Skip to main content
Log in

Improving the effectiveness of watershed environmental management—dynamic coordination through government pollution control and resident participation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To improve the effectiveness of envir onmental management of watersheds and improve the environmental management mechanism of cross-administrative watersheds, we develop a neoliberal framework for action using incentives, examine the cooperative strategies of local governments in watershed treatment and people-oriented environmental protection under central government subsidies, and analyze the cost effectiveness of multiple strategies in a dynamic perspective, and we have the following important findings: (1) Compared to vertical ecological compensation, the introduction of horizontal cost-sharing contracts is more effective in enhancing inter-local cooperative environmental governance. (2) When the marginal benefit of the downstream local government is greater than half of the upstream marginal benefit, the upstream local government’s pollution control investment and the effect of pollution control are improved, and the Pareto improvement of the environmental governance benefit of the watershed is realized, i.e., the cost-sharing contract driven by the downstream can achieve a win–win situation for both environmental and government governance benefits. (3) When the marginal benefit of downstream environmental advocacy is between 0.5 and 1.5 times the marginal benefit of upstream government, the cost-sharing contract is more effective in improving downstream benefits. Conversely, when the marginal benefit of downstream is greater than 1.5 times, the marginal benefit of upstream, the more effective the cost-sharing contract is in improving the marginal benefit of downstream. The results of the study provide useful insights for the government to develop reasonable pollution management cooperation mechanisms to improve environmental management performance and thus enhance the sustainable development of the watershed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abed-Elmdoust A, Kerachian R (2012) River water quality management under incomplete information: application of an N-person iterated signaling game. Environ Monit Assess 184:5875–5888

    Article  Google Scholar 

  • Bai Y, Wang Q, Yang Y (2022) From pollution control cooperation of Lancang-Mekong River to “two mountains theory.” Sustainability 14(4):2392. https://doi.org/10.3390/su14042392

  • Balasubramanya S, Wichelns D (2012) Economic incentives can enhance policy efforts to improve water quality in Asia. Int J Water Resour Dev 28:217–231

    Article  Google Scholar 

  • Beck S, Borie M, Chilvers J, Esguerra A, Heubach K, Hulme M, Lidskog R, Loevbrand E, Marquard E, Miller C, Nadim T, Nesshoever C, Settele J, Turnhout E, Vasileiadou E, Goerg C (2014) Towards a reflexive turn in the governance of global environmental expertise the cases of the IPCC and the IPBES. Gaia-Ecol Perspect Sci Soc 23:80–87

    Google Scholar 

  • Bertinelli L, Camacho C, Zou B (2014) Carbon capture and storage and transboundary pollution: a differential game approach. Eur J Oper Res 237:721–728

    Article  Google Scholar 

  • Boerner J, Baylis K, Corbera E, Ezzine-de-Blas D, Honey-Roses J, Persson UM, Wunder S (2017) The effectiveness of payments for environmental services. World Dev 96:359–374

    Article  Google Scholar 

  • Buckdahn R, Cardaliaguet P, Quincampoix M (2011) Some recent aspects of differential game theory. Dyn Games Appl 1:74–114

    Article  Google Scholar 

  • Chang S, Qin W, Wang X (2018) Dynamic optimal strategies in transboundary pollution game under learning by doing. Physica A-Stat Mech Appl 490:139–147

    Article  Google Scholar 

  • Chen W, Zhao H, Li J, Zhu L, Wang Z, Zeng J (2020a) Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci Total Environ 701:134690. https://doi.org/10.1016/j.scitotenv.2019.134690

  • Chen Z, Xu R, Yi Y (2020b) A differential game of ecological compensation criterion for transboundary pollution abatement under learning by doing. Discrete Dyn Nat Soc 2020:1–13

  • Chervier C, Amblard L, Depres C (2022) The conditions of emergence of cooperation to prevent the risk of diffuse pollution from agriculture: a case study comparison from France. J Environ Plann Manage 65:62–83

    Article  Google Scholar 

  • de Frutos J, Martin-Herran G (2019) Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game. J Environ Econ Manag 97:182–207

    Article  Google Scholar 

  • Duke JM, Liu H, Monteith T, McGrath J, Fiorellino NM (2020) A method for predicting participation in a performance-based water quality trading program. Ecol Econ 177:106762. https://doi.org/10.1016/j.ecolecon.2020.106762

  • Eichner T, Pethig R (2019) Strategic pollution control and capital tax competition. J Environ Econ Manag 94:27–53

    Article  Google Scholar 

  • Fernandez L (2009) Wastewater pollution abatement across an international border. Environ Dev Econ 14:67–88

    Article  Google Scholar 

  • Fleming PM, Lichtenberg E, Newburn DA (2020) Water quality trading in the presence of conservation subsidies. Land Econ 96:552–572

    Article  Google Scholar 

  • Fong CR, Kennison RL, Fong P (2021) Nutrient subsidies to southern California estuaries can be characterized as pulse-interpulse regimes that may be dampened with extreme eutrophy. Estuaries Coasts 44:867–874

    Article  CAS  Google Scholar 

  • Gao X, Shen J, He W, Sun F, Zhang Z, Zhang X, Yuan L, An M (2019) Multilevel governments’ decision-making process and its influencing factors in watershed ecological compensation. Sustainability 11(7):1990. https://doi.org/10.3390/su11071990

