Skip to main content

Advertisement

Log in

Assessment of groundwater vulnerability in coastal zone using SI method and GIS: case study of Bouficha aquifer (northeast Tunisia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nowadays, groundwater is under stress due to contamination, over-exploitation, seawater intrusion, climate change, etc. The groundwater contamination is the major problem which can engender the total deterioration of the aquifer. The groundwater vulnerability assessment may contribute to predicate and to delimitate the areas affected by contamination or any future pollution. This research aims to zoning the potential pollution of the Bouficha shallow aquifer, located in the northeast Tunisia, using the SI model and GIS. Five parameters are presented in the SI model: depth to groundwater (D), recharge (R), aquifer media (A), topography (T), and land use (LU). The different parameters were collected from diverse sources for assess groundwater vulnerability. The net recharge map was generated using GIS-based multi-criteria analysis method based on different parameters (slope, lithology, LU, soil, and drainage density). The generated vulnerability map shows three vulnerability classes: low vulnerability (< 45), moderate vulnerability (45–64), and high vulnerability (64–84) which represent 3.14%, 76.8%, and 20.06% of the total area, respectively. The SI vulnerability represent a moderate positive correlation with the measured nitrate concentrations (R2 = 0.76). The sensitivity analysis shows that the land use parameter is the most influential parameter for groundwater vulnerability in BFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Albuquerque MTD, Sanz G, Oliveira SF, Martínez-Alegría R, Antunes IMHR (2013) Spatio-temporal groundwater vulnerability assessment - a coupled remote sensing and GIS approach for historical land cover reconstruction. Water Resour Manage 27:4509–4526. https://doi.org/10.1007/s11269-013-0422-0

    Article  Google Scholar 

  • Aller L, Bennet T, Lehr JH, Petty RJ, Hacket G (1987) Drastic: a standardised system for evaluating ground water pollution potential using hydrogeological settings (EPA 600/2–87). Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, États-Unis, p 455

  • Ameur M, Aouiti S, Hamzaoui-Azaza F, Cheikha LB, Gueddari M (2021) Vulnerability assessment, transport modeling and simulation of nitrate in groundwater using SI method and modflow-MT3DMS software: case of Sminja aquifer, Tunisia. Environ Earth Sci 80:220. https://doi.org/10.1007/s12665-021-09491-z

    Article  CAS  Google Scholar 

  • Aydi, W., Saidi, S., Chalbaoui, M. et al. (2013) Evaluation of the Groundwater Vulnerability to Pollution Using an Intrinsic and a Specific Method in a GIS Environment: Application to the Plain of Sidi Bouzid (Central Tunisia). Arab J Sci Eng 38:1815–1831. https://doi.org/10.1007/s13369-012-0417-9

  • Anane M, Abidi B, Lachaal F et al. (2013) GIS-based DRASTIC, Pesticide DRASTIC and the susceptibility index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrogeol J 21:715–731. https://doi.org/10.1007/s10040-013-0952-9

  • Aouiti S (2022) Hydro-geochemical modeling of Hajeb Layoun Jelma basin (Central Tunisia). Joint Doctoral Thesis in Geology, University Tunis El Manar, p 270

  • Aouiti S, Hamzaoui Azaza F, El Melki F, Hamdi M, Celico F, Zammouri M (2021) Groundwater quality assessment for different uses using various water quality indices in semi-arid region of central Tunisia. Environ Sci Pollut Res 28:46669–46691. https://doi.org/10.1007/s11356-020-11149-5

    Article  CAS  Google Scholar 

  • Asadi P, Ataie-Ashtiani B, Beheshti A (2017) Vulnerability assessment of urban groundwater resources to nitrate: the case study of Mashhad, Iran. Environ Earth Sci 76, 41. https://doi.org/10.1007/s12665-016-6357-z

  • Ayadi W, Saidi S, Chalbaoui M, Chaibi S, Ben Dhia H (2012) Evaluation of the groundwater vulnerability to pollution using an intrinsic and a specific method in a GIS environment: application to the plain of Sidi Bouzid (Central Tunisia). Arab J Sci Eng 38:1815–1831. https://doi.org/10.1007/s13369-012-0417-9

    Article  CAS  Google Scholar 

  • Belhouchette H, Boughariou E, Larayedh O, Bouri S (2021) Groundwater quality evaluation and human health risks assessment using the WQI, NPI and HQnitrate models: case of the Sfax intermediate aquifer, Sahel Tunisia. Environ Geochem Health. https://doi.org/10.1007/s10653-021-01053-3

    Article  Google Scholar 

  • Chachadi AG, Lobo-Ferreira JP (2005) Assessing aquifer vulnerability to sea-water intrusion using GALDIT method: part 2-GALDIT indicators description. The fourthInter-Celtic Colloquium on Hydrology and Management of Water Resources, Guimaraes, Portugal, July 11–14

  • CRDA (2000) Carte agricole du gouvernorat de Sousse. Commissariat Régionale de Développement Agricole, Tunisia

