Skip to main content

Advertisement

Log in

Predicting wetland area and water depth in Barind plain of India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study attempts to delineate wetlands in the lower Tangon river basin in the Barind flood plain region using spectral water body extraction indices. The main objectives of this present study are simulating and predicting wetland areas using the advanced artificial neural network-based cellular automata (ANN-CA) model and water depth using statistical (adaptive exponential smoothing) as well as advanced machine learning algorithms such as Bagging, Random Subspace, Random Forest, Support vector machine, etc. The result shows that RmNDWI and NDWI are the representative wetland delineating indices. NDWI map was used for water depth prediction. Regarding the prediction of wetland areas, a remarkable decline is likely to be identified in the upcoming two decades. The small wetland patches away from the master stream are expected to dry out during the predicted period, where the major wetland patches nearer to the master stream with greater water depth are rather sustainable, but their depth of water is predicted to be reduced in the next decades. All models show satisfactory performance for wetland depth mapping, but the random subspace model was identified as the best-suited water depth predicting method with an acceptable prediction accuracy (root mean square error <0.34 in all the years) and the machine learning models explored better result than adaptive exponential smoothing. This recent study will be very helpful for the policymakers for managing wetland landscape as well as the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data and materials related to the manuscript are published with the paper and available from the corresponding author upon request (swadespal2017@gmail.com).

References

  • Acreman MC, Fisher J, Stratford CJ, Mould DJ, Mountford JO (2007) Hydrological science and wetland restoration: some case studies from Europe. Hydrol Earth Syst Sci 11(1):158–169

    Article  CAS  Google Scholar 

  • Arabameri A, Chen W, Blaschke T, Tiefenbacher JP, Pradhan B, Tien Bui D (2020) Gully head-cut distribution modeling using machine learning methods—a case study of nwiran. Water 12(1):16

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Chakraborty R, Talukdar S, Basu T, Pal S (2018) Habitat identity crisis caused by the riparian wetland squeeze in Tangon River Basin, Barind Region, India. Spat Inf Res 26(5):507–516

    Article  Google Scholar 

  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245

    Article  Google Scholar 

  • Chen K, Peng Y, Lu S, Lin B, Li X (2021) Bagging based ensemble learning approaches for modeling the emission of PCDD/Fs from municipal solid waste incinerators. Chemosphere 274:129802

  • Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad BB (2019) Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol 575:864–873

    Article  Google Scholar 

  • Chen W, Shahabi H, Zhang S, Khosravi K, Shirzadi A, Chapi K et al (2018) Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Appl Sci 8(12):2540

    Article  Google Scholar 

  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096

    Article  CAS  Google Scholar 

  • Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • Costanza R, De Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I et al (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158

    Article  Google Scholar 

  • Das K (2017) NDVI and NDWI based change detection analysis of Bordoibam Beelmukh wetlandscape, Assam using IRS LISS III data. ADBU J Eng Technol 6(2):00602612

  • Das RT, Pal S (2017) Exploring geospatial changes of wetland in different hydrological paradigms using water presence frequency approach in Barind Tract of West Bengal. Spat Inf Res 25(3):467–479

    Article  Google Scholar 

  • Debanshi S, Pal S (2020a) Effects of water richness and seasonality on atmospheric methane emission from the wetlands of deltaic environment. Ecol Indic 118:106767

    Article  CAS  Google Scholar 

  • Debanshi S, Pal S (2020b) Wetland delineation simulation and prediction in deltaic landscape. Ecol Indic 108:105757

    Article  Google Scholar 

  • de Oliveira EM, Oliveira FLC (2018) Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 144:776–788

    Article  Google Scholar 

  • Donchyts G, Baart F, Winsemius H, Gorelick N, Kwadijk J, Van De Giesen N (2016) Earth’s surface water change over the past 30 years. Nat Clim Chang 6(9):810–813

    Article  Google Scholar 

  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z et al (2020) Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides 17(3):641–658