    Article  Google Scholar 

  • Guan X-J, Liu W-K, Wang H-L (2018) Study on the ecological compensation standard for river basin based on a coupling model of TPC-WRV. Water Sci Technol-Water Supply 18:1196–1205

    Article  CAS  Google Scholar 

  • Hao N, Sun P, Yang L, Qiu Y, Chen Y, Zhao W (2022) Optimal allocation of water resources and eco-compensation mechanism model based on the interval-fuzzy two-stage stochastic programming method for Tingjiang River. Int J Environ Res Public Health 19(1):149

    Article  Google Scholar 

  • He P, He Y, Shi CV, Xu H, Zhou L (2020) Cost-sharing contract design in a low-carbon service supply chain. Comput Ind Eng 139:106160. https://doi.org/10.1016/j.cie.2019.106160

  • Huang H (2020) Study on water pollution control mode under the principle of environmental law cooperation. Fresenius Environ Bull 29:9944–9950

    CAS  Google Scholar 

  • Huo S, Xi B, Su J, Sun W, Wu F, Liu H (2014) The protection of high quality waters in China calls for antidegradation policy. Ecol Ind 46:119–120

    Article  CAS  Google Scholar 

  • Iwasa Y, Suzuki-Ohno Y, Yokomizo H (2010) Paradox of nutrient removal in coupled socioeconomic and ecological dynamics for lake water pollution. Thyroid Res 3:113–122

    Google Scholar 

  • Jiang K, You D, Li Z, Shi S (2019) A differential game approach to dynamic optimal control strategies for watershed pollution across regional boundaries under eco-compensation criterion. Ecol Ind 105:229–241

    Article  Google Scholar 

  • Jiang K, Zhang X, Wang Y (2021) Stability and influencing factors when designing incentive-compatible payments for watershed services: Insights from the Xin’an River Basin, China. Mar Policy 134:104824

  • Jones LR, Vossler CA (2014) Experimental tests of water quality trading markets. J Environ Econ Manag 68:449–462

    Article  Google Scholar 

  • Kyei C, Hassan R (2019) Managing the trade-off between economic growth and protection of environmental quality: the case of taxing water pollution in the Olifants river basin of South Africa. Water Policy 21:277–290

    Article  Google Scholar 

  • Li Q (2019) Regional technological innovation and green economic efficiency based on DEA model and fuzzy evaluation. J Intell Fuzzy Syst 37:6415–6425

    Article  Google Scholar 

  • Li H, Guo G (2019) A differential game analysis of multipollutant transboundary pollution in river basin. Phys A: Stat Mech Appl 535:122484

  • Li W, Liu F, Wang F, Ding M, Liu T (2020) Industrial water pollution and transboundary eco-compensation: analyzing the case of Songhua River Basin, China. Environ Sci Pollut Res 27:34746–34759

    Article  Google Scholar 

  • Lin C, Shao S, Sun W, Yin H (2021) Can the electricity price subsidy policy curb NOX emissions from China's coal-fired power industry? A difference-in-differences approach. J Environ Manage 290:112367

  • Liu Y, Li N (2020b) Analysis on the coupling development path of economy and ecological environment under the rural revitalization strategy. Fresenius Environ Bull 29:11702–11709

    CAS  Google Scholar 

  • Liu CL, Liu WD, Lu DD, Chen MX, Dunford M, Xu M (2016) Eco-compensation and Harmonious Regional Development in China. Chin Geogra Sci 26:283–294

    Article  Google Scholar 

  • Liu MC, Yang L, Min QW (2018) Establishment of an eco-compensation fund based on eco-services consumption. J Environ Manage 211:306–312

    Article  Google Scholar 

  • Liang L, Futou L (2020) Differential game modelling of joint carbon reduction strategy and contract coordination based on low-carbon reference of consumers. J Clean Prod 277:123798

  • Lu Z, Li L, Cao L, Yang Y (2020) Numerical modelling of cooperative and noncooperative three transboundary pollution problems under learning by doing in Three Gorges Reservoir Area. Math Model Anal 25:130–145

    Article  Google Scholar 

  • Ma Y, Hou G, Yin Q, Xin B, Pan Y (2018) The sources of green management innovation: does internal efficiency demand pull or external knowledge supply push? J Clean Prod 202:582–590

    Article  Google Scholar 

  • Ma T, Sun S, Fu G, Hall JW, Ni Y, He L, Yi J, Zhao N, Du Y, Pei T, Cheng W, Song C, Fang C, Zhou C (2020) Pollution exacerbates China’s water scarcity and its regional inequality. Nat Commun 11(1):650. https://doi.org/10.1038/s41467-020-14532-5

    Article  CAS  Google Scholar 

  • Ma J, Cheng C, Tang Y (2021) Basin eco-compensation strategy considering a cost-sharing contract. IEEE Access 9:91635–91648

    Article  Google Scholar 

  • Marsiglio S, Masoudi N (2022) Transboundary pollution control and competitiveness concerns in a two-country differential game. Environ Model Assess 27:105–118

    Article  Google Scholar 

  • Mason CF, Umanskaya VI, Barbier EB (2018) Trade, transboundary pollution, and foreign lobbying. Environ Resource Econ 70:223–248

    Article  Google Scholar 

  • Matta G, Kumar P, Uniyal DP, Joshi DU (2022) Communicating water, sanitation, and hygiene under sustainable development goals 3, 4, and 6 as the panacea for epidemics and pandemics referencing the succession of COVID-19 surges. Acs Es&t Water 2:667–689

