Skip to main content

Advertisement

Log in

Heat storage material: a hope in solar thermal

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Solar energy is a vast renewable energy source, but uncertainty in the demand and supply of energy due to various geographical regions raises a question mark. Therefore, the present manuscript includes a review to overcome this uncertainty by utilizing various thermal energy storage systems. Phase change material is the most preferred thermal energy storage system because of its high-energy storage density. The low thermal conductivity is the critical problem in phase change material that can be overcome by integrating metallic foam, carbon fiber, and metallic fins in the phase change material container. The inclusion of metallic foam limited to 0.1–3% of the Phase change material (PCM) weight leads to a slight change in thermal conductivity but a high cost. It was also seen that the addition of carbon 0.1 to 9% of the PCM weight could improve the performance of PCM. The inclusion of a metallic fin improves the thermal conductivity with the various shapes and sizes of the fin. It is found that metallic foam composites have better performance than carbon composite and metallic fin inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Not applicable for a specific section.

Abbreviations

m:

Mass of the material (kg)

t i :

Initial temperature (Kelvin)

t f :

Final temperature (Kelvin)

C p :

Specific heat of the material (J/g·K)

PCM:

Phase change material

TES:

Thermal energy storage

LHS:

Latent heat storage

SHS:

Sensible heat storage

References

  • Abdulrazzaq MA (2020) Porous copper foam as a heat-storage performance enhancer for LINO3/KCL composite material. J Appl Sci Eng 23(4):747–754

    Google Scholar 

  • Adine HA, Qarnia HE (2009) Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model 33(4):2132–2144

    Article  Google Scholar 

  • Agyenim F (2016) The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy 87:229–239

    Article  CAS  Google Scholar 

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628

    Article  CAS  Google Scholar 

  • Akeiber H, Nejat P, Zaimi M, Majid A, Mazlan, Wahid A, Jomehzadeh F, Famileh IZ, Calautit JK, Hughes BR, Zaki SA (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470–1497

  • Alazwari MA, Abu-Hamdeh NH, Khoshaim A, Almitani KH, Karimipour A (2021) Using phase change material as an energy-efficient technique to reduce energy demand in air handling unit integrated with absorption chiller and recovery unit–applicable for high solar-irradiance regions. J Energy Storage 42:103080

    Article  Google Scholar 

  • Al-harahsheh M, Abu-Arabi M, Mousa H, Alzghoul Z (2018) Solar desalination using solar still enhanced by external solar collector and PCM. Appl Therm Eng 128:1030–1040

    Article  Google Scholar 

  • Alkan C, Sari A (2008) Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage. Sol Energy 82(2):118–124

    Article  CAS  Google Scholar 

  • Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147

    Article  CAS  Google Scholar 

  • Alonso E, Perez-Rabago C, Licurgo J, Fuentealba E, Estrada CA (2015) First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Sol Energy 115:297–305

    Article  CAS  Google Scholar 

  • Alva G, Liu L, Huang X, Fang G (2017) Thermal energy storage materials and systems for solar energy applications. Renew Sustain Energy Rev 68:693–706

    Article  Google Scholar 

  • Amin M, Putra N, Kosasih EA, Prawiro E, Luanto RA, Mahlia TMI (2017) Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl Therm Eng 112:273–280

    Article  CAS  Google Scholar 

  • Arici M, Tutuncu E, Yildiz C, Li D (2020) Enhancement of PCM melting rate via internal fin and nanoparticles. Int J Heat Mass Transf 156:119845

    Article  CAS  Google Scholar 

  • Atalay et al (2017) Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system. Energy 134:382–391

    Article  Google Scholar 

  • Atinafu DG, Yun BY, Wi S, Kang Y, Kim S (2021a) A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities. Environ Res 195:110853

    Article  CAS  Google Scholar 

  • Atinafu DG, Wi S, Yun S, Kim S (2021b) Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage. Energy 216:119294

    Article  CAS  Google Scholar 

  • Ayyappan S, Mayilsamy K, Sreenarayanan VV (2016) Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transf 52:459–467

    Article  CAS  Google Scholar 

  • Azaizia Z, Kooli S, Hamdi I, Elkhal W, Guizani AA (2020) Experimental study of a new mixed mode solar greenhouse drying system with and without thermal energy storage for pepper. Renew Energy 145:1972–1984

