Skip to main content
Log in

Laboratory and In situ Selenium Bioaccumulation Assessment in the Benthic Macroinvertebrates Hyalella azteca and Chironomus dilutus

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Selenium (Se) bioaccumulation and toxicity in aquatic vertebrates have been thoroughly investigated. Limited information is available on Se bioaccumulation at the base of aquatic food webs. In this study, we evaluated Se bioaccumulation in two benthic macroinvertebrates (BMI), Hyalella azteca and Chironomus dilutus raised in the laboratory and caged in-situ to a Canadian boreal lake e (i.e., McClean Lake) that receives continuous low-level inputs of Se (< 1 μg/L) from a uranium mill. Additional Se bioaccumulation assays were conducted in the laboratory with these BMI to (i) confirm field results, (ii) compare Se bioaccumulation in lab-read and native H. azteca populations and (iii) identify the major Se exposure pathway (surface water, top 1 cm and top 2–3 cm sediment layers) leading to Se bioaccumulation in H. azteca. Field and laboratory studies indicated overall comparable Se bioaccumulation and trophic transfer factors (TTFs) in co-exposed H. azteca (whole-body Se 0.9–3.1 µg/g d.w; TTFs 0.6–6.3) and C. dilutus (whole-body Se at 0.7–3.2 µg Se/g d.w.; TTFs 0.7–3.4). Native and lab-reared H. azteca populations exposed to sediment and periphyton from McClean Lake exhibited similar Se uptake and bioaccumulation (NLR, p = 0.003; 4.1 ± 0.8 µg Se/g d.w), demonstrating that lab-reared organisms are good surrogates to assess on-site Se bioaccumulation potential. The greater Se concentrations in H. azteca exposed to the top 1–3 cm sediment layer relative to waterborne exposure, corroborates the importance of the sediment-detrital pathway leading to greater Se bioaccumulation potential to higher trophic levels via BMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data are available upon request from maira.mendes@usask.ca.

References

  • AREVA (2016) McClean Lake operation environmental performance technical information document (EP TID), vol 1. AREVA Resources Canada Inc., Saskatoon, SK, Canada

    Google Scholar 

  • Ashby LJ, Mill KE, Arnold MC, Van Geest JL, de Bruyn AM (2023) Analysis of selenium in fish tissue: an interlaboratory study on weight constraints. Environ Toxicol Chem 42(10):2119–2129. https://doi.org/10.1002/etc.5703

    Article  CAS  Google Scholar 

  • Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP (2020) Effects of chronic exposure to selenomethionine on social learning outcomes in zebrafish (Danio rerio): serotonergic dysregulation and oxidative stress in the brain. Chemosphere 247:125898. https://doi.org/10.1016/j.chemosphere.2020.125898

    Article  CAS  Google Scholar 

  • Bartlett AJ, Struger J, Grapentine LC, Palace VP (2016) Examining impacts of current-use pesticides in Southern Ontario using in situ exposures of the amphipod Hyalella azteca. Environ Toxicol Chem 35(5):1224–1238. https://doi.org/10.1002/etc.3265

    Article  CAS  Google Scholar 

  • BCMoE (2014) Ambient water quality guidelines for selenium technical report update. British Columbia Ministry of Environment.Vancouver, BC, Canada

  • Borgmann U, Couillard Y, Doyle P, Dixon DG (2005) Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environ Toxicol Chem 24(3):641–652. https://doi.org/10.1897/04-177R.1

    Article  CAS  Google Scholar 

  • Borgmann U, Couillard Y, Grapentine LC (2007) Relative contribution of food and water to 27 metals and metalloids accumulated by caged Hyalella azteca in two rivers affected by metal mining. Environ Pollut 145(3):753–765. https://doi.org/10.1016/j.envpol.2006.05.020

    Article  CAS  Google Scholar 

  • Borgmann U, Neron R, Norwood WP (2001) Quantification of bioavailable nickel in sediments and toxic thresholds to Hyalella azteca. Environ Pollut 111(2):189–198. https://doi.org/10.1016/S0269-7491(00)00076-2

    Article  CAS  Google Scholar 

  • Brasher AM, Scott Ogle R (1993) Comparative toxicity of selenite and selenate to the amphipod Hyalella azteca. Arch Environ Contam Toxicol 24(2):182–186. https://doi.org/10.1007/BF01141346

    Article  CAS  Google Scholar 

  • Brix KV, Volosin JS, Adams WJ, Reash RJ, Carlton RG, McIntyre DO (2001) Effects of sulfate on the acute toxicity of selenate to freshwater organisms. Environ Toxicol Chem 20(5):1037–1045. https://doi.org/10.1002/etc.5620200514

    Article  CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ 15 N and Δ 13 C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453. https://doi.org/10.1111/j.1365-2664.2009.01620.x

