Skip to main content
Log in

Hydrogeochemistry and stable isotopes in radon-rich thermal waters of Belokurikha (Altai, Russia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The first integrated isotope and chemistry results have been obtained for radon-rich thermal waters from the Belokurikha field which are used at a large spa resort in Altai, Russia. The waters reside in an unconfined aquifer composed of Quaternary soft sediments and in a confined (artesian) aquifer of monolithic to weathered Upper Paleozoic granites. The waters belong to three geochemical groups: low-radon nitrogen-silicic interstitial waters in weathered Paleozoic granites; groundwaters of REE-enriched and background compositions; surface waters of the Belokurikha River. The interstitial waters in granites have HCO3-SO4 Na and SO4-HCO3 Na major-ion chemistry, total salinity from 198 to 257 mg/L, pH = 8.6–9.6, silica contents of 19.8 to 24.6 mg/L, and 222Rn activity from 160 to 360 Bq/L (290 Bq/L on average). Judging by their oxygen and hydrogen (deuterium) isotope compositions (−17.5 to −14.2 ‰ and −126.9 to −102.7 ‰, respectively), the Belokurikha aquifers recharge with infiltrating meteoric water, especially the winter precipitation. The carbon isotope composition of dissolved inorganic carbon (−9.7 to −25.6 ‰ δ13СDIC) corresponds to biogenic origin. Comparison of radon-rich mineral waters from different areas of southern Siberia shows that the change from oxidized to reduced environments leads to 232Th/238U increase from 4.20∙10−5–7.39∙10−2 to 0.0022–26, respectively, with an intermediate range of 2.63∙10−5–0.20 in transitional conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Data availability

All data are presented in tables and plots.

References

  • Abu-Khader MM, Shawaqfeh AT, Naddaf Z, Maity JP, Bhattacharya P (2018) Radon in the groundwater in the Amman-Zarqa Basin and related environments in Jordan. Groundw Sustain Dev 7:73–81. https://doi.org/10.1016/j.gsd.2018.03.009

    Article  Google Scholar 

  • Bakhur AE (2018) Interpreting technogenic and nontechnogenic radioactive anomalies in environmental objects. Prosp Protect Min Resour 7:58–62 (in Russian)

    Google Scholar 

  • Beitollahi M, Ghiassi-Nejad M, Esmaeli A, Dunker R (2007) Radiological studies in the hot spring region of Mahallat, central Iran. Radiat Prot Dosim 123(4):505–508. https://doi.org/10.1093/rpd/ncl524

    Article  CAS  Google Scholar 

  • Bertolo A, Bigliotto C (2004) Radon concentration in waters of geothermal Euganean basin-Veneto, Italy. Radiat Prot Dosim 111(4):355–358. https://doi.org/10.1093/rpd/nch053

    Article  CAS  Google Scholar 

  • Böhm C (2002) Radon im Wasser–Uberblick für den Kanton Graubünden. Jahresbericht Naturforschende Gesellschaft Graubünden 111:49–79. https://doi.org/10.5169/seals-594820

    Article  Google Scholar 

  • Buslov MM, Gen H, Travin AV, Otgonbaatar D, Kulikova AV, Chen Ming Glorie S, Semakov NN, Rubanova ES, Abildaeva MA, Voitishek EE, Trofimova DA (2013) Tectonics and geodynamics of Gorny Altai and adjacent structures of the Altai-Sayan folded area. Russ Geol Geophys 54(10):1600–1627. https://doi.org/10.1016/j.rgg.2013.09.009

    Article  Google Scholar 

  • Chafouq D, Mandour AE, Elgettafi M, Himi M, Chouikri I, Casas A (2018) Hydrochemical and isotopic characterization of groundwater in the Ghis-Nekor plain (northern Morocco). J Afr Earth Sci 139:1–13. https://doi.org/10.1016/j.jafrearsci.2017.11.007

    Article  CAS  Google Scholar 

  • Chaudhuri H, Nisith KD, Bhandari RK, Sen P, Sinh B (2010) Radon activity measurements around Bakreswar thermal springs. Radiat Meas 45:143–146. https://doi.org/10.1016/j.radmeas.2009.11.039

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703. https://doi.org/10.1126/science.133.3465.1702

    Article  CAS  Google Scholar 

  • Das A, Krishnaswami S, Bhattacharya SK (2005) Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps India: sources of DIC and their magnitudes. Earth Planet Sci Lett 236(1–2):419–429. https://doi.org/10.1016/j.epsl.2005.05.009

    Article  CAS  Google Scholar 

  • Duenas C, Fernandez MC, Enraquez C, Carretero J, Liger E (1998) Natural radioactivity levels in Andalusian spas. Water Res 32(8):2271–2278. https://doi.org/10.1016/S0043-1354(97)00472-7

    Article  CAS  Google Scholar 

  • Eliseev VA (2010) Radon- and nitrogen-containing thermal waters of the Altai region. Questions of balneology physiotherapy and physical therapy 5:38–40. (in Russian)

