Skip to main content

Advertisement

Log in

Hydrological drought impacts on water storage variations: a focus on the role of vegetation changes in the East Africa region. A systematic review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Drought is one of the most challenging climatic events. Recently, the drought influence in East Africa (EA) total water storage (TWS) is a serious problem, particularly in arid areas with modified natural vegetation relying on water deficit, garnered extensive research interest. Hydro-climatological and vegetation indices and remote sensing datasets derived from Gravity Recovery Climate Experiment (GRACE) mission datasets reveal good performance in analyzing hydrological drought influences in water storage. Over the last decades, studies were considered successful in monitoring the drought influence in the region TWS potential. However, several challenges remained unsolved, hindering the hydrological drought mitigation strategies. This review deals with an overview of drought impact monitoring targeted at the TWS variation with the response of vegetation change for sustainable drought mitigation. To improve the flexibility and adaptive capacities of the water deficit problem, we aim to provide an overview of drought impacts on TWS in the region to redefine the hydro-climatological and vegetation drought indices and improve the understanding of drought impact through remote sensing datasets. This review presents the challenges and prospects and offers a conclusion. Although, we hope that the review can facilitate further study regarding future hydrological drought projection in the development of several scientific research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© 2020, Elsevier Global and Planetary Change. b Long-term (SPI-8) and the rainy season (SPI-4) SPI anomalies and trends. Adapted with permission from Mekonen et al. (2020) Copyright © 2020, Springer Geoenvironmental Disaster

Fig. 3

© 2018, Springer Environmental Science and Pollution

Fig. 4

© 2016, Hindawi Advances in Meteorology. c Time series of cumulative 6-month SPEI (SPEI-6) in Africa (filled blue and red) overlay with SPEI-6 in the Horn of Africa (Djibouti, Eritrea, Ethiopia, Kenya, Somalia, and Uganda). Adapted with permission from Adisa et al. (2020) Copyright © 2020, MDPI. Sustainability; d average monthly SPEI value for Upper Tana catchment from 1980 to 2018. Adapted with permission from Okal et al. (2020) Copyright © 2020, Elsevier Scientific African

Fig. 5

© 2020, MDPI. Atmosphere

Fig. 6

© 2017, Academicjournals.org/IJWREE

Fig. 7

© 2015, Elsevier risks and disasters

Fig. 8

© 2018, Scientific Research Publishing Advances in Remote Sensing

Similar content being viewed by others

References

  • Adisa OM, Masinde M, Botai JO, Botai CM (2020) Bibliometric analysis of methods and tools for drought monitoring and prediction in Africa. Sustainability 12(16):6516

    Article  Google Scholar 

  • AghaKouchak A (2015a) A multivariate approach for persistence-based drought prediction: application to the 2010–2011 East Africa drought. J Hydrol 526:127–135

    Article  Google Scholar 

  • Agutu N, Awange J, Zerihun A, Ndehedehe C, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287–302

    Article  Google Scholar 

  • Alley WM (1984) The Palmer drought severity index: limitations and assumptions. J Appl Meteorol Climatol 23(7):1100–1109

    Article  Google Scholar 

  • Awange J, Schumacher M, Forootan E, Heck B (2016a) Exploring hydro-meteorological drought patterns over the Greater Horn of Africa (1979–2014) using remote sensing and reanalysis products. Adv Water Resour 94:45–59

    Article  Google Scholar 

  • Awass AA (2009) Hydrological drought analysis-occurrence, severity, risks: the case of Wabi Shebele River Basin, Ethiopia

  • Ayugi B, Tan G, Rouyun N, Zeyao D, Ojara M, Mumo L, Babaousmail H, Ongoma V (2020a) Characterization of meteorological drought and pluvial scenarios over Kenya, East Africa. Atmosphere

  • Ayugi B, Tan G, Rouyun N, Zeyao D, Ojara M, Mumo L, Babaousmail H, Ongoma V (2020b) Evaluation of meteorological drought and flood scenarios over Kenya. East Africa Atmosphere 11(3):307

    Google Scholar 

  • Belayneh A, Adamowski J, Khalil B, Ozga-Zielinski B (2014) Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J Hydrol 508:418–429

    Article  Google Scholar 

  • Brink AB, Bodart C, Brodsky L, Defourney P, Ernst C, Donney F, Lupi A, Tuckova KJIJOAEO, Geoinformation (2014) Anthropogenic pressure in East Africa—monitoring 20 years of land cover changes by means of medium resolution satellite data. Int J Appl Earth Observ Geoinform 28:60–69