    Article  Google Scholar 

  • Du L, McCarty GW, Zhang X, Lang MW, Vanderhoof MK, Li X et al (2020) Mapping forested wetland inundation in the Delmarva Peninsula, USA using deep convolutional neural networks. Remote Sens 12(4):644

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1995) Cross-validation and the bootstrap: estimating the error rate of a prediction rule. Stanford University, Division of Biostatistics

    Google Scholar 

  • Ferentinos KP (2018) Deep learning models for plant disease detection and diagnosis. Comput Electron Agric 145:311–318

    Article  Google Scholar 

  • Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35

    Article  Google Scholar 

  • Gómez-Baggethun E, Tudor M, Doroftei M, Covaliov S, Năstase A, Onără DF et al (2019) Changes in ecosystem services from wetland loss and restoration: an ecosystem assessment of the Danube Delta (1960–2010). Ecosyst Serv 39:100965

    Article  Google Scholar 

  • Hamza F, Selmi S (2018) Diversity of waterbirds wintering in Douz wetlands (south Tunisia): factors affecting wetland occupancy and species richness. Ecol Res 33(5):917–925

    Article  Google Scholar 

  • Helmstetter A, Werner MJ (2014) Adaptive smoothing of seismicity in time, space, and magnitude for time-dependent earthquake forecasts for California. Bull Seismol Soc Am 104(2):809–822

    Article  Google Scholar 

  • Hird JN, DeLancey ER, McDermid GJ, Kariyeva J (2017) Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens 9(12):1315

    Article  Google Scholar 

  • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  • Hu T, Liu J, Zheng G, Zhang D, Huang K (2020) Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. Land Degrad Dev 31(1):65–80

    Article  Google Scholar 

  • Islam ARMT, Talukdar S, Mahato S, Ziaul S, Eibek KU, Akhter S et al (2021) Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh. Environmental Science and Pollution Research, pp 1–22

    Google Scholar 

  • OECD, IUCN (1996) Guidelines for aid agencies for improved conservation and sustainable use of tropical and sub-tropical wetlands. OECD, Paris

  • Johnston CA, McIntyre NE (2019) Effects of cropland encroachment on prairie pothole wetlands: numbers, density, size, shape, and structural connectivity. Landsc Ecol 34(4):827–841

    Article  Google Scholar 

  • Kadavi PR, Lee CW, Lee S (2018) Application of ensemble-based machine learning models to landslide susceptibility mapping. Remote Sens 10(8):1252

    Article  Google Scholar 

  • Kaplan G, Avdan U (2017) Mapping and monitoring wetlands using SENTINEL-2 satellite imagery. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, p 4

    Google Scholar 

  • Kaplan G, Avdan U (2018) Monthly analysis of wetlands dynamics using remote sensing data. ISPRS Int J Geo Inf 7(10):411

    Article  Google Scholar 

  • Keddy P, Gaudet C, Fraser LH (2000) Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants. J Ecol 88(3):413–423

    Article  Google Scholar 

  • Khatun R, Pal S (2021) Effects of hydrological modification on fish habitability in riparian flood plain river basin. Ecol Inform 65:101398

    Article  Google Scholar 

  • Khatun R, Talukdar S, Pal S, Kundu S (2021) Measuring dam induced alteration in water richness and eco-hydrological deficit in flood plain wetland. J Environ Manag 285:112157

    Article  Google Scholar 

  • Kim JC, Lee S, Jung HS, Lee S (2018) Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang. Korea Geocarto international 33(9):1000–1015

    Article  Google Scholar 

  • Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K (2019) Auto-WEKA: automatic model selection and hyperparameter optimization in WEKA. In: Automated Machine Learning. Springer, Cham, pp 81–95

    Chapter  Google Scholar 

  • Kundu S, Pal S, Talukdar S, Mandal I (2021) Impact of wetland fragmentation due to damming on the linkages between water richness and ecosystem services. Environ Sci Pollut Res 28(36):50266–50285. https://doi.org/10.1007/s11356-021-14123-x

