Skip to main content

Advertisement

Log in

Comparing supply-side and demand-side policies in the solar cell supply chain under competitive circumstances: a case study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Due to the destructive effects of fossil fuels on the environment, using renewable energies has nowadays been suggested. In addition, because of the increased use of solar energy and the prevention the solar cell supply chain (SCSC), this chain is mainly supported by government funding. In this study, we mathematically model both supply-side and demand-side policies for a two-echelon SCSC, considering the competition between domestic and foreign suppliers as well as government intervention under the supply-side subsidy policies to support SCSC members and finance the customers through demand-side subsidy policies. The aim of this paper is to investigate the effects of government intervention under the supply-side and demand-side policies on supporting the members of SCSC and encouraging customers to increase the use of solar panels. In addition, this study explores the best policy for improving and promoting SCSC. In the real world, both supply-side and demand-side policies will help industrial factories, power plants, and households to enhance the use of solar energy for producing electricity. This study has been investigated using one real example, whose results show that the efficiency under the supply-side policy is about 7% more than the efficiency under the demand-side policy. The price under the supply-side policy is roughly 10% less than the price under the demand-side policy. The members’ profit under the supply-side policy is approximately 5% bigger than the one under the demand-side policy. According to real examples, the government’s utility under the demand-side policy is nearly 1% smaller than the government’s utility under the supply-side policy. Finally, key findings are considered for the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  • Chen Z, Su S-I (2014) Photovoltaic supply chain coordination with strategic consumers in China. Renewable Energy 68:236–244

    Article  Google Scholar 

  • Chen Z, Su S-I (2016) The joint bargaining coordination in a photovoltaic supply chain. J Renew Sustain Energy 8:035904

    Article  Google Scholar 

  • Chen Zh, Su S-I (2022) Countervailing effect and mitigation policy: a game-theoretical study in dual international competing photovoltaic supply chains. Renewable Energy 183:160–171

    Article  CAS  Google Scholar 

  • Dehghani E, Jabalameli MS, Naderi MJ (2020) An environmentally conscious photovoltaic supply chain network design under correlated uncertainty: a case study in Iran. J Clean Prod 262:121434

    Article  Google Scholar 

  • Gautam A, Shankar R, Vrat P (2021) End-of-life solar photovoltaic e-waste assessment in India: a step toward a circular economy. Sustain Prod Consump. https://doi.org/10.1016/j.spc.2020.09.011

    Article  Google Scholar 

  • Hafezalkotob A (2017) Competition, cooperation, and coopetition of green supply chains under regulations on energy saving levels. Transp Res Part E 97:228–250

    Article  Google Scholar 

  • Huo M-l, Zhang D-W (2012) Lessons from photovoltaic policies in China for future development. Energy Policy 51:38–45

    Article  Google Scholar 

  • Jamali M-B, Rasti-Barzoki M (2022) A game-theoretic approach for examining government support strategies and licensing contracts in an electricity supply chain with technology spillover: A case study of Iran. Energy 242:122919

    Article  Google Scholar 

  • Jia F, Sun H, Koh L (2016) Global solar photovoltaic industry: an overview and national competitiveness of Taiwan. J Clean Prod 126:550–562

    Article  Google Scholar 

  • Khanjarpanah H, Seyedhosseini SM (2018) A novel multi-period double frontier network DEA to sustainable location optimization of hybrid wind-photovoltaic power plant with real application. Energy Convers Manage 159:175–188

    Article  Google Scholar 

  • Kharaji Manouchehrabadi M, Yaghoubi S (2019) Solar cell supply chain coordination and competition under government intervention. J Renew Sustain Energy 11:023701

    Article  Google Scholar 

  • Kharaji Manouchehrabadi M, Yaghoubi S, Tajik J (2020) Optimal scenarios for solar cell supply chain considering degradation in powerhouses. Renewable Energy 145:1104–1125

    Article  Google Scholar 

  • Kharaji Manouchehrabadi M, Yaghoubi S (2020) A game theoretic incentive model for closed-loop solar cell supply chain coordination by considering government role. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1764150

  • Khosroshahi H, Dimitrov S, Hejazi SR (2021) Pricing, greening, and transparency decisions considering the impact of government subsidies and CSR behavior in supply chain decisions. J Retailing Consumer Serv 60:102458