    Article  CAS  Google Scholar 

  • CCME (2003) Canadian water quality guidelines for the protection of aquatic life: guidance on the site-specific application of water quality guideline in Canada: Procedures for deriving numerical water quality objectives. Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, Manitoba

  • Conley JM, Funk DH, Buchwalter DB (2009) Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ Sci Technol 43(20):7952–7957. https://doi.org/10.1021/es9016377

    Article  CAS  Google Scholar 

  • Conley JM, Watson ATD, Xie L, Buchwalter DB (2014) Dynamic selenium assimilation, distribution, efflux, and maternal transfer in Japanese medaka fed a diet of se-enriched mayflies. Environ Sci Technol 48(5):2971–2978. https://doi.org/10.1021/es404933t

    Article  CAS  Google Scholar 

  • Couillard Y, Grapentine LC, Borgmann U, Doyle P, Masson S (2008) The amphipod Hyalella azteca as a biomonitor in field deployment studies for metal mining. Environ Pollut 156(3):1314–1324. https://doi.org/10.1016/j.envpol.2008.03.001

    Article  CAS  Google Scholar 

  • Cumbie PM, Van Horn SL (1978) Selenium accumulation associated with fish mortality and reproductive failure. In: Proceedings of southeastern fish and wildlife conference agencies, vol 32. Pp 612-624

  • Cupe-Flores B, Mendes M, Phillips I, Panigrahi B, Liu X, Liber K (2024) Effects of diluted effluent on aquatic macroinvertebrate communities at the McClean Lake uranium operation in northern Saskatchewan. Environ Res 244:117951. https://doi.org/10.1016/j.envres.2023.117951

    Article  CAS  Google Scholar 

  • Dionne K, Dufresn F, Nozais C (2017) Overlapping trophic niches among co-occurring amphipods from a cryptic species complex. Freshw Biol 62(6):1052–1062. https://doi.org/10.1111/fwb.12924

    Article  Google Scholar 

  • EC (1997) Biological test method—test for survival and growth in sediment using larvae of freshwater midges (Chironomus tentans or Chironomus riparius)/Method Development and Application Section. Environment Canada, Environmental Technology Center, Ottawa, ON. Accesed Dec 1997

  • ECCC (2018) Biological test method—test for survival, growth and reproduction in sediment and water using the freshwater amphipod Hyalella azteca/EPS/RM/33. Method Development and Applications Unit. Environment Canada, Science and Technology Branch,Ottawa, ON. Accessed Sep 2017

  • Franz ED, Wiramanaden CIE, Janz DM, Pickering IJ, Liber K (2011) Selenium bioaccumulation and speciation in Chironomus dilutus exposed to water-borne selenate, selenite, or seleno-DL-methionine. Environ Toxicol Chem 30(10):2292–2299. https://doi.org/10.1002/etc.624

    Article  CAS  Google Scholar 

  • Franz ED, Wiramanaden CIE, Gallego-Gallegos M, Tse JJ, Phibbs J, Janz DM, Pickering IJ, Liber K (2013) An in situ assessment of selenium bioaccumulation from water-, sediment-, and dietary-exposure pathways using caged Chironomus dilutus larvae. Environ Toxicol Chem 32(12):2836–2848. https://doi.org/10.1002/etc.2382

    Article  CAS  Google Scholar 

  • Friesen V, Doig LE, Markwart BE, Haakensen M, Tissier E, Liber K (2017) Genetic characterization of periphyton communities associated with selenium bioconcentration and trophic transfer in a simple food chain. Environ Sci Technol 51(13):7532–7541. https://doi.org/10.1021/acs.est.7b01001

    Article  CAS  Google Scholar 

  • Gallego-Gallegos M, Doig LE, Tse JJ, Pickering IJ, Liber K (2013) Bioavailability, toxicity and biotransformation of selenium in midge (Chironomus dilutus) larvae exposed via water or diet to elemental selenium particles, selenite, or selenized algae. Environ Sci Technol 47(1):584–592. https://doi.org/10.1021/es300828r

    Article  CAS  Google Scholar 

  • Gonzalez ER, Watling L (2006) Redescription of Hyalella azteca from its type locality, vera cruz, Mexico (amphipoda: hyalellidae). J Crustac Biol 22(1):173–183. https://doi.org/10.1651/0278-0372(2002)022[0173:rohafi]2.0.co;2

    Article  Google Scholar 

  • Graves SD, Liber K, Palace V, Hecker M, Doig LE, Janz DM (2019) Distribution of experimentally added selenium in a boreal lake ecosystem. Environ Toxicol Chem 38(9):1954–1966. https://doi.org/10.1002/etc.4508

