z (2011) Role of humic acid on oral drug delivery of an antiepileptic drug. Drug Dev Ind Pharm 37(3):310–319

    CAS  Google Scholar 

  • Monda H, Cozzolino V, Vinci G, Spaccini R, Piccolo A (2017) Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize. Sci Total Environ 590:40–49

    Google Scholar 

  • Motta FL, Santana MHA (2012) Biomass production from Trichoderma viride in nonconventional oat medium. Biotechnol Prog 28(5):1245–1250. https://doi.org/10.1002/BTPR.1578

    Article  CAS  Google Scholar 

  • Motta FL, Santana MHA (2013) Production of humic acids from oil palm empty fruit bunch by submerged fermentation with Trichoderma viride: cellulosic substrates and nitrogen sources. Biotechnol Prog 29(3):631–637. https://doi.org/10.1002/BTPR.1715

    Article  CAS  Google Scholar 

  • Motta FL, Santana MHA (2014) Comparison of humic acids production by Trichoderma viride and Trichoderma reesei using the submerged fermentation of oil palm empty fruit bunch. Afr J Biotechnol 13(9):1067–1074

    Google Scholar 

  • Motta FL, Santana MHA (2014) Solid-state fermentation for humic acids production by a Trichoderma reesei strain using an oil palm empty fruit bunch as the substrate. Appl Biochem Biotechnol 172(4):2205–2217. https://doi.org/10.1007/S12010-013-0668-2

    Article  CAS  Google Scholar 

  • Mourato M, Pinto F, Moreira I, Sales J, Leitão I, Martins LL (2019) The effect of Cd stress in mineral nutrient uptake in plants. Cadmium Toxicity and Tolerance in Plants 327–348. https://doi.org/10.1016/b978-0-12-814864-8.00013-9

  • Muther T, Qureshi HA, Syed FI, Aziz H, Siyal A, Dahaghi AK, Negahban S (2022) Unconventional hydrocarbon resources: geological statistics, petrophysical characterization, and field development strategies. J Pet Explor Prod Technol 12(6):1463–1488

    Google Scholar 

  • Nardi S, Ertani A, Francioso O (2016) Soil–root cross-talking: the role of humic substances. J Plant Nutr Soil Sci 180(1):5–13. https://doi.org/10.1002/jpln.201600348

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Ertani A (2018) Hormone-like activity of the soil organic matter. Appl Soil Ecol 123:517–520. https://doi.org/10.1016/j.apsoil.2017.04.020

    Article  Google Scholar 

  • Nardi S, Schiavon M, Francioso O (2021) Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26(8):2256

    CAS  Google Scholar 

  • Nieweś D, Huculak-Mączka M, Braun-Giwerska M, Marecka K, Tyc A, Biegun M, Hoffmann K, Hoffmann J (2022) Ultrasound-assisted extraction of humic substances from peat: assessment of process efficiency and products’ quality. Mol 27(11):3413

    Google Scholar 

  • Noskova LP (2019) Humic substances of brown coal from the Sergeyevo coalfield. Chem Sustain Dev 17:61–65

    Google Scholar 

  • Ololade IA, Adeola AO, Oladoja NA, Ololade OO, Nwaolisa SU, Alabi AB, Ogungbe IV (2018) In-situ modification of soil organic matter towards adsorption and desorption of phenol and its chlorinated derivatives. J Environ Chem Eng 6(2):3485–3494

    CAS  Google Scholar 

  • Omirin OM, Adebiyi FM, Ajayi OS (2021) Classical analysis and spectroscopic elucidation of humic substances extracted from oil sand bitumen in Ondo State Nigeria. Solid Fuel Chem 55(6):420–428

    CAS  Google Scholar 

  • Paleckiene R, Navikaite R, Slinksiene R (2021) Peat as a raw material for plant nutrients and humic substances. Sustainability 13(11):6354

    CAS  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 57–134. https://doi.org/10.1016/s0065-2113(02)75003-7

  • Polláková N, Šimanský V, Kravka M (2018) The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. J Soils Sediments 18(8):2790–2800

    Google Scholar 

  • Quaggiotti S (2004) Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J Exp Bot 55(398):803–813. https://doi.org/10.1093/jxb/erh085