    Article  Google Scholar 

  • Lantz SM, Gawlik DE, Cook MI (2011) The effects of water depth and emergent vegetation on foraging success and habitat selection of wading birds in the Everglades. Waterbirds: The International Journal of Waterbird Biology 34(4):439–447

  • Leong WC, Kelani RO, Ahmad Z (2020) Prediction of air pollution index (API) using support vector machine (SVM). J Environ Chem Eng 8(3):103208

    Article  CAS  Google Scholar 

  • Li N, Lu D, Wu M, Zhang Y, Lu L (2018) Coastal wetland classification with multiseasonal high-spatial resolution satellite imagery. Int J Remote Sens 39(23):8963–8983

    Article  Google Scholar 

  • Li H, Li T, Sun W, Zhang W, Zhang Q, Yu L et al (2021) Degradation of wetlands on the Qinghai-Tibetan Plateau causing a loss in soil organic carbon in 1966–2016. Plant Soil 467(1):253–265. https://doi.org/10.1007/s11104-021-05086-6

    Article  CAS  Google Scholar 

  • Lin Q, Zhang K, Shen J, Liu E (2019) Integrating long-term dynamics of ecosystem services into restoration and management of large shallow lakes. Sci Total Environ 671:66–75

    Article  CAS  Google Scholar 

  • Liu T, Abd-Elrahman A, Morton J, Wilhelm VL (2018) Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GIsci Remote Sens 55(2):243–264

    Article  Google Scholar 

  • MA (Millennium Ecosystem Assessment), (2005) Ecosystems and human well-being: synthesis. Island Press/World Resources Institute, Washington, DC.

  • Ma R, Ban J, Wang Q, Zhang Y, Yang Y, He MZ et al (2021) Random forest model based fine scale spatiotemporal O3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017. Environ Pollut 276:116635

    Article  CAS  Google Scholar 

  • Mahdianpari M, Jafarzadeh H, Granger JE, Mohammadimanesh F, Brisco B, Salehi B et al (2020) A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: a case study in Newfoundland. GIsci Remote Sens 57(8):1102–1124

    Article  Google Scholar 

  • Mandal I, Pal S (2020) Modelling human health vulnerability using different machine learning algorithms in stone quarrying and crushing areas of Dwarka river Basin, Eastern India. Adv Space Res 66(6):1351–1371

    Article  Google Scholar 

  • Mao X, Zhang F, Wang G, Chu Y, Yuan K (2021) Semi-random subspace with Bi-GRU: Fusing statistical and deep representation features for bearing fault diagnosis. Measurement 173:108603

    Article  Google Scholar 

  • Martins VS, Kaleita AL, Gelder BK, Nagel GW, Maciel DA (2020) Deep neural network for complex open-water wetland mapping using high-resolution WorldView-3 and airborne LiDAR data. Int J Appl Earth Obs Geoinf 93:102215

    Google Scholar 

  • McCarthy MJ, Radabaugh KR, Moyer RP, Muller-Karger FE (2018) Enabling efficient, large-scale high-spatial resolution wetland mapping using satellites. Remote Sens Environ 208:189–201

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432

    Article  Google Scholar 

  • Mi J, Fan L, Duan X, Qiu Y (2018) Short-term power load forecasting method based on improved exponential smoothing grey model. Math Probl Eng 2018. https://doi.org/10.1155/2018/3894723

  • Mleczko M, Mróz M, Fitrzyk M (2021) Riparian wetland mapping and inundation monitoring using amplitude and bistatic coherence data from the TanDEM-X Mission. IEEE J Sel Top Appl Earth Obs Remote Sens 14:2432–2444

    Article  Google Scholar 

  • Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistic. Ecol Model 62(4):275–293

    Article  Google Scholar 

  • Naghibi SA, Ahmadi K, Daneshi A (2017) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manag 31(9):2761–2775