    Article  CAS  Google Scholar 

  • Miao HR, Fooks JR, Guilfoos T, Messer KD, Pradhanang SM, Suter JF, Trandafir S, Uchida E (2016) The impact of information on behavior under an ambient-based policy for regulating nonpoint source pollution. Water Resour Res 52:3294–3308

    Article  Google Scholar 

  • Mónus F (2022) Environmental education policy of schools and socioeconomic background affect environmental attitudes and pro-environmental behavior of secondary school students. Environ Educ Res 28(2):169–196

    Article  Google Scholar 

  • Ogbeibu S, Emelifeonwu J, Senadjki A, Gaskin J, Kaivo-oja J (2020) Technological turbulence and greening of team creativity, product innovation, and human resource management: implications for sustainability. J Clean Prod 244:118703

  • Palm-Forster LH, Suter JF, Messer KD (2019) Experimental evidence on policy approaches that link agricultural subsidies to water quality outcomes. Am J Agr Econ 101:109–133

    Article  Google Scholar 

  • Plambeck EL (2012) Reducing greenhouse gas emissions through operations and supply chain management. Energy Econ 34:S64–S74

    Article  Google Scholar 

  • Rahman S (2005) Environmental impacts of technological change in Bangladesh agriculture: farmers’ perceptions, determinants, and effects on resource allocation decisions. Agric Econ 33:107–116

    Article  Google Scholar 

  • Rogge KS, Kern F, Howlett M (2017) Conceptual and empirical advances in analysing policy mixes for energy transitions. Energy Res Soc Sci 33:1–10

    Article  Google Scholar 

  • Samuelson PA (1977) Reaffirming the existence of “reasonable” Bergson-Samuelson social welfare functions. Economica 44:81–88

    Article  Google Scholar 

  • Sauer P, Fiala P, Dvorak A, Kolinsky O, Prasek J, Ferbar P, Rederer L (2015) Improving quality of surface waters with coalition projects and environmental subsidy negotiation. Pol J Environ Stud 24:1299–1307

    Article  Google Scholar 

  • Sheng J, Webber M (2021) Incentive coordination for transboundary water pollution control: the case of the middle route of China’s South-North water transfer project. J Hydrol 598:125705

  • Shi G-M, Wang J-N, Zhang B, Zhang Z, Zhang Y-L (2016) Pollution control costs of a transboundary river basin: empirical tests of the fairness and stability of cost allocation mechanisms using game theory. J Environ Manage 177:145–152

    Article  Google Scholar 

  • Shi W, Wu Y, Sun X, Gu X, Ji R, Li M (2021) Environmental governance of western europe and its enlightenment to china: in context to Rhine Basin and the Yangtze River Basin. Bull Environ Contam Toxicol 106:819–824

    Article  CAS  Google Scholar 

  • Talberth J, Selman M, Walker S, Gray E (2015) Pay for Performance: optimizing public investments in agricultural best management practices in the Chesapeake Bay Watershed. Ecol Econ 118:252–261

    Article  Google Scholar 

  • Tian W, Chen R (2013) Influence factors of environmental awareness of rural residents in Gansu. J Arid Land Resource Environ 27:33–39

    Google Scholar 

  • Vivanco DF, Kemp R, van der Voet E (2016) How to deal with the rebound effect? A policy-oriented approach. Energy Policy 94:114–125

    Article  Google Scholar 

  • Wang Z, Huang K, Yang S, Yu Y (2013) An input-output approach to evaluate the water footprint and virtual water trade of Beijing, China. J Clean Prod 42:172–179

    Article  Google Scholar 

  • Wang M, Li Y, Li M, Shi W, Quan S (2019) Will carbon tax affect the strategy and performance of low-carbon technology sharing between enterprises? J Clean Prod 210:724–737

    Article  Google Scholar 

  • Wang Q, Ma Q, Fu J (2021a) Can China’s pollution reduction mandates improve transboundary water pollution? Environ Sci Pollut Res 28:32446–32459

    Article  Google Scholar 

  • Wang Y, Yang R, Li X, Zhang L, Liu W, Zhang Y, Liu Y, Liu Q (2021b) Study on trans-boundary water quality and quantity ecological compensation standard: a case of the bahao bridge section in Yongding River, China. Water 13(11):1488. https://doi.org/10.3390/w13111488

    Article  CAS  Google Scholar 

  • Xi X, Zhang Y (2022) Implementation of environmental regulation strategies for nitrogen pollution in river basins: a stakeholder game perspective. Environ Sci Pollut Res Int 29(27):41168–41186

    Article  Google Scholar 

  • Xiao L, Chen Y, Wang C, Wang J (2022) Transboundary pollution control in asymmetric countries: do assistant investments help? Environ Sci Pollut Res 29:8323–8333

    Article  Google Scholar 

  • Xie RR, Pang Y, Li Z, Zhang NH, Hu FJ (2013) Eco-compensation in multi-district river networks in North Jiangsu, China. Environ Manage 51:874–881

    Article  Google Scholar 

  • Yan G, Kang J, Xie X, Wang G, Zhang J, Zhu W (2010) Change trend of public environmental awareness in China. China Popul·Resources Environ 20:55–60