    Article  CAS  Google Scholar 

  • Radwan EK, Ghafar HHA, Moursy AS, Langford CH, Bedair AH, Achari G (2015) Preparation and characterization of humic acid–carbon hybrid materials as adsorbents for organic micro-pollutants. Environ Sci Pollut Res 22:12035–12049

    CAS  Google Scholar 

  • Ran S, He T, Zhou X, Yin D (2022) Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice. J Environ Sci. https://doi.org/10.1016/j.jes.2022.02.023

    Article  Google Scholar 

  • Rasouli F, Nasiri Y, Asadi M, Hassanpouraghdam MB, Golestaneh S, Pirsarandib Y (2022) Fertilizer type and humic acid improve the growth responses, nutrient uptake, and essential oil content on Coriandrum sativum L. Sci Rep 12(1):1–12. https://doi.org/10.1038/s41598-022-11555-4

    Article  CAS  Google Scholar 

  • Reddy SB, Nagaraja MS, Kadalli GG, Champa BV (2018) Fourier transform infrared (FTIR) spectroscopy of soil humic and fulvic acids extracted from paddy land use system. Int J Curr Microbiol Appl Sci 7(5):834–837

    Google Scholar 

  • Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 4(3):482–501

    CAS  Google Scholar 

  • Rios-Del Toro EE, Valenzuela EI, Ramírez JE, López-Lozano NE, Cervantes FJ (2018) Anaerobic ammonium oxidation linked to microbial reduction of natural organic matter in marine sediments. Environ Sci Technol Lett 5(9):571–577

    CAS  Google Scholar 

  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR (2014) A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Adv Agron 124:37–89

    CAS  Google Scholar 

  • Sabar MA, Ali MI, Fatima N, Malik AY, Jamal A, Liaquat R, He H, Liu F-J, Guo H, Urynowicz M (2020) Evaluation of humic acids produced from Pakistani subbituminous coal by chemical and fungal treatments. Fuel 278:118301

    CAS  Google Scholar 

  • Saito B, Seckler MM (2014) Alkaline extraction of humic substances from peat applied to organic-mineral fertilizer production. Braz J Chem Eng 31:675–682

    Google Scholar 

  • Saleem M, Irfan M, Tabassum S, Albaqami MD, Javed MS, Hussain S, Pervaiz M, Ahmad I, Ahmad A, Zuber M (2021) Experimental and theoretical study of highly porous lignocellulose assisted metal oxide photoelectrodes for dye-sensitized solar cells. Arab J Chem 14(2):102937

    CAS  Google Scholar 

  • Sarlaki E, Paghaleh AS, Kianmehr MH, Vakilian KA (2019) Extraction and purification of humic acids from lignite wastes using alkaline treatment and membrane ultrafiltration. J Clean Prod 235:712–723

    CAS  Google Scholar 

  • Sayara T, Basheer-Salimia R, Hawamde F, Sánchez A (2020) Recycling of organic wastes through composting: process performance and compost application in agriculture. Agronomy 10(11):1838

    CAS  Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36(6):662–669. https://doi.org/10.1007/s10886-010-9790-6

    Article  CAS  Google Scholar 

  • Schmidt F, Elvert M, Koch BP, Witt M, Hinrichs K-U (2009) Molecular characterization of dissolved organic matter in pore water of continental shelf sediments. Geochim Cosmochim Acta 73(11):3337–3358

    CAS  Google Scholar 

  • Schnitzer M, Monreal CM (2011) Quo vadis soil organic matter research? A biological link to the chemistry of humification. Adv Agron 113:143–217

    Google Scholar 

  • Shang E, Li Y, Niu J, Zhou Y, Wang T, Crittenden JC (2017) Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res 124:595–604

    CAS  Google Scholar 

  • Sible CN, Seebauer JR, Below FE (2021) Plant biostimulants: a categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy 11(7):1297

    CAS  Google Scholar 

  • Skripkina T, Bychkov A, Tikhova V, Lomovsky O (2018) Mechanochemical solid-phase reactions of humic acids from brown coal with sodium percarbonate. Solid Fuel Chem 52(6):356–360

    CAS  Google Scholar 

  • Song Y, Jiang L, Ma XZ (2013) Formation and distribution characteristics of unconventional oil and gas reservoirs. J Palaeogeogr 15(5):605–614

    Google Scholar 

  • Song Y, Li Z, Jiang L, Hong F (2015) The concept and the accumulation characteristics of unconventional hydrocarbon resources. Pet Sci 12:563–572