    Article  Google Scholar 

  • Ngoc DD, Loisel H, Jamet C, Vantrepotte V, Duforêt-Gaurier L, Minh CD, Mangin A (2019) Coastal and inland water pixels extraction algorithm (WiPE) from spectral shape analysis and HSV transformation applied to Landsat 8 OLI and Sentinel-2 MSI. Remote Sens Environ 223:208–228

    Article  Google Scholar 

  • Nhu VH, Khosravi K, Cooper JR, Karimi M, Kisi O, Pham BT, Lyu Z (2020) Monthly suspended sediment load prediction using artificial intelligence: testing of a new random subspace method. Hydrol Sci J 65(12):2116–2127

    Article  Google Scholar 

  • Ouma D (2020) The influence of flooding on fish species diversity and fisheries patterns in the floodplain lakes of Lower Tana River, Kenya (Doctoral dissertation. University of Nairobi)

    Google Scholar 

  • Pal S, Saha TK (2018) Identifying dam-induced wetland changes using an inundation frequency approach: The case of the Atreyee River basin of Indo-Bangladesh. Ecohydrol Hydrobiol 18(1):66–81

    Article  Google Scholar 

  • Pal S, Sarda R (2020) Damming effects on the degree of hydrological alteration and stability of wetland in lower Atreyee River basin. Ecol Indic 116:106542

    Article  Google Scholar 

  • Pal S, Singha P (2021) Analyzing sensitivity of flood susceptible model in a flood plain river basin. Geocarto Int 1–34. https://doi.org/10.1080/10106049.2021.1967464

  • Pal S, Talukdar S (2018) Application of frequency ratio and logistic regression models for assessing physical wetland vulnerability in Punarbhaba river basin of Indo-Bangladesh. Hum Ecol Risk Assess 24(5):1291–1311

    Article  CAS  Google Scholar 

  • Pal S, Saha A, Das T (2019) Analysis of flow modifications and stress in the Tangon river basin of the Barind tract. Int J River Basin Manag 17(3):301–321

    Article  Google Scholar 

  • Pal S, Talukdar S, Ghosh R (2020) Damming effect on habitat quality of riparian corridor. Ecol Indic 114:106300

    Article  Google Scholar 

  • Paul S, Pal S (2020) Predicting wetland area and water depth of Ganges moribund deltaic parts of India. Remote Sens Appl: Soc Environ 19:100338

    Google Scholar 

  • Pham BT, Bui DT, Prakash I (2018) Bagging based support vector machines for spatial prediction of landslides. Environ Earth Sci 77(4):1–17

    Article  Google Scholar 

  • Piao Y, Piao M, Jin CH, Shon HS, Chung JM, Hwang B, Ryu KH (2015) A new ensemble method with feature space partitioning for high-dimensional data classification. Math Probl Eng 2015. https://doi.org/10.1155/2015/590678

  • Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9(2):181–199

    Article  Google Scholar 

  • Ramsar Convention on Wetlands (2018) Global wetland outlook: state of the world’s wetlands and their services to people. Ramsar Convention Secretariat,

    Google Scholar 

  • Rasyid AR, Bhandary NP, Yatabe R (2016) Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters 3(1):1–16

    Article  Google Scholar 

  • Rezaee M, Mahdianpari M, Zhang Y, Salehi B (2018) Deep convolutional neural network for complex wetland classification using optical remote sensing imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 11(9):3030–3039

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens 67:93–104

    Article  Google Scholar 

  • Saha TK, Pal S (2019) Emerging conflict between agriculture extension and physical existence of wetland in post-dam period in Atreyee River basin of Indo-Bangladesh. Environ Dev Sustain 21(3):1485–1505

    Article  Google Scholar 

  • Saha TK, Pal S, Sarkar R (2021) Prediction of wetland area and depth using linear regression model and artificial neural network based cellular automata. Ecol Inform 62:101272

    Article  Google Scholar 

  • Sahana M, Rehman S, Sajjad H, Hong H (2020) Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. Catena 189:104450