    Google Scholar 

  • Yang Y, Xu X (2019) A differential game model for closed-loop supply chain participants under carbon emission permits. Comput Ind Eng 135:1077–1090

    Article  Google Scholar 

  • Yang W, Song JN, Higano Y, Tang J (2015) Exploration and assessment of optimal policy combination for total water pollution control with a dynamic simulation model. J Clean Prod 102:342–352

    Article  Google Scholar 

  • Yu H, Wang HH, Li B (2018) Production system innovation to ensure raw milk safety in small holder economies: the case of dairy complex in China. Agr Econ 49:787–797

    Article  Google Scholar 

  • Yu H, Xie W, Yang L, Du A, Almeida CM, Wang Y (2020) From payments for ecosystem services to eco-compensation: Conceptual change or paradigm shift? Sci Total Environ 700:134627

  • Zhang D, Karplus VJ, Cassisa C, Zhang X (2014) Emissions trading in China: progress and prospects. Energy Policy 75:9–16

    Article  Google Scholar 

  • Zhao L, Qian Y, Huang R, Li C, Xue J, Hu Y (2012) Model of transfer tax on transboundary water pollution in China’s river basin. Oper Res Lett 40:218–222

    Article  Google Scholar 

  • Zhao L, Huang W, Gao HO, Xue J, Li C, Hu Y (2014) A cooperative approach to reduce water pollution abatement cost in an interjurisdictional lake basin. J Am Water Resour Assoc 50:777–790

    Article  Google Scholar 

  • Zheng S, Kahn ME, Sun W, Luo D (2014) Incentives for China’s urban mayors to mitigate pollution externalities: the role of the central government and public environmentalism. Reg Sci Urban Econ 47:61–71

    Article  Google Scholar 

  • Zhong S, Geng Y, Huang B, Zhu Q, Cui X, Wu F (2020) Quantitative assessment of eco-compensation standard from the perspective of ecosystem services: A case study of Erhai in China. J Clean Prod 263:121530

  • Zhou Z, Liu J, Zhou N, Zhang T, Zeng H (2021) Does the “10-Point Water Plan” reduce the intensity of industrial water pollution? Quasi-experimental evidence from China. J Environ Manage 295:113048

  • Zou SR, Du SX, Song M, Li MX (2021) How polluting industries react to ambient water quality: seven river basins in China. Water 13(9):1232

Download references

Funding

This work was supported by “the National Natural Science Foundation of China (No. 71974053)” and “National Key R&D Program of China (No. 2017YFC0405805-04).”

Author information

Authors and Affiliations

Authors

Contributions

Cheng Changgao: conceptualization, methodology, writing original manuscript. Fang Zhou: writing—reviewing and editing. Zhou Qin: writing—reviewing and editing. Wang Yingdi: collected the data. Li Nan: writing—reviewing. Zhou Haiwei: supervision.

Corresponding author

Correspondence to Changgao Cheng.

Ethics declarations

Ethics approval

Not applicable.

Consent to Participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Marcus Schulz

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Let \({R}_{T}^{{a}^{*}}\left({y}^{a}\right)={e}^{-\rho t}{F}_{T}\left({y}^{a}\right)\), according to the optimal control theory, \({F}_{T}\left({y}^{a}\right)\) satisfies the Hamilton–Jacobi-Bellman equation (HJB) equation for \({\forall y}^{a}\ge 0\),

$${F}_{T}\left({y}^{a}\right)=\underset{{I}_{u}^{b}\ge 0,{I}_{d}^{b}\ge 0}{\mathrm{max}}{e}^{-\rho t}\left\{\left({\prod }_{u}+{\prod }_{d}\right){y}^{a}-\left(1-{\varphi }_{u}\right)\frac{{w}_{u}}{2}{\left({I}_{u}^{a}\right)}^{2}-\left(1-{\varphi }_{d}\right)\frac{{w}_{d}}{2}{\left({I}_{d}^{a}\right)}^{2}+{F}^{^{\prime}}\left({y}^{a}\right)\left[\alpha \cdot {I}_{u}^{{a}^{*}}-\left(\gamma -r\right)y\right]\right\}$$
(35)

The Hessian matrix for \({I}_{u}^{{a}^{*}}\) and \({I}_{d}^{{a}^{*}}\) is

$$H=\left[\begin{array}{cc}-\left(1-{\varphi }_{u}\right){w}_{u}& 0\\ 0& -\left(1-{\varphi }_{D}\right){w}_{d}\end{array}\right]$$
(36)

Therefore, it can be known that the Hessian Matrix is semi-negative definite, that is, \(\rho {F}_{T}\left({y}^{a}\right)\) is a concave function, so the maximum value can be obtained for \({I}_{u}^{a}\) and \({I}_{d}^{a}\). For \({F}_{T}\left({y}^{a}\right)\), find the first-order partial derivatives of \({I}_{u}^{a}\) and \({I}_{d}^{a}\) respectively and set them to 0 to obtain the maximization condition:

$$\left\{\begin{array}{c}{I}_{u}^{{a}^{*}}=\frac{\alpha {F}^{^{\prime}}\left({y}^{a}\right)}{\left(1-{\varphi }_{u}^{{a}^{*}}\right){w}_{u}}\\ {I}_{d}^{{a}^{*}}=\frac{({\prod }_{u}+{\prod }_{d})\varepsilon }{{w}_{d}\left(1-{\varphi }_{d}^{{a}^{*}}\right)}\end{array}\right.$$
(37)