    CAS  Google Scholar 

  • Song M, Song B, Meng F, Chen D, Sun F, Wei Y (2019) Incorporation of humic acid into biomass derived carbon for enhanced adsorption of phenol. Sci Rep 9(1):1–8

    Google Scholar 

  • Spaccini R, Cozzolino V, Di Meo V, Savy D, Drosos M, Piccolo A (2019) Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Sci Total Environ 646:792–800

    CAS  Google Scholar 

  • Sprunger C, Muther T, Syed FI, Dahaghi AK, Neghabhan S (2022) State of the art progress in hydraulic fracture modeling using AI/ML techniques. Model Earth Syst Environ 8:1–13

    Google Scholar 

  • Sundman A, Karlsson T, Persson P (2013) An experimental protocol for structural characterization of Fe in dilute natural waters. Environ Sci Technol 47(15):8557–8564

    CAS  Google Scholar 

  • Tan W, Liu N, Dang Q, Cui D, Xi B, Yu H (2020) Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants. Environ Pollut 264:114678

    CAS  Google Scholar 

  • Tang Z, Li Y, Yang Z, Liu D, Tang M, Yang S, Tang Y (2019) Characteristic and mechanism of sorption and desorption of benzene on humic acid. Environ Sci Pollut Res 26(20):20277–20285

    CAS  Google Scholar 

  • Tang Y, Hou S, Yang Y, Cheng D, Gao B, Wan Y, Li YC, Yao Y, Zhang S, Xie J (2020) Activation of humic acid in lignite using molybdate-phosphorus hierarchical hollow nanosphere catalyst oxidation: molecular characterization and rice seed germination-promoting performances. J Agric Food Chem 68(47):13620–13631. https://doi.org/10.1021/ACS.JAFC.0C04729

    Article  CAS  Google Scholar 

  • Terbouche A, Ramdane-Terbouche CA, Hauchard D, Djebbar S (2011) Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as Cd (II), Zn (II) and Ni (II) and characterization with cavity microelectrode. J Environ Sci 23(7):1095–1103

    CAS  Google Scholar 

  • Tong X, Mohapatra S, Zhang J, Tran NH, You L, He Y, Gin KYH (2022) Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res 217:118418

    CAS  Google Scholar 

  • Ukalska-Jaruga A, Smreczak B, Klimkowicz-Pawlas A (2019) Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons. J Soils Sediments 19(4):1890–1900

    CAS  Google Scholar 

  • Valenzuela EI, Avendaño KA, Balagurusamy N, Arriaga S, Nieto-Delgado C, Thalasso F, Cervantes FJ (2019) Electron shuttling mediated by humic substances fuels anaerobic methane oxidation and carbon burial in wetland sediments. Sci Total Environ 650:2674–2684

    CAS  Google Scholar 

  • Valenzuela EI, Padilla-Loma C, Gómez-Hernández N, López-Lozano NE, Casas-Flores S, Cervantes FJ (2020) Humic substances mediate anaerobic methane oxidation linked to nitrous oxide reduction in wetland sediments. Front Microbiol 11:587

    Google Scholar 

  • Valenzuela EI, Prieto-Davó A, López-Lozano NE, Hernández-Eligio A, Vega-Alvarado L, Juárez K, Garcia-Gonzalez AS, Lopez MG, Cervantes FJ (2017) Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol 83(11):e00645–17

    CAS  Google Scholar 

  • Valero N, Gómez L, Pantoja M, Ramírez R (2014) Production of humic substances through coal-solubilizing bacteria. Braz J Microbiol 45:911–918

    CAS  Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnol Adv 27(3):256–277

    Google Scholar 

  • van Grinsven S, SinningheDamsté JS, Villanueva L (2020) Assessing the effect of humic substances and Fe (III) as potential electron acceptors for anaerobic methane oxidation in a marine anoxic system. Microorganisms 8(9):1288

    Google Scholar 

  • Venezia V, Pota G, Silvestri B, Vitiello G, Di Donato P, Landi G, Mollo V, Verrillo M, Cangemi S, Piccolo A, Luciani G (2022) A study on structural evolution of hybrid humic acids-SiO2 nanostructures in pure water: effects on physico-chemical and functional properties. Chemosphere 287:131985

  • Verrillo M, Salzano M, Cozzolino V, Spaccini R, Piccolo A (2021) Bioactivity and antimicrobial properties of chemically characterized compost teas from different green composts. Waste Manag 120:98–107