    Article  Google Scholar 

  • Baniasadi E, Ranjbar S, Boostanipour O (2017) Experimental investigation of the performance of a mixed-mode solar dryer with thermal energy storage. Renew Energy 112:143–150

    Article  Google Scholar 

  • Barreneche C, Sole A, Miro L, Martorell I, Fernandez AI, Cabeza LF (2013) Study on differential scanning calorimetry analysis with two operation modes and organic and inorganic phase change material (PCM). Thermochim Acta 553:23–26

    Article  CAS  Google Scholar 

  • Berroug F, Lakhal EK, Omari ME, Faraji M, Qarnia HE (2011) Thermal performance of a greenhouse with a phase change material north wall. Energy Build 43(11):3027–3035

    Article  Google Scholar 

  • Bo H, Gustafsson EM, Setterwall F (1999) Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy 24(12):1015–1028

    Article  CAS  Google Scholar 

  • Bose P, Amirtham VA (2021) Effect of titania-silver nanocomposite particle concentration and thermal cycling on characteristics of sodium dodecyl sulfate added paraffin wax thermal energy storage material. Energy Storage 3(2):192

    Article  Google Scholar 

  • Cabaleiro et al (2017) PEG 400-based phase change materials nano-enhanced with functionalized graphene nanoplatelets. Nanomaterials 8(1):16

    Article  Google Scholar 

  • Cardenas B, Leon N (2013) High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renew Sustain Energy Rev 27:724–737

    Article  CAS  Google Scholar 

  • Chaichan K, Miqdam A (2015) Hussein, Using aluminium powder with PCM (Paraffin Wax) to enhance single slope solar water distiller productivity in Baghdad – Iraq winter weathers. Int J Renew Energy Res 5:251–257

    Google Scholar 

  • Chaichan Miqdam, Kamel H, Al-Ajeely M (2015) TC Enhancement by using nano-material in phase change material for latent heat thermal energy storage systems. SAUSSUREA 5:48–55

  • Chen W, Zhao Y-P (2022) Thermo-mechanically coupled constitutive equations for soft elastomers with arbitrary initial states. Int J Eng Sci 178:103730. https://doi.org/10.1016/j.ijengsci.2022.103730

  • Chen C, Wang L, Huang Y (2008) Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Sol Energy Mater Sol Cells 92(11):1382–1387

    Article  CAS  Google Scholar 

  • Costa SC, Kenisarin M (2022) A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges. Renew Sustain Energy Rev 154:111812 ISSN 1364-0321https://doi.org/10.1016/j.rser.2021.111812

  • Costa M, Buddhi D, Oliva A (1998) Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Convers Manage 39(3–4):319–330

    Article  CAS  Google Scholar 

  • Cui W, Si T, Li X, Li X, Lin L, Ma T, Wang Q (2022) Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review. Renewable Sustainable Energy Rev 169:112912. https://doi.org/10.1016/j.rser.2022.112912

  • Davis PR (2015) Monitoring and control of thermal energy storage systems. Adv Therm Energy Storage Syst 16:419–440

    Article  Google Scholar 

  • Deringer V (2015) Dronskowski, Richard, Wuttig, Matthias, Microscopic complexity in phase-change materials and its role for applications. Adv Func Mater 25(40):6343–6359

    Article  CAS  Google Scholar 

  • Desai et al (2017) Thermo-economic analysis of a novel organic Rankine cycle integrated cascaded vapor compression–absorption system. J Clean Prod 154:26–40

    Article  Google Scholar 

  • Dwivedi D, Lepková K, Becker T (2017) Carbon steel corrosion: a review of key surface properties and characterization methods. RSC advances 7(8):4580–4610

  • Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon 43(15):3067–3074

    Article  CAS  Google Scholar 

  • Elias CN, Stathopoulos VN (2019) A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia 161:385–394

    Article  CAS  Google Scholar 

  • El-Sebaii AA, Al-Ghamdi AA, Al-Hazmi FS, Faidah AS (2009) Thermal performance of a single basin solar still with PCM as a storage medium. Appl Energy 86(7–8):1187–1195

