Skip to main content

Advertisement

Log in

Laboratory study of Se speciation in the sediment and oligochaete Lumbriculus variegatus from an aquatic environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Sediments are the major sink for selenium (Se) in aquatic environments. Se speciation in sediments is crucial for its bioavailability and toxicity in benthos, but this is relatively understudied. In this study, the background levels of Se in the river sediments, fish flakes, and Lumbriculus variegatus were also detected. Then, the dynamic changes of selenium speciation and concentrations in sediments were investigated after adding selenite (Se(IV)) and seleno-L-methionine (Se-Met) in the sediments for 90 and 7 days, and the accumulation and depuration of Se(IV) and Se-Met for 7 days in the oligochaete L. variegatus were also explored. Without the presence of worms, the levels of Se(IV) in the sediments were relatively stable within 7 days but showed a decreasing trend during the 90 days of aging. In contrast, Se-Met in the sediments showed a sharp decrease within 3 days of aging. The LC50-96 h values of Se(IV) and Se-Met in L. variegatus were 372.6 and 9.4 μg/g, respectively. Interestingly, the dominant Se species in Se(IV)- or Se-Met-treated L. variegatus was Se-Met, whose level was increased with time in 7 days of exposure. Se was barely depurated from L. variegatus during the 8 days of the depuration period. This study has provided indispensable data on the levels of total Se in the abiotic and biotic matrices and the biodynamics of Se in a representative benthos, which could better understand the ecological risk of Se to the freshwater benthic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Yes.

References

  • Ankley GT, Leonard EN, Mattson VR (1994) Prediction of bioaccumulation of metals from contaminated sediments by the oligochaete, Lumbriculus variegatus. Water Res 28:1071–1076

    Article  CAS  Google Scholar 

  • Bowie GL, Sanders JG, Riedel,GF, Gilmour CC, Breitburg DL, Cutter GA, Porcella DB (1996) Assessing selenium cycling and accumulation in aquatic ecosystems. Clean water: factors that influence its availability, quality and its use. Springer. 93–104

  • British Columbia Ministry of Education (BCMOE) (2018) Applied design, skills and technology.

  • Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134. https://doi.org/10.1146/annurev-nutr-071714-034250

    Article  CAS  Google Scholar 

  • Canton SP, Van Derveer WD (1997) Selenium toxicity to aquatic life: an argument for sediment-based water quality criteria. Environ Toxico Chem 16(6):1255–1259

    Article  CAS  Google Scholar 

  • Chen H, Yan L, Zhao J, Yang B, Huang G, Shi W, Hou L, Zha J, Luo Y, Mu J, Dong W, Ying GG, Xie L (2019) The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a water/sediment microcosm. Sci Total Environ 687:1098–1106

    Article  CAS  Google Scholar 

  • Conley JM, Funk DH, Buchwalter DB (2009) Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ Sci Technol 43(20):7952–7957

    Article  CAS  Google Scholar 

  • Davis E, Maier K, Knight A (1988) The biological consequences of selenium in aquatic ecosystems. Calif Agr 42(1):18–29

    Google Scholar 

  • Debruyn AM, Chapman PM (2007) Selenium toxicity to invertebrates: will proposed thresholds for toxicity to fish and birds also protect their prey? Environ Sci Techno 41(5):1766–1770

    Article  CAS  Google Scholar 

  • Dinh QT, Cui Z, Huang J, Tran TAT, Wang D, Yang W, Zhou F, Wang M, Yu D, Df L (2018) Selenium distribution in the Chinese environment and its relationship with human health: a review. Environ Int 112(3):294–309

    Article  CAS  Google Scholar 

  • Dubois M, Hare L (2009) Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types. Environ Pollut 157(3):772–777

    Article  CAS  Google Scholar 

  • Fujita M, Ike M, Hashimoto R, Nakagawa T, Yamaguchi K, Soda S (2005) Characterizing kinetics of transport and transformation of selenium in water–sediment microcosm free from selenium contamination using a simple mathematical model. Chemosphere 58(6):705–714

    Article  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326(1–3):1–31

    CAS  Google Scholar 

  • Hyne RV, Hogan AC, Pablo F, Roach AC (2002) Toxicity of selenomethionine-and seleno-contaminated sediment to the amphipod Corophium sp. Ecotox Environ Safe 52(1):30–37

    Article  CAS  Google Scholar 

  • Jagtap R, Maher W, Krikowa F, Ellwood MJ, Foster S (2016) Measurement of selenomethionine and selenocysteine in fish tissues using HPLC-ICP-MS. Microchem J 128:248–257