    Google Scholar 

  • Madani SR, Rasti-Barzoki M (2017) Sustainable supply chain management with pricing, greening and governmental tariffs determining strategies: a game-theoretic approach. Comput Ind Eng 105:287–298

    Article  Google Scholar 

  • Matinfard S, Yaghoubi S, Kharaji Manouchehrabadi M (2022) Impact of government policies on photovoltaic supply chain considering quality in the power distribution system: a case study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19884-7

    Article  Google Scholar 

  • Moosavian SM, Rahim NA, Selvaraj J, Solangi KH (2013) Energy policy to promote photovoltaic generation. Renew Sustain Energy Rev 25:44–58

    Article  Google Scholar 

  • Nili M, Seyedhosseini SM, Jabalameli MS, Dehghani E (2021) A Multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: a case study in Iran. Renew Sustain Energy Rev 150:111428

    Article  Google Scholar 

  • Oh S-D, Lee Y, Yoo Y, Kim J, Kim S, Song SJ, Kwak H-Y (2013) A support strategy for the promotion of photovoltaic uses for residential houses in Korea. Energy Policy 53:248–256

    Article  Google Scholar 

  • Qiang Zh, Honghang S, Yanxi L, Yurui X, Jun S (2014) China’s solar photovoltaic policy: an analysis based on policy instruments. Appl Energy 129:308–319

    Article  Google Scholar 

  • Radomes AA Jr, Arango S (2015) Renewable energy technology diffusion: an analysis of photovoltaic system support schemes in Medellin, Colombia. J Clean Prod 92:152–161

    Article  Google Scholar 

  • Ramirez FJ, Honrubia-Escribano A, Gomez-Lazaro E, Pham DT (2017) Combining feed-in tariffs and net-metering schemes to balance development in adoption of photovoltaic energy: comparative economic assessment and policy implications for European countries. Energy Policy 102:440–452

    Article  Google Scholar 

  • Rigter J, Vidican G (2010) Cost and optimal feed-in tariff for small scale photovoltaic systems in China. Energy Policy 38:6989–7000. https://doi.org/10.1016/j.enpol.2010.07.014

    Article  Google Scholar 

  • Shahbazbegian V, Hosseini-Motlagh SM, Haeri A (2020) Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data. Appl Energy 277:115538

    Article  Google Scholar 

  • Taghizadeh-Hesary F, Yoshino N, Inagaki Y, Morgan JP (2021) Analyzing the factors influencing the demand and supply of solar modules in Japan-does financing matter. Int Rev Econ Financ 74:1–12

    Article  Google Scholar 

  • Zhai P (2013) Analyzing solar energy policies using a three-tier model: a case study of photovoltaics adoption in Arizona, United States. Renewable Energy 57:317–322

    Article  Google Scholar 

  • Zhang S, He Y (2013) Analysis on the development and policy of solar PV power in China. Renew Sustain Energy Rev 21:393–401

    Article  Google Scholar 

  • Zhang Y, Song J, Hamori Sh (2011) Impact of subsidy policies on diffusion of photovoltaic power generation. Energy Policy 39:1958–1964

    Article  CAS  Google Scholar 

  • Zhao J, Zhang Q (2021) The effect of contract methods on the lead time of a two-level photovoltaic supply chain: revenue sharing vs cost-sharing. Energy 231:120930

    Article  Google Scholar 

  • Zhao Xg, Wang G, Yang Y (2015) The turning point of solar photovoltaic industry in China: will it come? Renew Sustain Energy Rev 41:178–188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maedeh Kharaji Manouchehrabadi: software, validation, investigation, formal analysis, resources, data curation, writing—original draft preparation, writing—reviewing and editing, conceptualization, methodology, and visualization. Saeed Yaghoubi: conceptualization, methodology, formal analysis, writing—reviewing and editing, visualization, supervision, and project administration.