  • Civita M (1994) La carte della vulnerabilità degli acquiferi all’inquiamento: Teoria e pratica. Pitagora (Éditeurs), Bologna, Italie, p 325

  • DGRE (1980–2015) Situation de l’exploitation des nappes phréatiques de 1980 à 2015. Direction Générale des Ressources en Eau, Tunisia

  • DGRE (2017) Piezométrie des nappes phréatiques et profondes de 2017. Direction Générale des Ressources en Eau, Tunisia

  • El Amri A, Manassri S, Nasri N, Nsir H, Majdoub R (2022) Nitrate concentration analysis and prediction in a shallow aquifer in central-eastern Tunisia using artificial neural network and time series modelling. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-18174-y

    Article  Google Scholar 

  • FAO (1967) La défense des terres cultivées contre l’érosion hydraulique. Rome, Italie : FAO. 202p. Napolitano P, Fabbri AG (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. In: Proceedings of the Vienna conference on HydroGIS 96: Application of geographic information systems in hydrology and water resources management, IAHS. 235:559–566

  • Foster SSD (1998) Groundwater recharge and pollution vulnerability of British aquifers: a critical review. In: Robins NS (Ed) Groundwater pollution, aquifer recharge and vulnerability. Geological Society, London, Special Publications 130:7–22.

  • Jarray H, Zammouri M, Ouessar M, Zerrim A, Yahyaoui H (2017) GIS based DRASTIC model for groundwater vulnerability assessment: case study of the shallow mio-plio-quaternary aquifer (Southeastern Tunisia). Water Resour 44:595–603. https://doi.org/10.1134/S0097807817040066

    Article  CAS  Google Scholar 

  • Hamzaoui-Azaza F, Tlili-Zrelli B, Bouhlila R, Gueddari M (2013) An integrated statistical methods and modeling minerals-water interaction to identifying hydrochemical processes in groundwater in southern Tunisia. Chem Speciat Bioavailab 25:165–178. https://doi.org/10.3184/095422913X13785679075430

    Article  CAS  Google Scholar 

  • Hamzaoui-Azaza F, Ameur M, Chaouch R, Ben Cheikha L, Gueddari M, Carrillo-Rivera JJ (2020) Assessment of groundwater quality based on GIS and geochemical methods: coastal aquifer of Bouficha (North-Eastern Tunisia). J Coast Conserv 24, 45. https://doi.org/10.1007/s11852-020-00762-8

  • Healy RW (2010) Estimating groundwater recharge. Cambridge University Press hydrological cycle: principles and applications, Vol4: Groundwater. IAEA, Vienna: pp 256

  • Hezzi I (2014) Geophysical characterization of the Sahel platform, northeastern Tunisia and its geodynamic consequences. Geophysics. Rennes 1 University. French

  • Haouchine A, Abderrahmane B, Haouchine FZ, Nedjaï R (2011) Cartographie de la recharge potentielle des aquifères en zone aride. Cas de la plaine d’eloutaya, Biskra-Algérie, euro journal 45,4. p.1–13

  • Gaaloul N, Cheng AH-D (2003) Hydrogeological and hydrochemical investigation of coastal aquifers in Tunisia-Crisis in overexploitation and salinization. Second International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management. Merida, Mexico, March 30-April 2, 2003

  • Ghouili N, Hamzaoui-Azaza F, Zammouri M, Zaghrarni MF, Jarraya Horriche F, Condesso de Melo MT (2018) Groundwater quality assessment of the Takelsa phreatic aquifer (northeastern Tunisia) using geochemical and statistical methods: implications for aquifer management and end-users. Environ Sci Pollut 25:36306–36327. https://doi.org/10.1007/s11356-018-3473-1

    Article  CAS  Google Scholar 

  • Ghouili N, Jarraya-Horriche F, Hamzaoui-Azaza F, Zaghrarni MF, Ribeiro L, Zammouri M (2021) Groundwater vulnerability mapping using the susceptibility index (SI) method: case study of Takelsa aquifer, Northeastern Tunisia, JAES,173,2021,104035,ISSN1464343X. https://doi.org/10.1016/j.jafrearsci.2020.104035

  • Karunanidhi D, Aravinthasamy P, Subramani T, Kumar M (2021) Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: a case study from Texvalley (Tiruppur region) of India. Chemosphere 265:129083. https://doi.org/10.1016/j.chemosphere.2020.129083

    Article  CAS  Google Scholar 

  • Lodwick WA, Monson W, Svoboda L (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int. J. Geogr. Inf. Syst. 4(4):413–428

  • Mallik S, Bhowmik T, Mishra U, Paul N (2021) Local scale groundwater vulnerability assessment with an improved DRASTIC model. Nat Resour Res 30:2145–2160. https://doi.org/10.1007/s11053-021-09839-z

    Article  Google Scholar 

  • Margat J (1968) Vulnérabilité des nappes d’eau souterraine à la pollution « Groundwater vulnerability to contamination ». Bases de la cartographie, 68 SGL 198 HYD, (Doc.) BRGM, Orleans