    Article  CAS  Google Scholar 

  • Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, Hopkins WA, McIntyre DO, Mebane CA, Palace VP (2010) Selenium toxicity to aquatic organisms. Ecological assessment of selenium in the aquatic environment, 141–231

  • Jasonsmith J, Maher W, Roach A, Krikowa F (2008) Selenium bioaccumulation and biomagnification in Lake Wallace, New South Wales, Australia. Mar Freshwater Res 59(12):1048–1060

    Article  CAS  Google Scholar 

  • Lemly AD (1997) Environmental implications of excessive selenium: a review. Biomed Environ Sci 10(4):415–435

    CAS  Google Scholar 

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotox Environ Safe 59(1):44–56

    Article  CAS  Google Scholar 

  • Leppänen M, Jussi K (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ Sci Techno 32(10):1503–1508

    Article  Google Scholar 

  • Li WH, Ju YR, Liao CM, Liao V (2014) Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology 23(7):1245–1253

    Article  CAS  Google Scholar 

  • Li X, Liu H, Li D, Lei H, Wei X, Schlenk D, Mu J, Chen H, Yan B, Xie L (2021) Dietary seleno-l-methionine causes alterations in neurotransmitters, ultrastructure of the brain, and behaviors in zebrafish (Danio rerio). Environ Sci Techno 55(17):11894–11905

    Article  CAS  Google Scholar 

  • Liu H, Li X, Lei H, Li D, Chen H, Schlenk D, Yan B, Luo Y, Xie L (2022) Dietary seleno-L-methionine alters the microbial communities and causes damage in the gastrointestinal tract of Japanese medaka Oryzias latipes. Environ Sci Techno 55(24):16515–16525

    Article  Google Scholar 

  • Maier K, Ogle R, Knight A (1988) The selenium problem in lentic ecosystems. Lake Reserv Manage 4(2):155–163. https://doi.org/10.1080/07438148809354823

    Article  Google Scholar 

  • Maier KJ, Foe CG, Knight AW (1993) Comparative toxicity of selenate, selenite, seleno-DL-methionine and seleno-DL-cystine to Daphnia magna. Environ Toxicol Chem

  • Maier KJ, Knight AW (1993) Comparative acute toxicity and bioconcentration of selenium by the midge Chironomus decorus exposed to selenate, selenite, and seleno-DL-methionine. Arch Environ Con Tox 25(3):365–370

    Article  CAS  Google Scholar 

  • Mansour AT, Goda AA, Omar EA, Khalil HS, Esteban MA (2017) Dietary supplementation of organic selenium improves growth, survival, antioxidant and immune status of meagre, Argyrosomus regius, juveniles. Fish Shellfish Immun 68:516–524

    Article  CAS  Google Scholar 

  • Martinez-Bravo Y, Roig-Navarro AF, Lopez FJ, Hernandez F (2001) Multielemental determination of arsenic, selenium and chromium (VI) species in water by HPLC ICP MS. J Chromatogr A 926(2):265–274

    Article  CAS  Google Scholar 

  • May TW, Fairchild JF, Petty JD, Walther MJ, Lucero J, Delvaux M, Manring J, Armbruster M (2008) An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin. Environ Monit Assess 137(1):213–232

    Article  CAS  Google Scholar 

  • Mount DR, Highland TL, Mattson VR, Dawson TD, Lott KG, Ingersoll CG (2006) Use of the oligochaete, Lumbriculus variegatus, as a prey organism for toxicant exposure of fish through the diet. Environ Toxicol Chem.: Int J 25(10):2760–7

  • OECD (2007) Test no. 225: Sediment-water Lumbriculus toxicity test using spiked sediment. Paris, France. https://www.oecd.org/dataoecd/15/13/39725224. Accessed 15 Oct 2017

  • Infante HG, O’Connor G, Rayman M, Wahlen R, Entwisle J, Norris P, Hearn R, Catterick T (2004). Selenium speciation analysis of selenium-enriched supplements by HPLC with ultrasonic nebulisation ICP-MS and electrospray MS/MS detection. J Anal Atom Spectrom 19(12), 1529–1538.