    CAS  Google Scholar 

  • Verrillo M, Salzano M, Savy D, Di Meo V, Valentini M, Cozzolino V, Piccolo A (2022) Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses. Chem Biol Technol Agric 9(1):1–15

    Google Scholar 

  • Vinod VP, Anirudhan TS (2003) Adsorption behaviour of basic dyes on the humic acid immobilized pillared clay. Water Air Soil Pollut 150(1):193–217

    CAS  Google Scholar 

  • Vitiello G, Venezia V, Verrillo M, Nuzzo A, Houston J, Cimino S, D’Errico G, Aronne A, Paduano L, Piccolo A, Luciani G (2021) Hybrid humic acid/titanium dioxide nanomaterials as highly effective antimicrobial agents against gram (−) pathogens and antibiotic contaminants in wastewater. Environ Res 193:110562

  • Volkov DS, Rogova OB, Proskurnin MA (2021) Temperature dependences of IR spectra of humic substances of brown coal. Agronomy 11(9):1822

    CAS  Google Scholar 

  • Wang Z, Yao Y, Yang Y (2022) Fulvic acid-like substance-Ca (II) complexes improved the utilization of calcium in rice: chelating and absorption mechanism. Ecotoxicol Environ Saf 237:113502

    CAS  Google Scholar 

  • Wang HC, Chou CY, Chiou CR, Tian G, Chiu CY (2016) Humic acid composition and characteristics of soil organic matter in relation to the elevation gradient of moso bamboo plantations. PloS One 11(9). https://doi.org/10.1371/JOURNAL.PONE.0162193

  • Watanabe K, Manefield M, Lee M, Kouzuma A (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol 20(6):633–641

    CAS  Google Scholar 

  • Weber J, Chen Y, Jamroz E, Miano T (2018) Preface: humic substances in the environment. J Soils Sediments 18(8):2665–2667

    Google Scholar 

  • Wenzhi ZHAO, Suyun HU, Lianhua HOU (2018) Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China. Pet Explor Dev 45(4):563–572

    Google Scholar 

  • Wu S, Li R, Peng S, Liu Q, Zhu X (2017) Effect of humic acid on transformation of soil heavy metals. IOP Conf Ser: Mater Sci Eng 207(1):012089

  • Wu D, Xia T, Zhang Y, Wei Z, Qu F, Zheng G, Song C, Zhao Y, Kang K, Yang H (2021) Identifying driving factors of humic acid formation during rice straw composting based on Fenton pretreatment with bacterial inoculation. Bioresour Technol 337. https://doi.org/10.1016/J.BIORTECH.2021.125403

  • Yan S, Zhang N, Li J, Wang Y, Liu Y, Cao M, Yan Q (2021) Characterization of humic acids from original coal and its oxidization production. Sci Rep 11(1):1–10. https://doi.org/10.1038/s41598-021-94949-0

    Article  CAS  Google Scholar 

  • Yang F, Zhang S, Cheng K, Antonietti M (2019a) A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. Sci Total Environ 686:1140–1151

    CAS  Google Scholar 

  • Yang YJ, Wang B, Guo XJ, Zou CW, Tan XD (2019b) Investigating adsorption performance of heavy metals onto humic acid from sludge using Fourier-transform infrared combined with two-dimensional correlation spectroscopy. Environ Sci Pollut Res 26(10):9842–9850

    CAS  Google Scholar 

  • Yang F, Tang C, Antonietti M (2021) Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms. Chem Soc Rev 50(10):6221–6239

    CAS  Google Scholar 

  • Yang F, Antonietti M (2020) Artificial humic acids: sustainable materials against climate change. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 7(5). https://doi.org/10.1002/ADVS.201902992

  • Ye L, Xuanlong S, Guoli H, Makeen YM, Abdullah WH, Ayinla HA, Lihua T, Rongsheng Z, Xianli D (2019) Petrological and organic geochemical characteristics of oil sands from the Middle Jurassic Yan’an Formation in the southern Ordos Basin. China Arab J Geosci 12(20):1–21

    Google Scholar 

  • Yudina NV, Savel’eva AV, Linkevich EV (2019) Changes in the composition of humic acids with mechanochemical impact on peat and coal. Solid Fuel Chem 53(1):29–35