Substituting (37) into (35) and sorting out, you can get

$$\rho {F}_{T}\left({y}^{a}\right)=\frac{{\alpha }^{2}{\left({F}^{^{\prime}}\left({y}^{a}\right)\right)}^{2}}{2\left(1-{\varphi }_{u}\right){w}_{u}}+\frac{{\varepsilon }^{2}{\left({\prod }_{u}+{\prod }_{d}\right)}^{2}}{2\left(1-{\varphi }_{d}\right){w}_{d}}+\left({\prod }_{u}+{\prod }_{d}\right){E}_{0}+\left[\left({\prod }_{u}+{\prod }_{d}\right)s-\left(\gamma -r\right){F}^{^{\prime}}\left({y}^{a}\right)\right]{y}^{a}$$
(38)

Assume that \({F}_{T}\left({y}^{a}\right)\) has the following linear form:

$${F}_{T}\left({y}^{a}\right)={k}_{1}{y}^{a}+{b}_{1}$$
(39)

Among them, \({k}_{1}\) and \({b}_{1}\) are constants. Substituting \({F}_{T}\left({y}^{{a}^{*}}\right)\) and \({F}^{^{\prime}}\left({y}^{{a}^{*}}\right)\) into the formula (38), the solution is:

$${F}^{^{\prime}}\left({y}^{a}\right)={k}_{1}=\frac{\left({J}_{u}+{J}_{D}\right)s}{m}$$
(40)

At this time, substituting (40) into (37) can obtain \({I}_{u}^{{a}^{*}}\), substituting \({I}_{u}^{{a}^{**}}\) into (2) formula, can obtain \({y}^{{a}^{*}}\), and then we can find \({E}_{a}^{*}\). Substitute \({k}_{1}\) and \({b}_{1}\) into (17) to obtain \({R}_{T}^{{a}^{*}}\). The process of solving the central government's optimal subsidy coefficients \({\varphi }_{u}^{{a}^{*}}\) and \({\varphi }_{d}^{{a}^{*}}\) is similar to that of the following two decision-making equilibrium results. Due to space reasons, I will not repeat them here. Substitute \({\varphi }_{u}^{{a}^{*}}\), \({\varphi }_{d}^{{a}^{*}}\) into \({I}_{u}^{{a}^{*}}\), \({I}_{d}^{{a}^{*}}\) to get \({I}_{u}^{{a}^{**}}\), \({I}_{d}^{{a}^{**}}\), substitute in \({y}^{{a}^{*}}\), \({R}_{T}^{{a}^{*}}\) to get \({y}^{{a}^{**}}\), \({R}_{T}^{{a}^{**}}\).

Appendix 2

The optimal objective function of the upstream local government at time \(t\) is

$${R}_{u}^{b}=\underset{{I}_{u}^{b}\ge 0}{\mathrm{max}}\;{\int\limits }_{0}^{\infty }{e}^{-\rho t}\left\{{\prod }_{u}\left(sy+\varepsilon {I}_{d}+{E}_{0}\right)+\left({\varphi }_{u}-1\right)\frac{{w}_{u}}{2}{\left({I}_{u}^{b}\right)}^{2}\right\}dt$$
(41)

Let \({R}_{u}^{{b}^{*}}\left({y}^{b}\right)={e}^{-\rho t}{F}_{u}\left({y}^{b}\right)\) according to the optimal control theory, \({F}_{u}\left({y}^{b}\right)\) satisfies the HJB equation for \({\forall y}^{{b}^{*}}\ge 0\),

$$\rho {F}_{u}\left({y}^{b}\right)\left({y}^{b}\right)=\underset{{I}_{u}^{b}\ge 0}{\mathrm{max}}\left[{\prod }_{u}\left(y+\varepsilon {I}_{d}+{E}_{0}\right)+\left({\varphi }_{u}-1\right)\frac{{w}_{u}}{2}{\left({I}_{u}^{b}\right)}^{2}+{F}_{u}^{^{\prime}}\left({y}^{b}\right)\left(\alpha {I}_{u}^{b}-\left(\gamma -r\right)y\right)\right]$$
(42)

In the same way, find the first-order partial derivative of \({I}_{u}^{b}\) for \(\rho {F}_{u}\left({y}^{b}\right)\) and set it to 0 to obtain

$${I}_{u}^{{b}^{*}}=\frac{{F}_{u}^{^{\prime}}\left({y}^{b}\right)\alpha }{{w}_{u}\left(1-{\varphi }_{u}^{{b}^{*}}\right)m}$$
(43)

Similarly, let the optimal objective function of the downstream local government at time \(t={R}_{d}^{b}\left({y}^{b}\right){e}^{-\rho t}{F}_{d}\left({y}^{b}\right)\), which can be determined by the optimal control theory:

$$\rho {F}_{d}\left({y}^{b}\right)=\underset{{I}_{d}^{b}\ge 0}{\mathrm{max}}\left[{\prod }_{d}\left(sy+\varepsilon {I}_{d}+{E}_{0}\right)+\left({\varphi }_{u}-1\right)\frac{{w}_{d}}{2}{\left({I}_{d}^{b}\right)}^{2}+{F}_{d}^{^{\prime}}\left({y}^{b}\right)\left(\alpha {I}_{u}^{b}-\left(\gamma -r\right)y\right)\right]$$
(44)