    Article  CAS  Google Scholar 

  • Esen M, Ayhan T (1996) Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers Manage 37(12):1775–1785

    Article  CAS  Google Scholar 

  • Fallahi A, Guldentops G, Tao M, Granados-Focil S, Dessel SV (2017a) Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties. Appl Therm Eng 127:1427–1441

    Article  Google Scholar 

  • Fan L, Khodadadi JM (2011) TC enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 15(1):24–46

    Article  CAS  Google Scholar 

  • Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45(9–10):1597–1615

    Article  CAS  Google Scholar 

  • Fath HES (1998) Technical assessment of solar thermal energy storage technologies. Renew Energy 14(1–4):35–40

    Article  Google Scholar 

  • Feldman D, Banu D, Hawes D, Ghanbari E (1991) Obtaining an energy storing building material by direct incorporation of an organic phase change material in gypsum wallboard. Solar Energy Mater 22(2–3):231–242

    Article  CAS  Google Scholar 

  • Fernandez AI, Martinez M, Segarra M, Martorell I, Cabeza LF (2010) Selection of materials with potential in sensible thermal energy storage. Sol Energy Mater Sol Cells 94(10):1723–1729

    Article  CAS  Google Scholar 

  • Fukai J, Kanou M, Kodama Y, Miyatake O (2000) TC enhancement of energy storage media using carbon fibers. Energy Convers Manage 41(14):1543–1556

    Article  CAS  Google Scholar 

  • Giro-Paloma J, Martinez M, Cabeza LF, Fernandez AI (2016) Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renew Sustain Energy Rev 53:1059–1075

    Article  CAS  Google Scholar 

  • Gong ZX, Mujumdar AS (1997) Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger. Appl Therm Eng 17(6):583–591

    Article  CAS  Google Scholar 

  • Guney MS, Tepe Y (2017) Classification and assessment of energy storage systems. Renew Sustain Energy Rev 75:1187–1197

    Article  Google Scholar 

  • Gupta N, Kumar A, Dhasmana H, Kumar V, Kumar A, Shukla P, Verma A, Nutan GV, Dhawan SK, Jain VK (2020) Enhanced thermophysical properties of metal oxide nanoparticles embedded magnesium nitrate hexahydrate based nanocomposite for thermal energy storage applications. J Energy Storage 32:101773

    Article  Google Scholar 

  • Hadjieva M, Stoykov R, Filipova T (2000) Composite salt-hydrate concrete system for building energy storage. Renew Energy 19(1–2):111–115

    Article  CAS  Google Scholar 

  • Hamada Y, Ohtsu W, Fukai J (2003) Thermal response in thermal energy storage material around heat transfer tubes: effect of additives on heat transfer rates. Sol Energy 75(4):317–328

    Article  CAS  Google Scholar 

  • Han X, Wang L, Ling H, Ge Z, Lin X, Dai X, Chen H (2022) Critical review of thermochemical energy storage systems based on cobalt, manganese, and copper oxides. Renew Sustain Energy Rev 158:112076 ISSN 1364–0321 https://doi.org/10.1016/j.rser.2022.112076

  • Harish S, Orejon D, Takata Y, Kohno M (2015) TC enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl Therm Eng 80:205–211

    Article  CAS  Google Scholar 

  • Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74(1–2):195–202

    Article  CAS  Google Scholar 

  • Huang K, Feng G, Zhang J (2014) Experimental and numerical study on phase change material floor in solar water heating system with a new design. Sol Energy 105:126–138

    Article  CAS  Google Scholar 

  • Huang X, Lin Y, Alva G, Fang G (2017) Thermal properties and TC enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells 170:68–76

    Article  CAS  Google Scholar 

  • Iasiello M, Mameli M, Filippeschi S, Bianco N (2021) Metal foam/PCM melting evolution analysis: orientation and morphology effects. Appl Therm Eng 187:116572.