  • Mnassri S, Dridi L, Lucas YB, Schäfer G, Hachicha M, Majdoub R (2018) Identifying the origin of groundwater salinisation in the Sidi El Hani basin in central-eastern, Tunisia. J Afr Earth Sci 147:443–449. https://doi.org/10.1016/j.jafrearsci.2018.07.004

    Article  CAS  Google Scholar 

  • Murthy KSR (2000) Ground water potential in a semi-arid region of Andhra Pradesh-a geographical information system approach. Int J Remote Sens 21(9):1867–1884. https://doi.org/10.1080/014311600209788

    Article  Google Scholar 

  • Noori R, Hahremanzadeh H, Kløve B, Adamowski JF, Baghvand A (2019) Modified-DRASTIC, modified-SINTACS and SI methods for groundwater vulnerability assessment in the southern Tehran aquifer. J Environ Sci Health Toxicol Hazard Subst Environ Eng. https://doi.org/10.1080/10934529.2018.1537728

    Article  Google Scholar 

  • Ribeiro L (2000) A new index of aquifer susceptibility to agricultural pollution. international report. ER-SHA/CVRM. Instituto Superior Tenico, Lisbon. Portugal, p. 12. https://doi.org/10.1016/j.scitotenv.2016.09.004

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98

    Google Scholar 

  • Samara T, Yoxas G (2013) Drastic method to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. Bull Geol Soc Greece 47:990–991. https://doi.org/10.12681/bgsg.1113

    Article  Google Scholar 

  • Safavi HR, Esfahani MK, Zamani AR (2014) Integrated index for assessment of vulnerability to drought, case study: Zayandehrood River Basin, Iran. Water Resour Manage 28:1671–1688. https://doi.org/10.1007/s11269-014-0576-4

    Article  Google Scholar 

  • Saranya T, Saravanan S (2022) Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-022-03944-z

    Article  Google Scholar 

  • Sarkar M, Pal SC (2021) Application of DRASTIC and modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. J Indian Soc Remote Sens 49:1201–1219. https://doi.org/10.1007/s12524-020-01176-7

    Article  Google Scholar 

  • Senthilkumar P, Nithya J, Babu SS (2014) Assessment of groundwater vulnerability in Krishnagiri District, Tamil Nadu, India using DRASTIC approach. J. Innov. Res. Sci. Eng. Technol., 3 (2014), pp. 544–553.

    Google Scholar 

  • Schnebelen N, Platel J-P, Le Nindre YM, Baudry D, Hoarau A, Dufour P, Benhammouda S (2002) Gestion des eaux souterraines en Aquitaine. Année 5. Opération sectorielle – protection de la nappe de l'Oligocène en région bordelaise. Nouvelles connaissances hydrogéologiques. Cartographie de la vulnérabilité aux pollutions. BRGM/RP-51178-FR

  • Shakoor A, Khan ZM, Farid HU, Sultan M, Ahmad I, AhmadMahmood NMH, Ali MU (2020) Delineation of regional groundwater vulnerability using DRASTIC model for agricultural application in Pakistan. Arab J Geosci 13:195. https://doi.org/10.1007/s12517-020-5161-y

    Article  CAS  Google Scholar 

  • Shrestha S, Kafle R, Pandey VP (2017) Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Science of The Total Environment 575:779–790. https://doi.org/10.1016/j.scitotenv.2016.09.141

  • Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinization and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99. https://doi.org/10.1007/s10040-004-0396-3

    Article  CAS  Google Scholar 

  • Troud N, Hamzaoui-Azaza F, Tzoraki O, Melki F, Zammouri M (2020) Assessment of groundwater quality for drinking purpose with special emphasis on salinity and nitrate contamination in the shallow aquifer of Guenniche (Northern Tunisia). Environ Monit Assess 192:641. https://doi.org/10.1007/s10661-020-08584-9

    Article  CAS  Google Scholar 

  • Van Beynen PE, Niedzielski MA, Bialkowska-Jelinska E, Alsharif K, Matusick J (2012) Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida, Applied Geography 32:868–877. https://doi.org/10.1016/j.apgeog.2011.09.005

Download references

Funding

This research is conducted in the context of MEDSAL Project © (www.medsal.eu), which is part of the PRIMA Programme supported by the European Union’s Horizon 2020 Research and Innovation Programme and funded by the national funding agency of MHESR (grant number 2018–12).

Author information

Authors and Affiliations

Authors

Contributions

Soumaya Aouiti and Madiha Arfaoui were responsible for lead, conceptualisation, investigation, methodology, formal analysis. Soumaya Aouiti was responsible for manuscript redaction. Fadoua Hamzaoui-Azaza was responsible for conceptualization, formal analysis, and visualization. Mounira Zammouri was responsible for conceptualisation, validation, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soumaya Aouiti.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arfaoui, M., Aouiti, S., Azaza, F.H. et al. Assessment of groundwater vulnerability in coastal zone using SI method and GIS: case study of Bouficha aquifer (northeast Tunisia). Environ Sci Pollut Res 29, 75699–75715 (2022). https://doi.org/10.1007/s11356-022-21053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-21053-9

Keywords

Navigation