    Article  CAS  Google Scholar 

  • Graves SD, Liber K, Palace V, Hecker M, Doig LE, Janz DM (2021) Trophic dynamics of selenium in a boreal lake food web. Environ Pollut 280(116956):1–9. https://doi.org/10.1016/j.envpol.2021.116956

    Article  CAS  Google Scholar 

  • Halter MT, Adams WD, Johnson HE (1980) Selenium toxicity to Daphnia magna, Hyalella azteca, and the fathead minnow in hard water. Bull Environ Contam Toxicol 24(1):102–107

    Article  CAS  Google Scholar 

  • Hyne RV, Hogan AC, Pablo F, Roach AC (2002) Toxicity of selenomethionine- and seleno-contaminated sediment to the amphipod Corophium sp. Ecotoxicol Environ Saf 52(1):30–37. https://doi.org/10.1006/eesa.2002.2157

    Article  CAS  Google Scholar 

  • ISO (2013) ISO 16303:2013(en) Water quality-determination of toxicity of freshwater sediments using Hyalella azteca. International Organization for Standardization, Geneva, Switzerland

  • Jatar M (2012) Assessing the effect of selenium on the life-cycle of two aquatic invertebrates: Ceriodaphnia dubia and Chironomus dilutus (masters thesis). University of Ottawa, Ottawa, ON, Canada, pp 99

  • Janz DM, Liber K, Pickering IJ, Wiramanaden IE, Weech SA, Gallegos MG, Driessnack MK, Franz ED, Goertzen MM, Phibbs J, Tse JJ, Himbeault KT, Robertson, EL, Seidel B, England K, Gent A (2014) Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem. Hum Ecol Risk Assess 10(4):543–554. https://doi.org/10.1002/ieam.1560

    Article  CAS  Google Scholar 

  • Kieliszek M (2019) Selenium–fascinating microelement, properties and sources in food. Molecules 24(7):1298. https://doi.org/10.3390/molecules24071298. (PMID: 30987088; PMCID: PMC6480557)

    Article  CAS  Google Scholar 

  • Lemly AD (1993) Teratogenic effects of selenium in natural populations of fresh water fish. Ecotoxicol Environ Saf 26(2):181–204. https://doi.org/10.1006/eesa.1993.1049

    Article  CAS  Google Scholar 

  • Lemly AD (2002) Selenium pollution around the world. In: Selenium assessment in aquatic ecosystems. Springer Series on Environmental Management. Springer, New York, NY, p 3–17. https://doi.org/10.1007/978-1-4613-0073-1_1

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59(1):44–56. https://doi.org/10.1016/S0147-6513(03)00095-2

    Article  CAS  Google Scholar 

  • Malchow DE, Knight AW, Maier KJ (1995) Bioaccumulation and toxicity of selenium in Chironomus-decorus larvae fed a diet of seleniferous Selenastrum capricornutum. Arch Environ Contam Toxicol 29(1):104–109

    Article  CAS  Google Scholar 

  • Malloy JC, Meade ML, Olsen EW (1999) Small-scale spatial variation of selenium concentrations in chironomid larvae. Bull Environ Contam Toxicol 62(2):122–129. https://doi.org/10.1007/s001289900850

    Article  CAS  Google Scholar 

  • Maier KJ, Knight AW (1993) Comparative acute toxicity and bioconcentration of selenium by the midge Chironomus decorus exposed to selenate, selenite, and seleno-DL-methionine. Arch Environ Contam Toxicol 25:365–370. https://doi.org/10.1007/BF00210728

    Article  CAS  Google Scholar 

  • Mendes M, Cupe-Flores B, Panigrahi B, Liber K (2022a) Application of autonomous sensor technology to estimate selenium exposure and a site- specific selenium threshold in a Canadian boreal lake. Integr Environ Monit Assess 19(2):395–411. https://doi.org/10.1002/ieam.4644

    Article  CAS  Google Scholar 

  • Mendes M, Cupe-Flores B, Liber K (2022b) Selenium distribution and trophic transfer in the periphyton–benthic macroinvertebrate food chain in boreal lakes downstream from a milling operation. Environ Toxicol Chem 41(9):2181–2192. https://doi.org/10.1002/etc.5422

    Article  CAS  Google Scholar 

  • Mendes MP, Cupe-Flores B, Liber K (2023) Sampling method and season influence selenium dynamics at the base of a boreal lake food chain. Environ Res 234:116157. https://doi.org/10.1016/j.envres.2023.116157

    Article  CAS  Google Scholar 

  • Muotka T (1990) Coexistence in a guild of filter feeding caddis larvae: Do different instars act as different species? Oecologia 85(2):281–292. https://doi.org/10.1007/BF00319414