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems—characteristics and comparisons. Renew Sustain Energy Rev 12(5):1221–1250

    Article  CAS  Google Scholar 

  • Jain A, Kumar A, Shukla A, Sharma A (2017) A review on thermophysical properties of nanoparticle-enhanced phase change materials for thermal energy storage. Recent Trends in Materials and Devices (2017):37–47

  • Kaizawa A, Kamano H, Kawai A, Jozuka T, Senda T, Maruoka N, Akiyama T (2008) Thermal and flow behaviors in heat transportation container using phase change material. Energy Convers Manage 49(4):698–706

    Article  CAS  Google Scholar 

  • Kant K, Shukla A, Sharma A, Kumar A, Jain A (2016) Thermal energy storage based solar drying systems: a review. Innov Food Sci Emerg Technol 34:86–99

    Article  Google Scholar 

  • Kaygusuz K (1995) Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Convers Manag 36(5):315–323

    Article  CAS  Google Scholar 

  • Kaygusuz K, Sari A (2005) Thermal energy storage system using a technical grade paraffin wax as latent heat energy storage material. Energy Sources 27(16):1535–1546

    Article  CAS  Google Scholar 

  • Kenisarin MM (2010) High-temperature phase change materials for thermal energy storage. Renew Sustain Energy Rev 14(3):955–970

    Article  CAS  Google Scholar 

  • Khalid H, Almitani, H Nidal, Abu-Hamdeh, Alazwari A Mashhour, Salilih M Elias, Almasri A Radwan, Sajadi S Mohammad (2022) Role of solar radiation on the phase change material usefulness in the building applications. J Energy Storage 45:103542 ISSN 2352–152X https://doi.org/10.1016/j.est.2021.103542

  • Khan MA, Karmakar R, Sarker MRI, Tuly SS, Beg RA (2019) Experimental investigation of single basin solar still using phase change material (PCM) as an energy storage medium. AIP Conf Proc 2121:120002

    Article  Google Scholar 

  • Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manage 45(2):263–275

    Article  CAS  Google Scholar 

  • Krupa I, Mikova G, Luyt AS (2007) Phase change materials based on low-density polyethylene/paraffin wax blends. Eur Polymer J 43(11):4695–4705

    Article  CAS  Google Scholar 

  • Kumar PM, Mylsamy K, Alagar K, Sudhakar K (2020) Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. Int J Green Energy 17(13):872–883

    Article  Google Scholar 

  • Kumar R, Anupam Rao Y, Singh Yadav A, Balu A, Panda BP, Joshi M, Taneja S, Sharma A (2022) Application of phase change material in thermal energy storage systems. Mater Today Proc 63:798–804 ISSN 2214–7853 https://doi.org/10.1016/j.matpr.2022.06.152

  • Kurklu A (1998) Energy storage applications in greenhouses by means of phase change materials (PCMs): a review. Renew Energy 13:89–103

    Article  CAS  Google Scholar 

  • Kuznik F, Virgone J (2009) Experimental assessment of a phase change material for wall building use. Appl Energy 86(10):2038–2046. https://doi.org/10.1016/j.apenergy.2009.01.004

    Article  CAS  Google Scholar 

  • Kuznik F, David D, Johannes K, Roux J (2011) A review on phase change materials integrated in building walls. Renew Sustain Energy Rev 15(1):379–391

    Article  CAS  Google Scholar 

  • Lachheb M, Mustapha K, Fethi A, Sassi BN, Magali F, Patrik S (2014) Thermal properties measurement and heat storage analysis of paraffin/graphite composite phase change material. Compos B Eng 66:518–525

    Article  CAS  Google Scholar 

  • Lahmidi H, Mauran S, Goetz V (2006) Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol Energy 80(7):883–893

    Article  CAS  Google Scholar 

  • Lamberg P (2004) Approximate analytical model for two-phase solidification problem in a finned phase-change material storage. Appl Energy 77(2):131–152

    Article  CAS  Google Scholar 

  • Lee KS (2010) A review on concepts, applications, and models of aquifer thermal energy storage systems. Energies 3:1320–1334

    Article  Google Scholar 

  • Li WQ, Zhiguo Qu, Zhang BL, Zhao K, Tao Wen-Quan (2013) Thermal behavior of porous stainless-steel fiber felt saturated with phase change material. Energy 55:846–852

  • Li C, Zhang B, Xie B, Zhao X, Chen J, Chen Z, Long Y (2019) Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater. Sustain Cities Soc 44:458–464