    Article  Google Scholar 

  • Busby JW, Smith TG, Krishnan N (2014) Climate security vulnerability in Africa mapping 3.0. Polit Geogr 43:51–67

    Article  Google Scholar 

  • Carmona M, Máñez Costa M, Andreu J, Pulido-Velazquez M, Haro-Monteagudo D, Lopez-Nicolas A, Cremades RJESF (2017) Assessing the effectiveness of Multi-Sector Partnerships to manage droughts: The case of the Jucar river basin. Earth’s Future 5(7):750–770

    Article  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30(3):239–264

    Article  CAS  Google Scholar 

  • Checchi F, Robinson WC (2013) Mortality among populations of southern and central Somalia affected by severe food insecurity and famine during 2010–2012. Food Agric Org United Nations

  • Choi T, Qu JJ, Xiong X (2013) A thirteen-year analysis of drought in the horn of Africa with MODIS NDVI and NWDI measurements, 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, pp. 302–307

  • Cumani M, Rojas O (2016) Characterization of the agricultural drought prone areas on a global scale. Food and Agriculture Organization of the United Nations

  • Dai A (2011a) Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res: Atmos 116(D12)

  • Dai A (2011b) Drought under global warming: a review. Wiley Interdiscip Rev: Clim Chang 2(1):45–65

    Google Scholar 

  • Dai A (2013) The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim Dyn 41(3–4):633–646

    Article  Google Scholar 

  • Davenport ML, Nicholson SEJIJORS (1993) On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa. Int J Remote Sens 14(12):2369–2389

    Article  Google Scholar 

  • de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702

    Article  Google Scholar 

  • Development UNDfS (2008) Trends in sustainable development: Africa report. United Nations Publications

  • Dorigo WA, Zurita-Milla R, de Wit AJ, Brazile J, Singh R, Schaepman ME (2007) A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Obs Geoinf 9(2):165–193

    Google Scholar 

  • Dutra E, Magnusson L, Wetterhall F, Cloke HL, Balsamo G, Boussetta S, Pappenberger F (2013) The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int J Climatol 33(7):1720–1729

    Article  Google Scholar 

  • Elkollaly M, Khadr M, Zeidan B (2018) Drought analysis in the Eastern Nile basin using the standardized precipitation index. Environ Sci Pollut Res 25(31):30772–30786

    Article  Google Scholar 

  • Fang X, Zhu Q, Chen H, Ma Z, Wang W, Song X, Zhao P, Peng C (2014) Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009. J Appl Remote Sens 8(1):083666

    Article  Google Scholar 

  • Ferrer N, Folch A, Lane M, Olago D, Odida J, Custodio E (2019) Groundwater hydrodynamics of an Eastern Africa coastal aquifer, including La Niña 2016–17 drought. Sci Total Environ 661:575–597

    Article  CAS  Google Scholar 

  • FEWS, N (2009) United Nations’ FEWS (famine early-warning systems) program

  • Forkel M, Carvalhais N, Verbesselt J, Mahecha MD, Neigh CS, Reichstein M (2013) Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens 5(5):2113–2144

    Article  Google Scholar 

  • Forootan E, Khaki M, Schumacher M, Wulfmeyer V, Mehrnegar N, van Dijk AI, Brocca L, Farzaneh S, Akinluyi F, Ramillien G, Shum CK, Awange J, Mostafaie A (2019) Understanding the global hydrological droughts of 2003–2016 and their relationships with teleconnections. Sci Total Environ 650:2587–2604

    Article  CAS  Google Scholar 

  • Funk C (2011) We thought trouble was coming. Nature 476(7358):7–7

    Article  CAS  Google Scholar 

  • Funk C, Nicholson SE, Landsfeld M, Klotter D, Peterson P, Harrison L (2015) The centennial trends Greater Horn of Africa precipitation dataset. Scientific Data 2(1):1–17

    Article  Google Scholar 

  • Gao B-C, Goetzt AF (1995) Retrieval of equivalent water thickness and information related to biochemical components of vegetation canopies from AVIRIS data. Remote Sens Environ 52(3):155–162