We can find the first-order partial derivative of \({I}_{d}^{b}\) for \(\rho {F}_{d}\left({y}^{{b}^{*}}\right)\) and set it to 0 to obtain

$${I}_{d}^{{b}^{*}}=\frac{\varepsilon {\prod }_{d}}{{w}_{d}\left(1-{\varphi }_{d}^{{b}^{*}}\right)}$$
(45)

Substituting Eqs. (43) and (46) into Eqs. (42) and (44), we can get

$$\rho {F}_{u}\left({y}^{b}\right)={\prod }_{u}{E}_{0}+\left({\prod }_{u}s\left(-r\right){F}_{d}^{^{\prime}}\left({y}^{b}\right){y}^{b}+\frac{{\prod }_{u}{\prod }_{d}{\varepsilon }^{2}}{{w}_{u}\left(1-{\varphi }_{u}^{{b}^{*}}\right)}+\frac{{\left({F}_{u}^{^{\prime}}\left({y}^{b}\right)\alpha \right)}^{2}}{{2w}_{u}\left(1-{\varphi }_{u}^{{b}^{*}}\right)}\right)$$
(46)
$$\rho {F}_{d}\left({y}^{b}\right)={\prod }_{d}{E}_{0}+\left({\prod }_{d}s-\left(\gamma -r\right){F}_{d}^{^{\prime}}\left({y}^{b}\right){y}^{b}+\frac{{\left({\prod }_{d}\varepsilon \right)}^{2}}{{2w}_{d}\left(1-{\varphi }_{d}^{{b}^{*}}\right)}+\frac{{\alpha }^{2}{F}_{u}^{^{\prime}}\left({y}^{b}\right){F}_{d}^{^{\prime}}\left({y}^{b}\right)}{{w}_{u}\left(1-{\varphi }_{u}^{{b}^{*}}\right)}\right)$$
(47)

Assume that \({F}_{u}\left({y}^{b}\right)\) and \({F}_{d}\left({y}^{b}\right)\) have the following linear form:

$${F}_{u}\left({y}^{b}\right)={k}_{2}{y}^{b}+{b}_{2}$$
(48)
$${F}_{d}\left({y}^{b}\right)={k}_{3}{y}^{b}+{b}_{3}$$
(49)

where,\({k}_{2}{b}_{2}\),\({k}_{3}\),\({b}_{3}\) are constants. It is easy to know \({F}_{u}^{^{\prime}}\left({y}^{b}\right)\)=\({k}_{2}\) and\({F}_{d}^{^{\prime}}\left({y}^{b}\right)={k}_{3}\). Substitute Eqs. (48) and (49) into Eqs. (46) and (47). We can obtain \({k}_{2}\) and\({k}_{3}\). Substitute \({k}_{2}\) into (44), we can get\({I}_{u}^{{b}^{*}}\).Then substitute \({I}_{u}^{{b}^{*}}\) into formula (2),we can get\({y}^{{b}^{*}}\). Finally, substitute\({k}_{2}\),\({b}_{2}\),\({k}_{3}\),\({b}_{3}\) into \({F}_{u}\left({y}^{{b}^{*}}\right)\) and\({F}_{d}\left({y}^{{b}^{*}}\right)\), we can get formula (19) and (20).

Similarly, We do the same for the optimal objective function of the central government, let \({R}_{g}^{b}={e}^{-\rho t}{F}_{g}\left({y}^{{b}^{*}}\right)\),\({F}_{g}\left({y}^{b}\right)\) satisfies the HJB equation for \({\forall y}^{b}\ge 0\),

$$\rho {F}_{g}\left({y}^{b}\right)=\underset{{I}_{u}^{b},{I}_{d}^{b}}{\mathrm{max}}\left[{\prod }_{u}+{\prod }_{d}\left(sy\left(t\right)+\varepsilon {I}_{d}\left(t\right)+{E}_{0}\right)-\frac{{w}_{u}}{2}{\left({I}_{u}^{b}\right)}^{2}-\frac{{w}_{d}}{2}{\left({I}_{d}^{b}\right)}^{2}+{F}_{g}^{^{\prime}}\left({y}^{b}\right)\left(\alpha {I}_{u}^{b}-\left(\gamma -r\right)y\right)\right]$$
(50)

Substitute \({I}_{u}^{b}\),\({I}_{d}^{b}\) into formula (51), and find the first-order partial derivatives of \({\varphi }_{u}\) and \({\varphi }_{d}\), we can get

$${\varphi }_{u}^{{b}^{*}}=1-\frac{{\prod }_{d}s}{{F}_{g}^{^{\prime}}\left({y}^{b}\right)m}$$
(51)
$${\varphi }_{d}^{{b}^{*}}=\frac{{\prod }_{u}}{{\Pi }_{u}+{\Pi }_{d}}$$
(52)

We substitute (51), (52) into (50), we can obtain

$$\rho {F}_{g}\left({y}^{b}\right)=\left({\prod }_{u}+{\prod }_{d}\right){E}_{0}+\left[\left({\prod }_{u}+{\prod }_{d}\right)s-\left(\gamma -r\right){F}_{g}^{^{\prime}}\left({y}^{b}\right)\right]y+\frac{{\left({F}_{g}^{^{\prime}}\left({y}^{b}\right)\alpha \right)}^{2}}{2{w}_{u}}+\frac{{\left(\varepsilon \left({\prod }_{u}+{\prod }_{d}\right)\right)}^{2}}{{2w}_{d}}$$
(53)