    Article  Google Scholar 

  • Muscatello JR, Belknap AM, Janz DM (2008) Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environ Pollut 156(2):387–393. https://doi.org/10.1016/j.envpol.2008.01.039

    Article  CAS  Google Scholar 

  • Orano (2018) Selenium review and assessment report. Version 1. Orano Inc. Saskatoon, SK, Canada

  • Pieterek T, Pietrock M (2012) Comparative selenium toxicity to laboratory-reared and field-collected Hyalella azteca (amphipoda, hyalellidae). Water Air Soil Pollut 223(7):4245–4252. https://doi.org/10.1007/s11270-012-1188-3

    Article  CAS  Google Scholar 

  • Ponton DE, Hare L (2015) Using sulfur stable isotopes to understand feeding behavior and selenium concentrations in yellow perch (Perca flavescens). Environ Sci Technol 49(13):7633–7640. https://doi.org/10.1021/acs.est.5b00718

    Article  CAS  Google Scholar 

  • Presser TS, Luoma SN (2010) A methodology for ecosystem-scale modeling of selenium. Integr Environ Assess Manag 6(4):685–710. https://doi.org/10.1002/ieam.101

    Article  CAS  Google Scholar 

  • Proulx I, Hare L, Dupré B (2018) Is it justifiable to pool Chironomus species in trace element contamination studies? Environ Toxicol Chem 38(1):145–159. https://doi.org/10.1002/etc.4294

    Article  CAS  Google Scholar 

  • R Core Team (2022) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https:// www.R-project.org

  • Raes K (2020) Trophic transfer of inorganic selenium species through representative freshwater food chains (master’s thesis). University of Saskatchewan, Saskatoon, SK, Canada, p 156

    Google Scholar 

  • Robertson EL, Liber K (2007) Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations. Environ Toxicol Chem 26(11):2345–2355. https://doi.org/10.1897/06-489R.1

    Article  CAS  Google Scholar 

  • Stewart R, Grosell M, Buchwalter D, Fisher N, Luoma S, Mathews T, Orr P, Wang W-X (2010) Bioaccumulation and trophic transfer of selenium. In: Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (eds) Ecological assessment of selenium in the aquatic environment. CRC Press, pp 93–139

    Chapter  Google Scholar 

  • Tse JJ, Gallego-Gallegos M, Franz ED, Liber K, Pickering IJ (2012) Selenium speciation and localization in chironomids from lakes receiving treated metal mine effluent. Chemosphere 89(3):274–279. https://doi.org/10.1016/j.chemosphere.2012.04.036

    Article  CAS  Google Scholar 

  • Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK (2013) Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci USA 110(41):16532–16537. https://doi.org/10.1073/pnas.1302023110

    Article  Google Scholar 

  • Wilkinson SAL (2018) Use of non-linear models based on saturation kinetics to determine chronic Co, Se or Zn toxicity for either exposure or body burden in Hyalella azteca. (PhD dissertation). University of Waterloo, Waterloo, ON, Canada, pp 179. http://hdl.handle.net/10012/13060

  • Wiramanaden CIE, Forster EK, Liber K (2010) Selenium distribution in a lake system receiving effluent from a metal mining and milling operation in Northern Saskatchewan, Canada. Environ Toxicol Chem 29(3):606–616. https://doi.org/10.1002/etc.63

    Article  CAS  Google Scholar 

  • Wiseman S, Thomas JK, McPhee L, Hursky O, Raine JC, Pietrock M, Giesy JP, Hecker M, Janz DM (2011) Attenuation of the cortisol response to stress in female rainbow trout chronically exposed to dietary selenomethionine. Aquat Toxicol 105(3–4):643–651. https://doi.org/10.1016/j.aquatox.2011.09.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Orano for allowing us to work at the McClean Lake site and for their invaluable on-site and logistical assistance. We also thank Dr. Xia Liu for conducting total selenium analysis in water, sediment, and biological samples for this study.

Funding

This project was funded by a Dean’s Scholarship from the University of Saskatchewan, the Global Water Futures (GWF) program, and Orano Canada.

Author information

Authors and Affiliations

Authors

Contributions

Maira P. Mendes was contributed to investigation, methodology, formal analysis, data curation, writing—original draft. Beatriz Cupe-Flores was contributed to investigation, methodology, data curation. Karsten Liber was contributed to conceptualization; methodology; resources; investigation; supervision; writing—review and editing.

Corresponding author

Correspondence to Karsten Liber.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peixoto Mendes, M., Flores, B.C. & Liber, K. Laboratory and In situ Selenium Bioaccumulation Assessment in the Benthic Macroinvertebrates Hyalella azteca and Chironomus dilutus. Arch Environ Contam Toxicol 86, 249–261 (2024). https://doi.org/10.1007/s00244-024-01056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-024-01056-y

Navigation