    Article  Google Scholar 

  • Gebrechorkos SH, Hülsmann S, Bernhofer C (2019) Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  • Gebrechorkos SH, Hülsmann S, Bernhofer C (2020) Analysis of climate variability and droughts in East Africa using high-resolution climate data products. Global Planet Change 186:103130

    Article  Google Scholar 

  • Gebrehiwot T, Van der Veen A, Maathuis B (2011) Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. Int J Appl Earth Obs Geoinf 13(3):309–321

    Google Scholar 

  • Ghebrezgabher MG, Yang T, Yang X (2016) Long-term trend of climate change and drought assessment in the Horn of Africa. Adv Meteorol 2016

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2018) Using drought indices to model the statistical relationships between meteorological and Agricultural drought in raya and its environs, northern Ethiopia. Earth Syst Environ 2(2):265–279

    Article  Google Scholar 

  • Githui F (2009) Assessing the impacts of environmental change on the hydrology of the Nzoia catchment, in the Lake Victoria. Vrije Universiteit Brussel Brussels, Belgium

    Google Scholar 

  • Goddard L, Graham NE (1999) Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J Geophys Res: Atmos 104(D16):19099–19116

    Article  Google Scholar 

  • Gutman GG (1990) Towards monitoring droughts from space. J Clim 3(2):282–295

    Article  Google Scholar 

  • Haile GG, Tang Q, Hosseini-Moghari SM, Liu X, Gebremicael T, Leng G, Kebede A, Xu X, Yun X (2020) Projected impacts of climate change on drought patterns over East Africa. Earth’s Future 8(7):e2020EF001502

    Article  Google Scholar 

  • Haile GG, Tang Q, Sun S, Huang Z, Zhang X, Liu X (2019) Droughts in East Africa: causes, impacts and resilience. Earth Sci Rev 193:146–161

    Article  Google Scholar 

  • Hastenrath S (2007) Circulation mechanisms of climate anomalies in East Africa and the equatorial Indian Ocean. Dynam Atmos Oceans 43(1–2):25–35c

    Article  Google Scholar 

  • Hawinkel P, Thiery W, Lhermitte S, Swinnen E, Verbist B, Van Orshoven J, Muys B (2016) Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. J Geophys Res Biogeosci 121(9):2422–2444

    Article  Google Scholar 

  • Hoell A, Funk C (2014) Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Clim Dyn 43(5–6):1645–1660

    Article  Google Scholar 

  • Holzman ME, Rivas R, Piccolo MC (2014) Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int J Appl Earth Obs Geoinf 28:181–192

    Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF (2004) Convergence across biomes to a common rain-use efficiency. Nature 429(6992):651–654

    Article  CAS  Google Scholar 

  • Kalisa W, Igbawua T, Henchiri M, Ali S, Zhang S, Bai Y, Zhang J (2019) Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci Rep 9(1):1–20

    Article  CAS  Google Scholar 

  • Kalisa W, Zhang J, Igbawua T, Ujoh F, Ebohon OJ, Namugize JN, Yao F (2020) Spatio-temporal analysis of drought and return periods over the East African region using Standardized Precipitation Index from 1920 to 2016. Agric Water Manag 237:106195

    Article  Google Scholar 

  • Karanja A (2017) Analysis of temporal drought characteristic using SPI drought index based on rainfall data in Laikipia west sub-county. Kenya Open Access Library Journal 4(10):1

    Google Scholar 

  • Karl TR (1986) The sensitivity of the Palmer Drought Severity Index and Palmer's Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 77–86

  • Keshavarz M, Karami E, Vanclay F (2013) The social experience of drought in rural Iran. Land Use Policy 30(1):120–129

    Article  Google Scholar 

  • Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa SJWRM (2011) Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resour Res 25(6):1737–1757

    Google Scholar 

  • Kim T-W, Valdés JB, Aparicio J (2002) Frequency and spatial characteristics of droughts in the Conchos River Basin. Mexico Water International 27(3):420–430

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484

    Article  CAS  Google Scholar 

  • Kogan FN (1997) Global drought watch from space. Bull Am Meteor Soc 78(4):621–636

    Article  Google Scholar 

  • Kopsiaftis G, Tigkas D, Christelis V, Vangelis H (2017) Assessment of drought impacts on semi-arid coastal aquifers of the Mediterranean. J Arid Environ 137:7–15

    Article  Google Scholar 

  • Landmann T, Dubovyk O (2014) Spatial analysis of human-induced vegetation productivity decline over eastern Africa using a decade (2001–2011) of medium resolution MODIS time-series data. Int J Appl Earth Obs Geoinf 33:76–82