In the same way, we assume that \({F}_{g}\left({y}^{{b}^{*}}\right)\) has the following linear form:

$${F}_{g}\left({y}^{{b}^{*}}\right)={k}_{4}{y}^{b}+{b}_{4}$$
(54)

It is easy to know that \({F}_{g}^{^{\prime}}\left({y}^{b}\right)={k}_{4}\). Substitute (54) into (53), we can get\({k}_{4} , {b}_{4}\).Then we substitute \({k}_{4}\) into (51), we can obtain\({\varphi }_{u}^{{b}^{*}}\). Substitute\({\varphi }_{u}^{{b}^{*}}\),\({\varphi }_{d }^{{b}^{*}}\) into\({I}_{u}^{{b}^{*}}{,I}_{d}^{{b}^{*}},{y}^{{b}^{*}}\), we can get formulas (19) and (21).

Appendix C

The optimal objective function of the upstream local government at time \(t\) is

$${R}_{u}^{c}=\underset{{I}_{u}^{c}\ge 0}{max}\;{\int\limits }_{0}^{\infty }{e}^{-\rho t}\left\{{\prod }_{u}\cdot E-\left(1-{\varphi }_{u}^{c}-\theta \right){C}_{u}\right\}dt$$
(55)

Let \({R}_{u}^{c}={e}^{-\rho t}{F}_{u}\left({y}^{{c}^{*}}\right)\), according to the optimal control theory, \({F}_{u}\left({y}^{{c}^{*}}\right)\) satisfies the HJB equation for \({\forall y}^{{c}^{*}}\ge 0\),

$$\rho {F}_{u}\left({y}^{c}\right)=\underset{{I}_{u}^{c}\ge 0}{\mathrm{max}}\left[{\prod }_{u}\left(sy+\varepsilon {I}_{d}+{E}_{0}\right)+\left({\varphi }_{u}+\mu -1\right)+\frac{{w}_{u}}{2}{\left({I}_{u}^{c}\right)}^{2}+{F}_{u}^{^{\prime}}\left({y}^{c}\right)\left(\alpha {I}_{u}^{c}-\left(\gamma -r\right)y\right)\right]$$
(56)

In the same way, find the first-order partial derivative of \({I}_{u}^{c}\) for \(\rho {F}_{u}\left({y}^{{c}^{*}}\right)\) and set it to 0 to obtain

$${I}_{u}^{{c}^{*}}=\frac{{F}_{u}^{^{\prime}}\left({y}^{c}\right)\alpha }{{w}_{u}\left(1-{\varphi }_{u}^{{c}^{*}}-\mu \right)}$$
(57)

Similarly, let the optimal objective function of the downstream local government at time \(t={R}_{d}^{c}\left({y}^{c}\right){e}^{-\rho t}{F}_{d}\left({y}^{c}\right)\), which can be determined by the optimal control theory:

$$\rho {F}_{d}\left({y}^{c}\right)=\underset{{I}_{d}^{c}\ge 0}{\mathrm{max}}\left[{\prod }_{d}\left(sy+\varepsilon {I}_{d}+{E}_{0}\right)+\left({\varphi }_{d}-1\right)\frac{{w}_{d}}{2}{\left({I}_{d}^{c}\right)}^{2}-\mu \frac{{w}_{u}}{2}{\left({I}_{u}^{c}\right)}^{2}+{F}_{d}^{^{\prime}}\left({y}^{c}\right)\left(\alpha {I}_{u}^{c}-\left(\gamma -r\right)y\right)\right]$$
(58)

We can find the first-order partial derivative of \({I}_{d}^{c}\) for \(\rho {F}_{d}\left({y}^{c}\right)\) and set it to 0 to obtain

$${I}_{d}^{{c}^{*}}=\frac{\varepsilon {\prod }_{d}}{{w}_{d}\left(1-{\varphi }_{d}^{{c}^{*}}\right)}$$
(59)
$${\mu }^{*}=\frac{(2{F}_{d}^{^{\prime}}\left({y}^{c}\right)-{F}_{u}^{^{\prime}}\left({y}^{c}\right))(1-{\varphi }_{u})}{2{F}_{d}^{^{\prime}}\left({y}^{c}\right)+{F}_{u}^{^{\prime}}\left({y}^{c}\right)}$$
(60)

Substitute (57), (59), (60) into (56) and (58), we can obtain

$$\rho {F}_{u}\left({y}^{c}\right)={\prod }_{u}{E}_{0}+\left[{\prod }_{u}s-\left(\gamma -r\right){F}_{u}^{^{\prime}}\left({y}^{c}\right)\right]y+\frac{{\prod }_{u}{\prod }_{d}{\varepsilon }^{2}}{{w}_{u}\left(1-{\varphi }_{u}^{{c}^{*}}\right)} +\frac{{\alpha }^{2}{F}_{u}^{^{\prime}}\left({y}^{c}\right)\left(2{F}_{d}^{^{\prime}}\left({y}^{c}\right){+F}_{u}^{^{\prime}}\left({y}^{c}\right)\right)}{{4w}_{u}\left(1-{\varphi }_{u}^{{c}^{*}}\right)}$$
(61)
$$\rho {F}_{d}\left({y}^{c}\right)={\prod }_{d}{E}_{0}+\left[{\prod }_{d}s-\left(\gamma -r\right){F}_{d}^{^{\prime}}\left({y}^{c}\right)\right]y+\frac{{\left({\prod }_{d}\varepsilon \right)}^{2}}{{2w}_{d}\left(1-{\varphi }_{d}^{{c}^{*}}\right)} +\frac{{\alpha }^{2}{\left({F}_{d}^{^{\prime}}\left({y}^{c}\right)+{F}_{u}^{^{\prime}}\left({y}^{c}\right)\right)}^{2}}{{8w}_{u}\left(1-{\varphi }_{u}^{{c}^{*}}\right)}$$
(62)