    CAS  Google Scholar 

  • Zanin L, Tomasi N, Cesco S, Varanini Z, Pinton R (2019) Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00675

  • Zara M, Ahmad Z, Akhtar J, Shahzad K, Sheikh N, Munir S (2017) Extraction and characterization of humic acid from Pakistani lignite coals. Energy Sources, Part a: Recovery, Utilization, and Environmental Effects 39(11):1159–1166

    CAS  Google Scholar 

  • Zhang C, Katayama A (2012) Humin as an electron mediator for microbial reductive dehalogenation. Environ Sci Technol 46(12):6575–6583

    CAS  Google Scholar 

  • Zhang C, Zhang D, Li Z, Akatsuka T, Yang S, Suzuki D, Katayama A (2014) Insoluble Fe-humic acid complex as a solid-phase electron mediator for microbial reductive dechlorination. Environ Sci Technol 48(11):6318–6325

    CAS  Google Scholar 

  • Zhang J, Wang J, An T, Wei D, Chi F, Zhou B (2017) Effects of long-term fertilization on soil humic acid composition and structure in black soil. PloS One 12(11). https://doi.org/10.1371/JOURNAL.PONE.0186918

  • Zhang S, Liu C, Liang H, Wang J, Bai J, Yang M, Liu G, Huang H, Guan Y (2018) Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China. Int J Coal Geol 185:44–60

    CAS  Google Scholar 

  • Zhang J, Yin H, Wang H, Xu L, Samuel B, Chang J, Liu F, Chen H (2019) Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction. Sci Total Environ 651:2975–2984

    CAS  Google Scholar 

  • Zhao L, Lin ZR, Dong YH (2014) Sorption of cyromazine on humic acid: effects of pH, ionic strength and foreign ions. Environ Sci Pollut Res 21:2688–2696

    CAS  Google Scholar 

  • Zhao L, Liu J, Wang H, Dong YH (2019) Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions. Environ Sci Pollut Res 26(11):10685–10694

    CAS  Google Scholar 

  • Zherebtsov S, Malyshenko N, Bryukhovetskaya L, Ismagilov Z (2015) Modified humic acids from lignite. Coke Chem 58(10):400–403

    Google Scholar 

  • Zherebtsov SI, Malyshenko NV, Votolin KS, Androkhanov VA, Sokolov DA, Dugarjav J, Ismagilov ZR (2019) Structural-group composition and biological activity of humic acids obtained from brown coals of Russia and Mongolia. Solid Fuel Chem 53(3):145–151

    CAS  Google Scholar 

  • Zhernov YV, Konstantinov AI, Zherebker A, Nikolaev E, Orlov A, Savinykh MI, Kornilaeva GV, Karamov EV, Perminova IV (2021) Antiviral activity of natural humic substances and shilajit materials against HIV-1: relation to structure. Environ Res 193:110312

  • Zhou L, Yuan L, Zhao B, Li Y, Lin Z (2019) Structural characteristics of humic acids derived from Chinese weathered coal under different oxidizing conditions. PloS One 14(5). https://doi.org/10.1371/JOURNAL.PONE.0217469

  • Zingaretti D, Lieto A, Lombardi F, Gavasci R (2020) Humic substances extracted from a bio-stabilized waste applying different operating conditions. Waste Biomass Valorization 11(10):5283–5293

    CAS  Google Scholar 

  • Zykova MV, Schepetkin IA, Belousov MV, Krivoshchekov SV, Logvinova LA, Bratishko KA, Yusubov MS, Romanenko SV, Quinn MT (2018) Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules 23(4):753

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Odunayo T. Ore: conceptualization, methodology, supervision, software, and writing (original draft and review and editing); Adedapo O. Adeola: conceptualization, methodology, supervision, and writing (original draft and review and editing); Oluwaseun Fapohunda: investigation, formal analysis, and writing (original draft); Demilade T. Adedipe: investigation, formal analysis, and writing (original draft); Ajibola A. Bayode: investigation, formal analysis, and writing (original draft); Festus M. Adebiyi: writing (review and editing), and supervision.

Corresponding author

Correspondence to Odunayo T. Ore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ore, O.T., Adeola, A.O., Fapohunda, O. et al. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects. Environ Sci Pollut Res 30, 59106–59127 (2023). https://doi.org/10.1007/s11356-023-26809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26809-5

Keywords

Navigation