    Google Scholar 

  • Leduc C, Pulido-Bosch A, Remini BJHJ (2017) Anthropization of groundwater resources in the Mediterranean region: processes and challenges. Hydrogeol J 25(6):1529–1547

    Article  Google Scholar 

  • Li B-G, Tao S, Dawson, R.J.I.J.o.R.S. (2002) Relations between AVHRR NDVI and ecoclimatic parameters in China. Int J Remote Sens 23(5):989–999

    Article  CAS  Google Scholar 

  • Li B, Rodell M (2015) Evaluation of a model-based groundwater drought indicator in the conterminous US. J Hydrol 526:78–88

    Article  Google Scholar 

  • Liu W, Kogan F (1996) Monitoring regional drought using the vegetation condition index. Int J Remote Sens 17(14):2761–2782

    Article  Google Scholar 

  • Lyon B (2014) Seasonal drought in the Greater Horn of Africa and its recent increase during the March–May long rains. J Clim 27(21):7953–7975

    Article  Google Scholar 

  • Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39(2)

  • Ma M, Ren L, Yuan F, Jiang S, Liu Y, Kong H, Gong L (2014) A new standardized Palmer drought index for hydro-meteorological use. Hydrol Process 28(23):5645–5661

    Article  Google Scholar 

  • Maxwell D, Fitzpatrick M (2012) The 2011 Somalia famine: Context, causes, and complications. Glob Food Sec 1(1):5–12

    Article  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology. Boston, pp. 179–183

  • Measho S, Chen B, Trisurat Y, Pellikka P, Guo L, Arunyawat S, Tuankrua V, Ogbazghi W, Yemane T (2019) Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the Semiarid Region Eritrea. Remote Sens 11(6):724

    Article  Google Scholar 

  • Meier P, Bond D, Bond J (2007) Environmental influences on pastoral conflict in the Horn of Africa. Polit Geogr 26(6):716–735

    Article  Google Scholar 

  • Mekonen AA, Berlie AB, Ferede MB (2020) Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia. Geoenviron Dis 7(1):1–17

    Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  • Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for drought monitoring in Iran. Int J Climatol 26(7):971–985

    Article  Google Scholar 

  • Mutsotso RB, Sichangi AW, Makokha GO (2018) Spatio-temporal drought characterization in Kenya from 1987 to 2016. Adv Remote Sens

  • Nachtergaele F, van Velthuizen H, Verelst L, Batjes N, Dijkshoorn K, van Engelen V, Fischer G, Jones A, Montanarela L (2010) The harmonized world soil database, Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010, pp. 34–37

  • Nanzad L, Zhang J, Tuvdendorj B, Nabil M, Zhang S, Bai Y (2019) NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J Arid Environ 164:69–77

    Article  Google Scholar 

  • Naumann G, Dutra E, Barbosa P, Pappenberger F, Wetterhall F, Vogt J (2014) Comparison of drought indicators derived from multiple data sets over Africa. Hydrol Earth Syst Sci 18(5):1625–1640

    Article  Google Scholar 

  • Nemani R, Pierce L, Running S, Goward S (1993) Developing satellite-derived estimates of surface moisture status. J Appl Meteorol 32(3):548–557

    Article  Google Scholar 

  • Nguvava M, Abiodun BJ, Otieno F (2019) Projecting drought characteristics over East African basins at specific global warming levels. Atmos Res 228:41–54

    Article  Google Scholar 

  • Nicholson SE (1998) Historical fluctuations of Lake Victoria and other lakes in the northern Rift Valley of East Africa, Environmental change and response in East African lakes. Springer, pp. 7–35

  • Nicholson SE (2016) An analysis of recent rainfall conditions in eastern Africa. Int J Climatol 36(1):526–532

    Article  Google Scholar 

  • Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim Change 17(2):209–241

    Article  Google Scholar 

  • Ntale HK, Gan TY (2003) Drought indices and their application to East Africa. Int J Climatol 23(11):1335–1357

    Article  Google Scholar 

  • Ogwang B, Guirong T, Haishan C (2012) Diagnosis of September-November drought and the associated circulation anomalies over Uganda. Pak J Meteorol 9(2)

  • Okal H, Ngetich F, Okeyo J (2020) Spatio-temporal characterisation of droughts using selected indices in Upper Tana River Watershed, Kenya. Sci African e00275