    Article  Google Scholar 

  • Li, Hao W, Tan Lai-Iskandar, Simonini Dunlin, Dudon Luca, Leong Jean-Paul, Tay F Ni, Tsang R Yingjie, Joshi S Hon, Teo Sunil C, Tong EH (2020) TC Enhancement and shape stabilization of phase-change materials using three-dimensional graphene and graphene powder. Energy Fuels 34(2):2435–2444

  • Lin Y, Jia Y, Alva G, Fang G (2018) Review on TC enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev 82(3):2730–2742

    Article  CAS  Google Scholar 

  • Ling Z, Chen J, Xu T, Fang X, Gao X, Zhang Z (2015) TC of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel TC model. Energy Convers Manage 102:202–208

    Article  CAS  Google Scholar 

  • Liu C, Yuan Y, Zhang N, Cao X, Yang X (2014) A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage. Mater Lett 120:43–46

    Article  CAS  Google Scholar 

  • Mall P, Singh D (2018) Comparative study of performance of indirect mode with PCM and mixed mode solar dryer for coriander leaves. Int J Appl Eng Res 13(8):5909–5919

    Google Scholar 

  • Manickam K, Mistry P, Walker G, Grant D, Buckley CE, Humphries TD, Paskevicius M, Jensen T, Albert R, Peinecke K, Felderhoff M (2019) Future perspectives of thermal energy storage with metal hydrides. Int J Hydrogen Energy 44(15):7738–7745

    Article  CAS  Google Scholar 

  • Meng X, Meng L, Zou J, He F (2021) Influence of the copper foam fin (CFF) shapes on thermal performance of phase-change material (PCM) in an enclosed cavity. Case Stud Therm Eng 23:100810

    Article  Google Scholar 

  • Mesalhy O, Lafdi K, Elgafy A, Bowman K (2005) Numerical study for enhancing the TC of phase change material (PCM) storage using high TC porous matrix. Energy Convers Manage 46(6):847–867

    Article  CAS  Google Scholar 

  • Mettawee ES, Assassa GMR (2007) TC enhancement in a latent heat storage system. Sol Energy 81(7):839–845

    Article  CAS  Google Scholar 

  • Mills A, Farid M, Selman JR, Al-Hallaj S (2006) TC enhancement of phase change materials using a graphite matrix. Appl Therm Eng 26(14–15):1652–1661

    Article  CAS  Google Scholar 

  • Mofijur M, Mahlia TMI, Silitonga AS, Ong HC, Silakhori M, Hasan MH, Putra N, Rahman SMA (2019) Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies 12(16):3167. https://doi.org/10.3390/en12163167

    Article  CAS  Google Scholar 

  • N’Tsoukpoe KE, Liu H, Pierres NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13(9):2385–2396

    Article  Google Scholar 

  • Paul P, Pandey AK, Mishra YN, Said Z, Mishra YK, Ma Z, Jacob J, Kadirgama K, Samykano M, Tyagi VV (2022) Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities. Renew Sustain Energy Rev 161:112321 ISSN 1364–0321

  • Pereira da Cunha Jose, Eames Philip (2016) Thermal energy storage for low and medium temperature applications using phase change materials–a review. Appl Energy 177: 227–238 ISSN 0306–2619 https://doi.org/10.1016/j.apenergy.2016.05.097

  • Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123

    Article  CAS  Google Scholar 

  • Pincemin Sandrine, Py Xavier, Régis Olives, Martin Christ, Oettinger (2008) Elaboration of conductive thermal storage composites made of phase change materials and graphite for solar plant. J Sol Energy Eng-Trans Asme J Sol Energy Eng 130 https://doi.org/10.1115/1.2804620

  • Qaiser R, Khan MM, Khan LA, Irfan M (2021) Melting performance enhancement of PCM based thermal energy storage system using multiple tubes and modified shell designs. J Energy Storage 33:102161

    Article  Google Scholar 

  • Qiao X, Kong X, Wang L (2021) Thermal performance analysis of a thermal enhanced form-stable composite phase change material with aluminum nitride. Appl Therm Eng 187:116581

  • Qiao X, Kong X, Fan M (2022) Phase change material applied in solar heating for buildings: a review. J Energy Storage 55(Part D):105826 ISSN 2352–152X https://doi.org/10.1016/j.est.2022.105826