    Article  Google Scholar 

  • Sarkar UK, Bakshi S, Lianthuamluaia L, Mishal P, Ghosh BD, Saha S, Karnatak G (2020) Understanding enviro-climatological impact on fish biodiversity of the tropical floodplain wetlands for their sustainable management. Sustain Water Resour Manag 6(5):1–12

    Article  Google Scholar 

  • Secretariat R (2016) An Introduction to the Convention on Wetlands (previously The Ramsar Convention Manual). In Ramsar Convention Secretariat, Gland, Switzerland

  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ et al (2020) Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens 12(2):266

    Article  Google Scholar 

  • Shen L, Li C (2010) Water body extraction from Landsat ETM+ imagery using adaboost algorithm. In 2010 18th International Conference on Geoinformatics. IEEE, pp 1–4. https://doi.org/10.1109/GEOINFORMATICS.2010.5567762

  • Sinha P, Gaughan AE, Stevens FR, Nieves JJ, Sorichetta A, Tatem AJ (2019) Assessing the spatial sensitivity of a random forest model: application in gridded population modeling. Comput Environ Urban Syst 75:132–145

    Article  Google Scholar 

  • Smyl S (2020) A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int J Forecast 36(1):75–85

    Article  Google Scholar 

  • Song F, Su F, Mi C, Sun D (2021) Analysis of driving forces on wetland ecosystem services value change: a case in Northeast China. Sci Total Environ 751:141778

    Article  CAS  Google Scholar 

  • Sothe C, De Almeida CM, Schimalski MB, La Rosa LEC, Castro JDB, Feitosa RQ et al (2020) Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. GIsci Remote Sens 57(3):369–394

    Article  Google Scholar 

  • Sun D, Wen H, Wang D, Xu J (2020) A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 362:107201

    Article  Google Scholar 

  • Sun D, Xu J, Wen H, Wang D (2021) Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng Geol 281:105972

    Article  Google Scholar 

  • Talukdar S, Pal S (2017) Impact of dam on inundation regime of flood plain wetland of punarbhaba river basin of barind tract of Indo-Bangladesh. Int Soil Water Conserv Res 5(2):109–121

    Article  Google Scholar 

  • Talukdar S, Pal S (2020) Modeling flood plain wetland transformation in consequences of flow alteration in Punarbhaba river in India and Bangladesh. J Clean Prod 261:120767

    Article  Google Scholar 

  • Talukdar S, Pal S, Chakraborty A, Mahato S (2020) Damming effects on trophic and habitat state of riparian wetlands and their spatial relationship. Ecol Indic 118:106757

  • Tang X, Machimura T, Liu W, Li J, Hong H (2021) A novel index to evaluate discretization methods: A case study of flood susceptibility assessment based on random forest. Geosci Front 12(6):101253. https://doi.org/10.1016/j.gsf.2021.101253

  • Tehrani NA, ZulhaidiMohdShafri H, Salehi S, Chanussot J, Janalipour M (2021) Remotely-Sensed Ecosystem Health Assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin. Int J Image Data Fusion. https://doi.org/10.1080/19479832.2021.1924880

  • Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125:91–101

    Article  Google Scholar 

  • Tiner RW (2016) Wetland indicators: A guide to wetland formation, identification, delineation, classification, and mapping. CRC press.

  • Tong L, Xu X, Fu Y, Li S (2014) Wetland changes and their responses to climate change in the “three-river headwaters” region of China since the 1990s. Energies 7(4):2515–2534

    Article  Google Scholar 

  • Townshend JR, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int J Remote Sens 7(11):1435–1445

    Article  Google Scholar 

  • Truong XL, Mitamura M, Kono Y, Raghavan V, Yonezawa G, Truong XQ et al (2018) Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl Sci 8(7):1046

    Article  Google Scholar 

  • Vafakhah M, Mohammad HasaniLoor S, Pourghasemi H, Katebikord A (2020) Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arab J Geosci 13:1–16