  • Omondi PAO, Awange JL, Forootan E, Ogallo LA, Barakiza R, Girmaw GB, Fesseha I, Kululetera V, Kilembe C, Mbati MM (2014) Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010. Int J Climatol 34(4):1262–1277

    Article  Google Scholar 

  • Omute P, Corner R, Awange JL (2012) The use of NDVI and its derivatives for monitoring Lake Victoria’s water level and drought conditions. Water Resour Manage 26(6):1591–1613

    Article  Google Scholar 

  • Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric for Meteorol 151(12):1800–1811

    Article  Google Scholar 

  • Piao S, Nan H, Huntingford C, Ciais P, Friedlingstein P, Sitch S, Peng S, Ahlström A, Canadell JG, Cong N (2014) Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat Commun 5(1):1–7

    Article  Google Scholar 

  • Ponchaut F, Cazenave A (1998) Continental lake level variations from Topex/Poseidon (1993–1996). 326(1): 13–20

  • Qu C, Hao X (2018) Agriculture drought and food security monitoring over the horn of Africa (HOA) from space, 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). IEEE, pp. 1–4

  • Redmond KT (2002) The depiction of drought: a commentary. Bull Am Meteor Soc 83(8):1143–1148

    Article  Google Scholar 

  • Reynolds C (2005) Low water levels observed on Lake Victoria. Report published on the Web site for the Production Estimates and Crop Assessment Division of the USDA Foreign Agricultural Service, September 26, 2005

  • Rodell M, Famiglietti JS, Wiese DN, Reager J, Beaudoing HK, Landerer FW, Lo M-HJN (2018) Emerging trends in global freshwater availability. Nature 557(7707):651–659

    Article  CAS  Google Scholar 

  • Rogelj J (2013) Summary for policymakers

  • Ropelewski CF, Halpert MS (1996) Quantifying southern oscillation-precipitation relationships. J Clim 9(5):1043–1059

    Article  Google Scholar 

  • Senay G, Velpuri NM, Bohms S, Budde M, Young C, Rowland J, Verdin J (2015) Drought monitoring and assessment: remote sensing and modeling approaches for the famine early warning systems network, Hydro-meteorological hazards, risks and disasters. Elsevier, pp. 233–262

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    Article  Google Scholar 

  • Sheffield J, Wood EF (2012) Drought: past problems and future scenarios. Taylor & Francis, Routledge

    Book  Google Scholar 

  • Sheffield J, Wood EF, Chaney N, Guan K, Sadri S, Yuan X, Olang L, Amani A, Ali A, Demuth S (2014) A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull Am Meteor Soc 95(6):861–882

    Article  Google Scholar 

  • Shi S, Yao F, Zhang J, Yang S (2020) Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia. IEEE Access 8:30050–30059

    Article  Google Scholar 

  • Shiferaw B, Tesfaye K, Kassie M, Abate T, Prasanna B, Menkir A (2014) Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional and policy options. Weather Clim Extremes 3:67–79

    Article  Google Scholar 

  • Singh RP, Roy S, Kogan F (2003) Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int J Remote Sens 24(22):4393–4402

    Article  Google Scholar 

  • Stampoulis D, Andreadis KM, Granger SL, Fisher JB, Turk FJ, Behrangi A, Ines AV, Das NN (2016) Assessing hydro-ecological vulnerability using microwave radiometric measurements from WindSat. Remote Sens Environ 184:58–72

    Article  Google Scholar 

  • Svoboda MD, Fuchs BA (2016) Handbook of drought indicators and indices. World Meteorological Organization Geneva, Taylorfrancis, Switzerland

    Google Scholar 

  • Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370(1–4):163–176

    Article  Google Scholar 

  • Thenkabail PS, Gamage M (2004) The use of remote sensing data for drought assessment and monitoring in Southwest Asia, 85. Iwmi

  • Tucker A, Gupta A (1989) Process control and scheduling issues for multiprogrammed shared-memory multiprocessors, Proceedings of the twelfth ACM symposium on Operating systems principles, pp. 159–166

  • Tucker CJ, Choudhury BJ (1987) Satellite remote sensing of drought conditions. Remote Sens Environ 23(2):243–251

    Article  Google Scholar 

  • Vicente-Serrano SM (2007) Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Nat Hazards 40(1):173–208