  • Qu Y, Wang S, Zhou D, Tian Y (2020) Experimental study on TC of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renew Energy 146(C):2637–2645

  • Rabady RI, Malkawi DS (2020) TC enhancement of sodium thiosulfate pentahydrate by adding carbon nano-tubes/graphite nano-particles. J Energy Storage 27:101166

    Article  Google Scholar 

  • Rabha DK, Muthukumar P (2017) Performance studies on a forced convection solar dryer integrated with a paraffin wax–based latent heat storage system. Sol Energy 149:214–226

    Article  CAS  Google Scholar 

  • Rahimi M, Ardahaie SS, Hosseini MJ, Gorzin M (2020) Energy and exergy analysis of an experimentally examined latent heat thermal energy storage system. Renew Energy 147(1):1845–1860

    Article  CAS  Google Scholar 

  • Raj CR, Suresh S, Singh VK, Bhavsar RR, Panda A (2021) Experimental investigation on CNT-enhanced neopentyl glycol solid–solid PCM for applications of thermal control in spatial remote sensing instruments. J Indian Soc Remote Sens 49:1–12

    Article  Google Scholar 

  • Rajagopalan S, Prabhu KN (2021) Effect of carbon black and titanium dioxide dispersants on solidification of multiwall carbon nanotube–added salt-based phase change material. Mater Performance Charact 10(1):278–284

    CAS  Google Scholar 

  • Rathod MK, Banerjee J (2013) Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev 18:246–258

    Article  CAS  Google Scholar 

  • Reddy KS (2007) Thermal modeling of PCM-based solar integrated collector storage water heating system. J Sol Energy Eng 129(4):458–464

    Article  CAS  Google Scholar 

  • Reddy K (2014) Venkataramaiah, Pathi, Lokesh, Tupakula, Parametric study on phase change material based thermal energy storage system, Energy and Power. Engineering 06:537–549

    Google Scholar 

  • Regin AF, Solanki SC, Saini JS (2008) Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sustain Energy Rev 12(9):2438–2458

    Article  CAS  Google Scholar 

  • Reiser A, Bogdanovic B, Schlichte K (2000) The application of Mg-based metal-hydrides as heat energy storage systems. Int J Hydrogen Energy 25(5):425–430

    Article  CAS  Google Scholar 

  • Sadek OM, Mekhamer WK (2000) Ca-montmorillonite clay as thermal energy storage material. Thermochim Acta 363(1–2):47–54

    Article  CAS  Google Scholar 

  • Saitoh T, Hirose K (1986) High-Performance phase-change thermal energy storage using spherical capsules. Chem Eng Commun 41(1–6):39–58

    Article  CAS  Google Scholar 

  • Salunkhe PB, Shembekar PS (2012) A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev 16(8):5603–5616

    Article  CAS  Google Scholar 

  • Saman W, Bruno F, Halawa E (2005) Thermal performance of PCM thermal storage unit for a roof integrated solar heating system. Sol Energy 78(2):341–349

    Article  Google Scholar 

  • Sarbu I (2019) Dorca, Alexandru. Review on heat transfer analysis in thermal energy storage using latent heat storage systems and phase change materials. Int J Energy Res 43:29–64

    Article  CAS  Google Scholar 

  • Sari A (2004) Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers Manage 45(13–14):2033–2042

    Article  CAS  Google Scholar 

  • Sarı A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27(8–9):1271–1277

    Article  Google Scholar 

  • Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 40:7–60

    Article  Google Scholar 

  • Seddegh S, Wang X, Henderson AD (2016) A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng 93:348–358

    Article  Google Scholar 

  • Sehrawat R, Sahdev RK, Tiwari S (2020) Performance analysis of PCM-integrated greenhouse dryer. In: Singari RM, Kankar PK, Moona G (eds) Advances in mechanical engineering and technology. Lecture notes in mechanical engineering. Springer, Singapore https://doi.org/10.1007/978-981-16-9613-8_4,2022

  • Selimefendigil F, Oztop HF, Doranehgard MH, Karimi N (2021) Phase change dynamics in a cylinder containing hybrid nanofluid and phase change material subjected to a rotating inner disk. J Energy Storage 42:103007