Assume that \({F}_{u}\left({y}^{{c}^{*}}\right)\) and \({F}_{d}\left({y}^{{c}^{*}}\right)\) have the following linear form:

$${F}_{u}\left({y}^{c}\right)={k}_{5}{y}^{{c}^{*}}+{b}_{5}$$
(63)
$${F}_{d}\left({y}^{c}\right)={k}_{6}{y}^{{c}^{*}}+{b}_{6}$$
(64)

where \({k}_{5}\),\({b}_{5}\),\({k}_{6}\),\({b}_{6}\) are constants. It is easy to know \({F}_{u}^{^{\prime}}\left({y}^{c}\right)\)=\({k}_{5}\) and \({F}_{d}^{^{\prime}}\left({y}^{c}\right)={k}_{6}\). Substitute Eqs. (63) and (64) into Eqs. (61) and (62). We can obtain \({k}_{5}\) and \({k}_{6}\). Substitute \({k}_{5}\) into substitute, we can get \({I}_{u}^{{c}^{*}}\).Then substitute \({I}_{u}^{{c}^{*}}\) into formula (2),we can get \({y}^{{C}^{*}}\). Finally, substitute \({k}_{5}\),\({b}_{5}\),\({k}_{6}\),\({b}_{6}\) into \({F}_{u}\left({y}^{{c}^{*}}\right)\) and \({F}_{d}\left({y}^{c}\right)\),we can get formula (28) and (30).

Similarly, let the optimal objective function of the central government at time \({t=R}_{g}^{c}\left({y}^{{c}^{*}}\right){e}^{-\rho t}{F}_{g}\left({y}^{{c}^{*}}\right)\), which can be determined by the optimal control theory:

$$\rho {F}_{g}\left({y}^{c}\right)=\underset{{\varphi }_{u}{\varphi }_{d}}{\mathrm{max}}\left[\left({\prod }_{u}+{\prod }_{d}\right)\left(sy\left(t\right)+\varepsilon {I}_{d}\left(t\right)+{E}_{0}\right)-\frac{{w}_{u}}{2}{\left({I}_{u}^{c}\right)}^{2}-\frac{{w}_{d}}{2}{\left({I}_{d}^{c}\right)}^{2}+{F}_{g}^{^{\prime}}\left({y}^{c}\right)\left(\alpha {I}_{u}^{c}-\left(\gamma -r\right)y\right)\right]$$
(65)

Substitute (57), (69) into (65), we can get

$${\varphi }_{u}^{{c}^{*}}=1-\frac{\left(2{\prod }_{u}+{\prod }_{d}\right)s}{2{F}_{g}^{^{\prime}}\left({y}^{c}\right)m}$$
(66)
$${\varphi }_{d}^{{c}^{*}}=\frac{{\prod }_{u}}{{\prod }_{u}+{\prod }_{d}}$$
(67)

Substitute (66), (67) into (65), we can get

$$\rho {F}_{g}\left({y}^{c}\right)=\left({\prod }_{u}+{\prod }_{d}\right)\left(sy\left(t\right)+\varepsilon {I}_{d}\left(t\right)+{E}_{0}\right)-\frac{{w}_{u}}{2}{\left({I}_{u}^{c}\right)}^{2}-\frac{{w}_{d}}{2}{\left({I}_{d}^{c}\right)}^{2}+\left({F}_{g}^{^{\prime}}\left({y}^{c}\right)\alpha {I}_{u}^{c}-\left(\gamma -r\right)y\right)$$
(68)

In the same way, we assume that \({F}_{g}\left({y}^{c}\right)\) has the following linear form:

$${F}_{g}\left({y}^{c}\right)={k}_{7}{y}^{c}+{b}_{7}$$
(69)

It is easy to know that \({F}_{g}^{^{\prime}}\left({y}^{c}\right)={k}_{7}\). Substitute (69) into (68), we can get \({k}_{7} , {b}_{7}\).Then, we substitute \({k}_{7}\) into (67), we can obtain\({\varphi }_{u}^{{c}^{*}}\). Substitute\({\varphi }_{u}^{{c}^{*}}\),\({\varphi }_{d }^{{c}^{*}}\) into\({I}_{u}^{{c}^{*}}{,I}_{d}^{{c}^{*}},{y}^{{c}^{*}}\), we can get formulas (28) and (30).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Fang, Z., Zhou, Q. et al. Improving the effectiveness of watershed environmental management—dynamic coordination through government pollution control and resident participation. Environ Sci Pollut Res 30, 57862–57881 (2023). https://doi.org/10.1007/s11356-023-26328-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-26328-3

Keywords

Navigation