  • El-Mezayen AM, Ibrahim EM, El-Feky MG, Omar SM, El-Shabasy AM, Taalab SA (2020) Physico–chemical conditions controlling the radionuclides mobilisation in various granitic environments. Int J Environ Anal Chem 1-17. https://doi.org/10.1080/03067319.2020.1729758

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4(5):213–224

    Article  CAS  Google Scholar 

  • Evans MJ, Derry LA, France–Lanord C (2008) Degassing of metamorphic carbon dioxide from the Nepal Himalaya. Geochem Geophys Geosyst 9(4):1–18. https://doi.org/10.1029/2007GC001796

    Article  CAS  Google Scholar 

  • Fan W, Hayes KF, Ellis BR (2018) Estimating Radium Activity in Shale Gas Produced Brine. Environ Sci Technol 52(18):10839–10847. https://doi.org/10.1021/acs.est.8b01587

    Article  CAS  Google Scholar 

  • Faraj T, Ragab A, Alfy ME (2020) Geochemical and hydrogeological factors influencing high levels of radium contamination in groundwater in arid regions. Environ Res 184(3):109303. https://doi.org/10.1016/j.envres.2020.109303

    Article  CAS  Google Scholar 

  • Ferronsky VI, Polyakov VA (2009). Isotope Systematics of the Earth's Hydrosphere. Nauchnyi Mir Moscow. (in Russian)

  • Gavrilkina SV (2016) Radon waters of the Ilmensky ridge. Top Prob Human Nat Sci 8(1):55–57 (in Rus)

    Google Scholar 

  • Gurler O, Akar U, Kahraman A, Yalçin S, Kaynak G, Gundogdu O (2010) Measurements of radon levels in thermal waters of Bursa, Turkey. Fresenius Environ Bull 19:3013–3017

    CAS  Google Scholar 

  • Gusev AI, Gusev NI, Tabakaeva EM (2008). Petrology and mineral potential of the Belokurikkha complex of the Altai. BPSU 193 pp. (in Russian)

  • Kopec BG, Feng X, Posmentier ES, Sonder LJ (2019) Seasonal deuterium excess variations of precipitation at Summit, Greenland, and their climatological significance. J Geophys Res Atmos 124:72–91. https://doi.org/10.1029/2018JD028750

    Article  CAS  Google Scholar 

  • Kopylova YuG, Guseva NV, Arakchaa KD, Khvashchevskaya AA, Mazurova IS, Ayunova OD, Oidup ChK, Rychkova KM (2016). Uranium and thorium in natural waters of the southeastern Altai-Sayan area in: radioactivity and radioactive elements in the human environment. Proc. V Intern. Conf. Tomsk Polytechnical University, V.S. Sobolev Institute of Geology and Mineralogy, Urangeo, Novosibirsk 339–345. (in Russian)

  • Krall L, Auqué-Sanz L, Garcia-Orellana J, Trezzi G, Tullborg E-L, Suksi J, Porcelli D, Andersson P (2019) Radium isotopes to trace uranium redox anomalies in anoxic Groundwater. Chem Geol 5. https://doi.org/10.1016/j.chemgeo.2019.119296

  • Marsac R, Réal F, Banik NL, Pedrot M, Pourret O, Vallet V (2017) Aqueous chemistry of Ce(IV): estimations using actinide analogues. Dalton Trans 46:13553–13561. https://doi.org/10.1039/C7DT02251D

    Article  CAS  Google Scholar 

  • Monged MHE, Hussein MT, Khater AEM (2018) Elemental and radiological aspects of geothermal springs and nearby soil and sediment of Al–Lith area: concentration and risk assessment. Environ Earth Sci 7:427. https://doi.org/10.1007/s12665-018-7602-4

    Article  CAS  Google Scholar 

  • Nelson S.T (2000). A simple practical methodology for routine VSMOW/SLAP normalization of water samples analysed by continuous flow methods. Rapid Commun. Mass Spectrometry 14:1044–1046. 10.1002/1097–0231(20000630)14:12%3C1044::AID–RCM987%3E3.0.CO;2–3

  • Newman CP, Poulson SR, Hanna B (2020) Regional isotopic investigation of evaporation and water-rock interaction in mine pit lakes in Nevada, USA. J Geochem Explor 210. https://doi.org/10.1016/j.gexplo.2019.106445

  • Novikov DA, Dultsev FF, Chernykh AV (2020) Role of water-rock interactions in the formation of the composition of radon waters of the Zaeltsovsky field (the southern part of West Siberia). J Phys Conf Ser 1451. https://doi.org/10.1088/1742-6596/1451/1/012007

  • Novikov DA, Dultsev FF, Kamenova–Totzeva R, Korneeva TV (2021a) Hydrogeological conditions and hydrogeochemistry of radon waters in the Zaeltsovsky–Mochishche zone of Novosibirk, Russia. Environ Earth Sci 80(6):216. https://doi.org/10.1007/s12665-021-09486-w