    Article  Google Scholar 

  • Shafee A, Sheikholeslami M, Wang P, Selimefendigil F, Babazadeh O (2020) Phase change process of nanoparticle enhanced PCM in a heat storage including unsteady conduction. J Mol Liq 09:113102

    Article  Google Scholar 

  • Shaikh S (2016) Lafdi, Khalid, Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Convers Manage 47:2103–2117

    Article  Google Scholar 

  • Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2(1):1–56

    Article  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345

    Article  CAS  Google Scholar 

  • Sheikholeslami M (2019) Mahian, Omid, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod 215:963–977

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Arabkoohsar A, Khan I, Shafee A, Li Z (2019) Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi-annulus. J Clean Prod 221:885–898. https://doi.org/10.1016/j.jclepro.2019.02.075

    Article  CAS  Google Scholar 

  • Shen Z, Oh K, Kwon S, Toivakka M, Lee HL (2021) Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage. Int J Biol Macromol 174:402–412

  • Sheng N, Zhu C, Rao Z (2021) Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material. J Alloy Compd 871:159458

    Article  CAS  Google Scholar 

  • Shoeibi S, Kargarsharifabad H, Rahbar N (2021) Effects of nano-enhanced phase change material and nano-coated on the performance of solar stills. J Energy Storage 42:103061

    Article  Google Scholar 

  • Shukla A, Sharma A, Kant K (2016) Solar greenhouse with thermal energy storage: a review. Renew Sustain Energy Rev 3:58–66

    Google Scholar 

  • Siddique A Raihan Mohammad, Mahmud, Shohel, V. Heyst, Bill (2018) A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources 401:224–237

  • Soares Nelson, Costa J Gaspar, Adelio, Santos Paulo (2013) Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build 59:82–103

  • Sobrino-Gregorio L, Vargas M, Chiralt A, Escriche I (2017) Thermal properties of honey as affected by the addition of sugar syrup. J Food Eng 213:69–75

    Article  CAS  Google Scholar 

  • Sodhi GS, Muthukumar P (2021) Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution. Renew Energy 171:299–314

    Article  Google Scholar 

  • Stritih U (2004) An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf 47:2841–2847

    Article  CAS  Google Scholar 

  • Subramaniam SB, Senthil R (2021) Heat transfer enhancement of concentrated solar absorber using hollow cylindrical fins filled with phase change material. Int J Hydrogen Energy 46(43):22344–22355

    Article  CAS  Google Scholar 

  • Tang B, Qiu M, Zhang S (2012) TC enhancement of PEG/SiO2 composite PCM by in situ Cu doping. Sol Energy Mater Sol Cells 105:242–248

    Article  CAS  Google Scholar 

  • Tao Z, Wang H, Liu J, Zhao W, Liu Z, Guo Q (1995) Dual-level packaged phase change materials–thermal conductivity and mechanical properties. Sol Energy Mater Sol Cells 169:222–225

    Article  Google Scholar 

  • Tao Z, Wang H, Liu J, Zhao W, Liu Z, Guo Q (2017b) Dual-level packaged phase change materials – TC and mechanical properties. Sol Energy Mater Sol Cells 169:222–225

    Article  CAS  Google Scholar 

  • Tardy F, Sami S (2009) Thermal analysis of heat pipes during thermal storage. Appl Therm Eng 29:329–333

    Article  Google Scholar 

  • Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ (2021) Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials. Chem Rev 121(22):14088–14188

  • Tian Y, Zhao C (2013) A review of solar collectors and thermal energy storage in solar thermal. Appl Energy 104:538–553

    Article  CAS  Google Scholar 

  • Tiari S, Mahdavi M, Qiu S (2017) Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network. Energy Convers Manag 153:362–373

    Article  CAS  Google Scholar 

  • Tiari S, Hockins A, Mahdavi M (2021) Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud Therm Eng 25:100999

    Article  Google Scholar 

  • Trp A (2005) An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell and tube latent heat thermal energy storage unit. Sol Energy 79:648–660

    Article  CAS  Google Scholar 

  • Wang S, Qin P, Zhang Z, Wang S, Liu X (2014) A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications. Sol Energy 99:283–290