Corresponding author

Correspondence to Saeed Yaghoubi.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Ilhan Ozturk.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Supply-side policy

To prove concavity of the government function in the supply-side policy, the Hessian matrix of \({\pi }_{G,p1}\) is shown as follows:

$$H\left({t}_{a},{t}_{d}\right)=\left[\begin{array}{cc}-2b{c}_{0}^{2}& -\frac{{c}_{0}{cs}_{d}(2b{c}_{d}+\gamma \left(\gamma +{\theta }_{s}\right))}{4{c}_{d}}\\ -\frac{{c}_{0}{cs}_{d}(2b{c}_{d}+\gamma \left(\gamma +{\theta }_{s}\right))}{4{c}_{d}}& -\frac{{cs}_{d}^{2}({\gamma +{\theta }_{s})}^{2}}{2{c}_{d}}\end{array}\right]$$

\({H}_{1}\left({t}_{a},{t}_{d}\right)=-2b{c}_{0}^{2}<0, {H}_{2}\left({t}_{a},{t}_{d}\right)=\left(-2b{c}_{0}^{2}\right)\left(-\frac{{cs}_{d}^{2}({\gamma +{\theta }_{s})}^{2}}{2{c}_{d}}\right)-{\left(-\frac{{c}_{0}{cs}_{d}\left(2b{c}_{d}+\gamma \left(\gamma +{\theta }_{s}\right)\right)}{4{c}_{d}}\right)}^{2}>0 \mathrm{if} \left(-2b{c}_{0}^{2}\right)\left(-\frac{{cs}_{d}^{2}({\gamma +{\theta }_{s})}^{2}}{2{c}_{d}}\right)>{\left(-\frac{{c}_{0}{cs}_{d}\left(2b{c}_{d}+\gamma \left(\gamma +{\theta }_{s}\right)\right)}{4{c}_{d}}\right)}^{2},({2b{c}_{d}+\gamma (\gamma +{\theta }_{s}))}^{2}<16b{c}_{d}({\gamma +{\theta }_{s})}^{2}.\)

The concavity is proved if a negative value for the second-order condition of domestic and foreign suppliers’ functions is obtained.

$$\frac{{\partial }_{{\pi }_{DS,p1}}^{2}}{\partial {x}_{d,p1}^{2}}=-2{c}_{d}<0.$$
$$\frac{{\partial }_{{\pi }_{FS,p1}}^{2}}{\partial {x}_{f,p1}^{2}}=-2{c}_{f}<0.$$

To show concavity, the Hessian matrix of \({\pi }_{A,p1}\) is seen as follows:

$$H\left({p}_{d,p1},{p}_{f,p1}\right)=\left[\begin{array}{cc}-2b-2\theta & 2\theta \\ 2\theta & -2b-2\theta \end{array}\right]$$

\({H}_{1}\left({p}_{d,p1},{p}_{f,p1}\right)=-2b-2\theta <0, {H}_{2}\left({p}_{d,p1},{p}_{f,p1}\right)=4{b}^{2}+8b\theta >0.\)

Decision variables and profit function of assembler in supply-side policy are expressed as follows:

$${p}_{d,p1}^{*}=\frac{2b\left(b+2\theta \right){c}_{0}\left(1-{t}_{a}\right)+\frac{\begin{array}{c}{c}_{f}({w}_{d}-{cs}_{d}(1-{t}_{d}))\left(\gamma +{\theta }_{s}\right)\left(\gamma \left(b+\theta \right)+b{\theta }_{s}\right)+{c}_{d}(2{c}_{f}\left(a\left(b\alpha +\theta \right)+b\left(b+2\theta \right){w}_{d}\right)-({cs}_{f}(1\\ +{t}_{f})-{w}_{f})(\gamma +{\theta }_{s})(\gamma \theta -b{\theta }_{s}))\end{array}}{{c}_{f}{c}_{d}}}{4b(b+2\theta )}$$
(60)
$${p}_{f,p1}^{*}=\frac{2b\left(b+2\theta \right){c}_{0}\left(1-{t}_{a}\right)+\frac{\begin{array}{c}{c}_{f}\left({w}_{d}-{cs}_{d}\left(1-{t}_{d}\right)\right)\left(\gamma +{\theta }_{s}\right)\left(\gamma \theta -b{\theta }_{s}\right)+{c}_{d}(2{c}_{f}(a\left(b-b\alpha +\theta \right)+b\left(b+2\theta \right){w}_{f})-({cs}_{f}(1\\ +{t}_{f})-{w}_{f})(\gamma +{\theta }_{s})(\gamma \left(b+\theta \right)+b{\theta }_{s}))\end{array}}{{c}_{f}{c}_{d}}}{4b(b+2\theta )}$$
(61)
$${\pi }_{A,p1}^{*}=\frac{1}{16b\left(b+2\theta \right){c}_{f}^{2}{c}_{d}^{2}}({c}_{f}^{2}({{cs}_{d}\left(-1+{t}_{d}\right)+{w}_{d})}^{2}({\gamma +{\theta }_{s})}^{2}\left({\gamma }^{2}\left(b+\theta \right)+2b{\theta }_{s}\left(\gamma +{\theta }_{s}\right)\right)-2{c}_{d}{c}_{f}\left({cs}_{d}\left(-1+{t}_{d}\right)+{w}_{d}\right)\left(\gamma +{\theta }_{s}\right)\left(2{c}_{f}\left(\gamma \left(-a\left(b\alpha +\theta \right)+b\left(b+2\theta \right)\left(-{c}_{0}\left(-1+{t}_{a}\right)+{w}_{d}\right)+b\left(a-2a\alpha +\left(b+2\theta \right){(w}_{d}-{w}_{f}\right)\right){\theta }_{s}\right)+{(cs}_{f}\left(1+{t}_{f}\right)-{w}_{f}\right)\left(\gamma +{\theta }_{s}\right)\left({\gamma }^{2}\theta -2b{\theta }_{s}\left(\gamma +{\theta }_{s}\right))\right)+{c}_{d}^{2}(4{c}_{f}^{2}({a}^{2}\left(b+2b\left(-1+\alpha \right)\alpha +\theta \right)+b(b+2\theta )(2b{c}_{0}^{2}{\left(-1+{t}_{a}\right)}^{2}+\left(b+\theta \right){w}_{d}^{2}-2{w}_{d}\left(a\alpha +\theta {w}_{f}\right)+{w}_{f}\left(2a\left(-1+\alpha \right)+\left(b+\theta \right){w}_{f}\right)+2{c}_{0}\left(-1+{t}_{a}\right)\left(a-b{(w}_{d}+{w}_{f})))\right)+{\left(-{cs}_{f}\left(1+{t}_{f}\right)+{w}_{f}\right)}^{2}{\left(\gamma +{\theta }_{s}\right)}^{2}\left({\gamma }^{2}\left(b+\theta \right)+2b{\theta }_{s}\left(\gamma +{\theta }_{s}\right)\right)+4{c}_{f}\left({cs}_{f}\left(1+{t}_{f}\right)-{w}_{f}\right)\left(\gamma +{\theta }_{s}\right)\left(ab\left(-1+\alpha \right)\gamma -a\gamma \theta +ab\left(-1+2\alpha \right){\theta }_{s}-b\left(b+2\theta \right)\left(\gamma {c}_{0}\left(-1+{t}_{a}\right)+{w}_{d}{\theta }_{s}-{w}_{f}\left(\gamma +{\theta }_{s}\right)))\right)\right)$$
(62)

Appendix 2

Demand-side policy

To show concavity, the second-order condition of \({\pi }_{G,P2}\) should be negative.

$$\frac{{\partial }^{2}{\pi }_{G,p2}}{\partial {t}_{c,p2}^{2}}=-b-\theta <0$$

To prove concavity, the second-order condition of supplier functions based on decision variables should be negative.

$$\frac{{\partial }_{{\pi }_{DS,p2}}^{2}}{\partial {x}_{d,p2}^{2}}=-2{c}_{d}<0$$
$$\frac{{\partial }_{{\pi }_{FS,p2}}^{2}}{\partial {x}_{f,p2}^{2}}=-2{c}_{f}<0.$$

The Hessian matrix of \({\pi }_{A,p2}\) to prove the concavity is seen as follows:

$$H\left({p}_{d,p2},{p}_{f,p2}\right)=\left[\begin{array}{cc}-2b-2\theta & 2\theta \\ 2\theta & -2b-2\theta \end{array}\right]$$

\({H}_{1}\left({p}_{d,p2},{p}_{f,p2}\right)=-2b-2\theta <0, {H}_{2}\left({p}_{d,p1},{p}_{f,p1}\right)=4{b}^{2}+8b\theta >0.\)