    Article  CAS  Google Scholar 

  • Novikov DA, Dultsev FF, Sukhorukova AF, Maksimova AA, Chernykh AV, Derkachyov AS (2021b) Monitoring of radionuclides in the natural waters of Novosibirsk Russia. Groundw Sustain Dev 15. https://doi.org/10.1016/j.gsd.2021.100674

  • Novikov DA, Kopylova YG, Vakulenko LG, Sukhorukova AF, Pyrayev AN, Maksimova AA, Dultsev FF, Chernykh AV (2021c). Isotope geochemical features of occurrence of low–radon waters «Inskie springs» (south–western Siberia). Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering 332(3):135–145. (in Russian) https://doi.org/10.18799/24131830/2021/3/3109

  • Novikov DA, Korneeva TV (2019) Microelements in radon waters of the Zaelsovsky field (the southern part of West Siberia). J Phys Conf Ser 1172. https://doi.org/10.1088/1742-6596/1172/1/012096

  • Ogawa Y, Ishiyama D, Shikazono N, Iwane K, Hoshino T, Kajiwara M, Tsuchiya N, Saini–Eiduka B, Wood SA (2019). Fractionation of rare earth elements (REEs) and actinides (U and Th) originating from acid thermal water during artificial and natural neutralization processes of surface waters. Geochim Cosmochim Acta 249:247–262. https://doi.org/10.1016/j.gca.2019.01.030

  • Orgiliyanov AI, Arakchaa KD, Kryukova IG, Badminov PS, Soldatova EA, Shestakova AV, Rychkova KM (2017). Mineral waters of the Todzha area Tyva Republic in: spa resources and natural recreational areas of Tyva and its surroundings. Balneology and Health Care Experience and Prospects. Proc. III Intern. Conf 147–156. (in Russian)

  • Perelman AI (1975). Landscape Geochemistry. Vysshaya Shkola Moscow 341 pp. (in Russian)

  • Possokhov EV, Tolstikhin NI (1977). Mineral waters (medicinal industrial energy). Nedra Leningrad. (in Russian)

  • Rama R, Vaughanb J, Etschmanna B, Brugger J (2019) The aqueous chemistry of polonium (Po) in environmental and anthropogenic processes. J Hazard Mater 380. https://doi.org/10.1016/j.jhazmat.2019.06.002

  • Sanjuan B, Millot R, Innocent CH, Dezayes CH, Scheiber J, Brach M (2016) Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chem Geol 428:27–47. https://doi.org/10.1016/2Fj.chemgeo.2016.02.021

    Article  CAS  Google Scholar 

  • Shcherbakov A.V (1968). Chemistry of Thermal Waters. Nauka Moscow. (in Russian)

  • Shvartsev S.L (1998). Water Chemistry in Zones of Supergene Alteration. Nedra Moscow. (in Russian)

  • Vernadsky V.I (1933). The History of Minerals in the Crust. The History of Natural Waters. Goskhimtekhizdat Leningrad. (in Russian)

  • Voronov AN (2004) Radon-rich waters in Russia. Environ Geol 46:630–634. https://doi.org/10.1007/s00254-003-0857-3

    Article  CAS  Google Scholar 

  • Yu C, Berger T, Drake H, Song Z, Peltola P, Åström ME (2019) Geochemical controls on dispersion of U and Th in Quaternary deposits stream water and aquatic plants in an area with a granite pluton. Sci Total Environ 663:16–28. https://doi.org/10.1016/j.scitotenv.2019.01.293

    Article  CAS  Google Scholar 

  • Zamana LV, Askarov SA (2011) Physicochemical parameters of nitrogen hot springs in the Kura River basin (southeastern Transbaikalia). Bull ZabGGPU 1(36):173–178

    Google Scholar 

  • Zebracki M, Cagnat X, Gairoard S, Cariou N, Eyrolle–Boyer F, Boulet B, Antonelli C (2017) U isotopes distribution in the Lower Rhone River and its implication on radionuclides disequilibrium within the decay series. J Environ Radioact 178–179:279–289. https://doi.org/10.1016/j.jenvrad.2017.09.004

    Article  CAS  Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59(1):107–114. https://doi.org/10.1016/0016-7037(95)91550-D

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Education of the Russian Federation under Projects No. FWZZ-2022-0014 and No.FSWW-0022-2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Albina A. Khvaschevskaya, Yulia G. Kopylova, Dmitry A. Novikov, Aleksandr N. Pyryaev, Anastasia A. Maksimova, Anton S. Derkachev, Fedor F. Dultsev, Anatoliy V. Chernykh, and Daria V. Purgina. The first draft of the manuscript was written by Dmitry A. Novikov and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fedor F. Dultsev.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Publication has been approved by all co-authors

Competing interests

The authors declare no competing interests

Additional information

Responsible Editor: Georg Steinhauser

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, D.A., Khvaschevskaya, A.A., Kopylova, Y.G. et al. Hydrogeochemistry and stable isotopes in radon-rich thermal waters of Belokurikha (Altai, Russia). Environ Sci Pollut Res 29, 83081–83098 (2022). https://doi.org/10.1007/s11356-022-21640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21640-w

Keywords

Navigation