    Google Scholar 

  • Villavicencio CN, Macrohon JJE, Inbaraj XA, Jeng JH, Hsieh JG (2021) COVID-19 Prediction applying supervised machine learning algorithms with comparative analysis using WEKA. Algorithms 14(7):201

    Article  Google Scholar 

  • Were K, Bui DT, Dick ØB, Singh BR (2015) A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol Indic 52:394–403

    Article  CAS  Google Scholar 

  • Wu L, Zhou H, Ma X, Fan J, Zhang F (2019) Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: application in contrasting climates of China. J Hydrol 577:123960

    Article  Google Scholar 

  • Xu H (2006) Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens 27(14):3025–3033

    Article  Google Scholar 

  • Xu T, Weng B, Yan D, Wang K, Li X, Bi W et al (2019) Wetlands of international importance: status, threats, and future protection. Int J Environ Res Public Health 16(10):1818

    Article  Google Scholar 

  • Xu X, Chen M, Yang G, Jiang B, Zhang J (2020) Wetland ecosystem services research: a critical review. Glob Ecol Conserv 22:e01027

    Article  Google Scholar 

  • Yan F, Zhang S (2019) Ecosystem service decline in response to wetland loss in the Sanjiang Plain, Northeast China. Ecol Eng 130:117–121

    Article  Google Scholar 

  • Yang HF, Dillon TS, Chang E, Chen YPP (2018) Optimized configuration of exponential smoothing and extreme learning machine for traffic flow forecasting. IEEE Trans Industr Inform 15(1):23–34

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594

    Article  Google Scholar 

  • Zhang TY, Han L, Zhang H, Zhao YH, Li XA, Zhao L (2019) GIS-based landslide susceptibility mapping using hybrid integration approaches of fractal dimension with index of entropy and support vector machine. J Mt Sci 16(6):1275–1288

    Article  Google Scholar 

  • Zhang Y, Qiao Q, Liu J, Sang H, Yang D, Zhai L, Li N, Yuan X (2022) Coastline changes in mainland China from 2000 to 2015. Int J Image Data Fusion 13(1):95–112. https://doi.org/10.1080/19479832.2021.1943011

    Article  CAS  Google Scholar 

  • Zhao D, Wang J, Zhao X, Triantafilis J (2022) Clay content mapping and uncertainty estimation using weighted model averaging. Catena 209:105791

    Article  Google Scholar 

  • Zheng Y, Zhang G, Wu Y, Xu YJ, Dai C (2019) Dam effects on downstream riparian wetlands: the Nenjiang River, Northeast China. Water 11(10):2038

    Article  Google Scholar 

  • Zhou J, Wu J, Gong Y (2020) Valuing wetland ecosystem services based on benefit transfer: a meta-analysis of China wetland studies. J Clean Prod 276:122988

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Alexandros Stefanakis (Editor), Environmental Science and Pollution Research, and three anonymous reviewers for their highly constructive suggestions for improving the manuscript.

Funding

The first author of the article would like to thank the University Grants Commission (UGC Ref. No. 3267/(SC)(NET-JAN-2017), New Delhi, India for providing financial support as a Junior Research Fellowship (JRF) to conduct the research work presented in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Swades Pal and Pankaj Singha; formal analysis, Swades Pal and Pankaj Singha; methodology, Swades Pal and Pankaj Singha; software, Pankaj Singha; supervision, Swades Pal; validation: Pankaj Singha; writing—original draft, Swades Pal and Pankaj Singha; writing—review and editing, Swades Pal and Pankaj Singha.

Corresponding author

Correspondence to Swades Pal.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the co-authors agreed to publish the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Alexandros Stefanakis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1082 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, P., Pal, S. Predicting wetland area and water depth in Barind plain of India. Environ Sci Pollut Res 29, 70933–70949 (2022). https://doi.org/10.1007/s11356-022-20787-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20787-w

Keywords

Navigation