    Article  CAS  Google Scholar 

  • Wang K, Yan Ting, Li RK, Pan WG (2022) A review for Ca(OH)2/CaO thermochemical energy storage systems. J Energy Storage 50:104612 ISSN 2352–152X https://doi.org/10.1016/j.est.2022.104612

  • World Energy Outlook report (2022) https://www.iea.org/reports/world-energy-outlook-2022

  • Wuttig M, Raoux S, Anorg Z (2012) The science and technology of phase change materials. Allg Chem 638:2455–2465

    Article  CAS  Google Scholar 

  • Xiao X, Zhang P, Li M (2013) Preparation and thermal characterization of paraffin/metal foam composite phase change material. Appl Energy 112:1357–1366

    Article  CAS  Google Scholar 

  • Xiao X, Zhang P, Li M (2015) Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage. Energy Convers Manage 105:272–284

    Article  CAS  Google Scholar 

  • Xiao X, Jia H, Wen D, Akhlaghi YG, Badiei A (2021) Experimental investigation of a latent heat thermal energy storage unit encapsulated with molten salt/metal foam composite seeded with nanoparticles. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2021.08.003

  • Xu B, Li P, Chan C (2015) Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy 160:286–307

    Article  Google Scholar 

  • Xu C, Xu S, Eticha RD (2021) Experimental investigation of thermal performance for pulsating flow in a microchannel heat sink filled with PCM (paraffin/CNT composite). Energy Convers Manage 236:114071

    Article  CAS  Google Scholar 

  • Yildiz C, Arici U, Nizetic S, Shahsavar A (2020) Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins. Energy 207:118223

    Article  CAS  Google Scholar 

  • Yumrutaş R, Unsal M (2000) Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks. Energy 25(12):1231–1243

    Article  Google Scholar 

  • Zalba B, Marin J, Cabeza LF (2013) Mehling, Harald, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  • Zhang Z (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manage 47:303–310

    Article  CAS  Google Scholar 

  • Zhang Y, Faghri A (1996) Heat transfer enhancement in latent heat thermal energy storage system by using an external radial finned tube. Int J Heat Mass Transf 39:3165–3173

    Article  CAS  Google Scholar 

  • Zhang Y, Su Y, Zhu Y, Hu X (2001) A general model for analyzing the thermal performance of the heat charging and discharging processes of latent heat thermal energy storage systems. J Sol Energy Eng 123:232

    Article  CAS  Google Scholar 

  • Zhang T, Nan C, Wenquan H (2014) Xiaolin, Yaling, Fatty acids as phase change materials: a review. Renew Sustain Energy Rev 29:482–498

    Article  Google Scholar 

  • Zhang Zzg, Zhang Ni, Peng Jing, Gao Xuenong, Fang Yutang (2012) Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl Energy 91:426–431 https://doi.org/10.1016/j.apenergy.2011.10.014

  • Zhang, Baeyens H, Caceres J, Degreve G, Lv J, Yongqin (2016) Thermal energy storage: recent developments and practical aspects. Prog Energy Combust Sci 53:1-40

  • Zhang C, Yu M, Fan Y, Zhang X, Zhao Y, Qiu L (2020) Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe. Energy 195:116809

    Article  Google Scholar 

  • Zhang S, Feng D, Shi L, Wang L, Jin Y, Tian L, Li Z, Wang G, Zhao L, Yan Y (2021) A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew Sustain Energy Rev 135:110127

    Article  CAS  Google Scholar 

  • Zhao C, Lu W, Tian Y (2010) Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMS). Sol Energy 84(8):1402–1412

    Article  CAS  Google Scholar 

  • Zhou D, Zhao C, Tian Y (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy 92:593–605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ravin: methodology, conceptualization, writing original draft. Ravinder Kumar Sahdev: supervision, writing, reviewing, and editing. Sumit Tiwari: supervision, visualization, writing, reviewing, and editing.

Corresponding author

Correspondence to Ravin Sehrawat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehrawat, R., Sahdev, R.K. & Tiwari, S. Heat storage material: a hope in solar thermal. Environ Sci Pollut Res 30, 11175–11198 (2023). https://doi.org/10.1007/s11356-022-24552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-24552-x

Keywords

Navigation