Decision variables and profit function of assembler in demand-side policy are shown as follows:

$${p}_{d,p2}^{*}=\frac{b\left(b+2\theta \right){c}_{0}+\frac{\begin{array}{c}-{c}_{f}({cs}_{d}-{w}_{d})(\gamma \left(b+\theta \right)+b{\theta }_{s})(\gamma +{\theta }_{s})+{c}_{d}(2{c}_{f}\left(a\left(b\alpha +\theta \right)+b\left(b+2\theta \right)\left({w}_{d}+{t}_{c}\right)\right)-\\ ({cs}_{f}(1+{t}_{f})-{w}_{f})(\gamma +{\theta }_{s})(\gamma \theta -b{\theta }_{s}))\end{array}}{{2c}_{d}{c}_{f}}}{2b(b+2\theta )}$$
(63)
$${p}_{f,p2}^{*}=\frac{b\left(b+2\theta \right){c}_{0}+\frac{\begin{array}{c}-{c}_{f}\left({cs}_{d}-{w}_{d}\right)\left(\gamma +{\theta }_{s}\right)+{c}_{d}(2{c}_{f}\left(a\left(b-b\alpha +\theta \right)+b\left(b+2\theta \right){w}_{f}\right)-({cs}_{f}(1+{t}_{f})-{w}_{f})\\ (\gamma +{\theta }_{s})(\gamma \left(b+\theta \right)+b{\theta }_{s}))\end{array}}{2{c}_{d}{c}_{f}}}{2b\left(b+2\theta \right)}$$
(64)
$${\pi }_{A,p2}^{*}=\frac{1}{16b\left(b+2\theta \right){c}_{d}^{2}{c}_{f}^{2}}\left({c}_{f}^{2}{\left({cs}_{d}-{w}_{d}\right)}^{2}{\left(\gamma +{\theta }_{s}\right)}^{2}\left({\gamma }^{2}\left(b+\theta \right)+2b{\theta }_{s}\left(\gamma +{\theta }_{s}\right)\right)+2{c}_{d}{s}_{f}\left({cs}_{d}-{w}_{d}\right)\left(\gamma +{\theta }_{s}\right)\left(2{c}_{f}\left(-a\gamma \left(b\alpha +\theta \right)+b\gamma \left(b+2\theta \right)\left({c}_{0}-{t}_{d}+{w}_{d}\right)+b\left(a-2a\alpha -\left(b+2\theta \right)\left({t}_{d}-{w}_{d}+{w}_{f}\right)\right){\theta }_{s}\right)+{(cs}_{f}\left(1+{t}_{f}\right)-{w}_{f}\right)\left(\gamma +{\theta }_{s}\right)\left({\gamma }^{2}\theta -2b{\theta }_{s}\left(\gamma +{\theta }_{s}\right)\right)\right)+{c}_{d}^{2}(4{c}_{f}^{2}\left({a}^{2}\left(b+2b\left(-1+\alpha \right)\alpha +\theta \right)+b\left(b+2\theta \right)\left(2b{c}_{0}^{2}+\left(2a\alpha +\left(b+\theta \right)\left({t}_{d}-{w}_{d}\right)+2\left(a\left(-1+\alpha \right)+\theta {t}_{d}-\theta {w}_{d}\right){w}_{f}+\left(b+\theta \right){w}_{f}^{2}-2{c}_{0}\left(a+b{t}_{d}-b\left({w}_{d}+{w}_{f}\right)\right)\right)\right)+4{c}_{f}\left({cs}_{f}\left(1+{t}_{f}\right)-{w}_{f}\right)\left(\gamma +{\theta }_{s}\right)\left(\gamma \left(ab\left(-1+\alpha \right)-a\theta +b\left(b+2\theta \right)\left({c}_{0}+{w}_{f}\right)\right)+b\left(a\left(-a+2\alpha \right)+\left(b+2\theta \right)\left({t}_{d}-{w}_{d}+{w}_{f}\right)\right){\theta }_{s}\right)+{\left(-{cs}_{f}\left(1+{t}_{f}\right)+{w}_{f}\right)}^{2}{\left(\gamma +{\theta }_{s}\right)}^{2}\left({\gamma }^{2}\left(b+\theta \right)+2b{\theta }_{s}\left(\gamma +{\theta }_{s}\right)))\right)\right)$$
(65)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharaji Manouchehrabadi, M., Yaghoubi, S. Comparing supply-side and demand-side policies in the solar cell supply chain under competitive circumstances: a case study. Environ Sci Pollut Res 30, 477–500 (2023). https://doi.org/10.1007/s11356-022-21946-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21946-9

Keywords

Navigation