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16(10):1–27

    Article  Google Scholar 

  • Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci 110(1):52–57

    Article  CAS  Google Scholar 

  • Viste E, Korecha D, Sorteberg A (2013) Recent drought and precipitation tendencies in Ethiopia. Theoret Appl Climatol 112(3–4):535–551

    Article  Google Scholar 

  • Wambua RM, Mutua BM, Raude JM (2014) Drought forecasting using indices and Artificial Neural Networks for upper Tana River basin, Kenya-A review concept. Journal of Civil & Environmental Engineering 4(4):1

    Article  Google Scholar 

  • Wambua RM, Mutua BM, Raude J (2017) Analysis of spatial and temporal drought variability in a tropical river basin using Palmer Drought Severity Index (PDSI). Int J Water Resour Environ Eng 9(8):178–190

    Article  Google Scholar 

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought severity index. J Clim 17(12):2335–2351

    Article  Google Scholar 

  • Wilby R, Orr H, Hedger M, Forrow D, Blackmore M (2006) Risks posed by climate change to the delivery of Water Framework Directive objectives in the UK. Environ Int 32(8):1043–1055

    Article  CAS  Google Scholar 

  • Wilhite DA (2016) Droughts: a global assesment, books. Routledge

    Book  Google Scholar 

  • Winkler K, Gessner U, Hochschild V (2017) Identifying droughts affecting agriculture in Africa based on remote sensing time series between 2000–2016: rainfall anomalies and vegetation condition in the context of ENSO. Remote Sensing 9(8):831

    Article  Google Scholar 

  • Wolff C, Haug GH, Timmermann A, Damsté JSS, Brauer A, Sigman DM, Cane MA, Verschuren D (2011) Reduced interannual rainfall variability in East Africa during the last ice age. Science 333(6043):743–747

    Article  CAS  Google Scholar 

  • Zhang A, Jia G (2013) Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens Environ 134:12–23

    Article  Google Scholar 

  • Zhang D, Zhang Q, Werner AD, Liu, X.J.J.o.H. (2016) GRACE-based hydrological drought evaluation of the Yangtze River Basin China. J Hydrometeorol 17(3):811–828

    Article  Google Scholar 

  • Zhang S, Wu Y, Sivakumar B, Mu X, Zhao F, Sun P, Sun Y, Qiu L, Chen J, Meng XJEM (2019) Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. Environ Model Softw 122:104519

    Article  Google Scholar 

  • Zhao H, Gao G, An W, Zou X, Li H, Hou M (2017a) Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys Chem Earth, a/b/c 102:48–58

    Article  Google Scholar 

  • Zhao M, Velicogna G, Kimball J (2017b) Satellite observations of regional drought severity in the continental US using GRACE-based terrestrial water storage changes. J Clim

  • Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J Clim 28(11):4490–4512

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from CAS. Strategic Priority Research Program [Grant No. XDA19030402], the National Natural Science Foundation of China [Grant Nos. 41871253, 42071425], and CAS.

Funding

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences-A (No.XDA19030402), Natural Science Foundation of China (No. 41871253; 42071425), the “Taishan Scholar” Project of Shandong Province (No. TSXZ201712), and the Natural Science Foundation of Shandong (No.2018GNC110025).

Author information

Authors and Affiliations

Authors

Contributions

Ayalkibet M. Seka: conceptualization, formal analysis, investigation, writing—original draft. Jiahua Zhang: conceptualization, validation, resources, supervision, project administration, funding acquisition. Foyez Ahmed Prodhan: writing—review and editing. Gebiaw T. Ayele: writing—review & editing. Mekuanent M. Finsa: review and editing. Til Psd P. Sharma: editing. Assefa M. Melesse: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jiahua Zhang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

- Comprehensive and extended review on hydrological drought influences in the East Africa water storage.

- Analysis of drought influence in groundwater storage variation and spatiotemporal characteristics is proposed.

- Key hydro-climatological and vegetation indices detect drought influences on TWS change studies reviewed.

- A proposed machine-learning approach to build drought prediction models and monitoring strategies.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seka, A.M., Zhang, J., Prodhan, F.A. et al. Hydrological drought impacts on water storage variations: a focus on the role of vegetation changes in the East Africa region. A systematic review. Environ Sci Pollut Res 29, 80237–80256 (2022). https://doi.org/10.1007/s11356-022-23313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-23313-0

Keywords

Navigation