  • Orr PL, Guiguer KR, Russel CK (2006) Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed. Ecotox Environ Safe 63(2):175–188

    Article  CAS  Google Scholar 

  • Presser TS, Ohlendorf HM (1987) Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA. Environ Manage 11(6):805–821

    Article  CAS  Google Scholar 

  • Schroeder RA, Orem WH, Kharaka YK (2002) Chemical evolution of the Salton Sea, California: Nutrient and selenium dynamics. The Salton Sea. Springer, Dordrecht 161:23-45

  • Schwartz GE, Rivera N, Lee SW, Harrington JM, Hower JC, Levine KE, Vengosh A, Hsu-Kim H (2016) Leaching potential and redox transformations of arsenic and selenium in sediment microcosms with fly ash. Appl Geochem 67(4):177–185

    Article  CAS  Google Scholar 

  • Séby F, Potin-Gautier M, Giffaut E, Borge G, Donard O (2001) A critical review of thermodynamic data for selenium species at 25℃. Chem Geol 171(3–4):173–194. https://doi.org/10.1016/S0009-2541(00)00246-1

    Article  Google Scholar 

  • Sun YW, Zhang KB, Zhang RQ, Li HX, Lv CW, He J (2021) Pollution characteristics and potential ecological risk of selenium in sediments and fish from Daihai. Environ Chem 40(7):2158–2167 (In Chinese)

    Google Scholar 

  • Suzuki KT (2005) Metabolomics of selenium: Se metabolites based on speciation studies. J Health Sci 51(2):107–114. https://doi.org/10.1248/jhs.51.107

    Article  CAS  Google Scholar 

  • Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137(1–2):103–110

    Article  CAS  Google Scholar 

  • Wang D, Alfthan G, Aro A, Lahermo P, Väänänen P (1994) The impact of selenium fertilisation on the distribution of selenium in rivers in Finland. Agr Ecosyst Environ 50(2):133–149

    Article  CAS  Google Scholar 

  • Wang H, Chen H, Chernick M, Li D, Ying GG, Yang J, Zheng N, Xie L, Hinton DE, Dong W (2020) Selenomethionine exposure affects chondrogenic differentiation and bone formation in Japanese medaka (Oryzias latipes). J Hazard Mater 387:121720

    Article  CAS  Google Scholar 

  • Wang MC, Chen HM (2003) Forms and distribution of selenium at different depths and among particle size fractions of three Taiwan soils. Chemosphere 52:585–593

    Article  CAS  Google Scholar 

  • Winger PV, Lasier PJ, White DH, Seginak JT (2000) Effects of contaminants in dredge material from the lower Savannah River. Arch Environ Contam Toxicol 38(1): 128–136

  • Xie L, Wu X, Chen H, Luo Y, Guo Z, Mu J, Blankson ER, Dong W, Klerks PL (2016) The bioaccumulation and effects of selenium in the oligochaete Lumbriculus variegatus via dissolved and dietary exposure routes. Aquat Toxicol 178:1–7

    Article  CAS  Google Scholar 

  • Xie L, Lambert D, Martin C, Cain DJ, Luoma SN, Buchwalter D (2008) Cadmium biodynamics in the oligochaete Lumbriculus variegatus and its implications for trophic transfer. Aquat Toxicol  86, 265–271

  • Zhang C (2013) Speciation of chromium and selenium in environmental samples. China University of Geosciences. Thesis. (in Chinese)

  • Zhang Y, Moore JN (1997) Environmental conditions controlling selenium volatilization from a wetland system. Environ Sci Techno 31(2):511–517

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the National Key Research and Development Program of China (2018YFC1801200, 2018YFD0900601), the National Natural Science Foundation of China (31960733, 41877366, 41807352, 42107292, 42177256, 42177257), the Guangdong Basic and Applied Basic Research Foundation (2019A1515110789, 2020A1515010508), and Special Fund for the Construction of Modern Agricultural Industry Technology System (CARS-46) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Jichen Yang: Conceptualization, software, investigation, writing—original draft. Xin Yan: Conceptualization, software, investigation, writing—original draft. Hongsong Liu: Investigation, data curation. Hongxing Chen: Software, funding acquisition. Wei Zhang: Funding acquisition, writing—review and editing. Wu Dong: Funding acquisition, writing—review and editing. Dan Li: Funding acquisition, writing—review & editing, supervision. Lingtian Xie: Conceptualization, funding acquisition, writing—review and editing, supervision.

Corresponding author

Correspondence to Dan Li.

Ethics declarations

Ethics approval

No.

Consent to participate

Yes.

Consent for publication

Yes.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Christian Gagnon

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yan, X., Liu, H. et al. Laboratory study of Se speciation in the sediment and oligochaete Lumbriculus variegatus from an aquatic environment. Environ Sci Pollut Res 29, 90435–90445 (2022). https://doi.org/10.1007/s11356-022-22108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-22108-7

Keywords

Navigation