Skip to main content
Log in

Landfill leachate biological treatment: perspective for the aerobic granular sludge technology

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Landfill leachates are high-strength complex mixtures containing dissolved organic matter, ammonia, heavy metals, and sulfur species, among others. The problem of leachate treatment has subsisted for some time, but an efficient and cost-effective universal solution capable of ensuring environmental resources protection has not been found. Aerobic granular sludge (AGS) has been considered a promising technology for biological wastewater treatment in recent years. Granules’ layered structure, with an aerobic outer layer and an anaerobic/anoxic core, enables the presence of diverse microbial populations without the need for support media, allowing simultaneous removal of different pollutants in a single unit. Besides, its strong and compact arrangement provides higher tolerance to toxic pollutants and the ability to withstand large load fluctuations. Furthermore, its good that settling properties allow high biomass retention and better sludge separation. Nevertheless, AGS-related research has focused on carbon-nitrogen-phosphorus removal, mainly from sanitary sewage. This review aims to summarize and analyze the main findings and problems reported in the literature regarding AGS application to landfill leachate treatment and identify the knowledge gaps for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Abbas AA, Jingsong G, Ping LZ, Ya PY, Al-Rekabi WS (2009) Review on landfill leachate treatments. Am J Appl Sci 6(4):672–684

    Article  CAS  Google Scholar 

  • Abdullah N, Ujang Z, Yahya A (2011) Aerobic granular sludge formation for high strength agro-based wastewater treatment. Bioresour Technol 102(12):6778–6781

    Article  CAS  Google Scholar 

  • Altinbaş M, Yangin C, Ozturk I (2002) Struvite precipitation from anaerobically treated municipal and landfill wastewaters. Water Sci Technol 46(9):271–278

    Article  Google Scholar 

  • Amokrane A, Comel C, Veron J (1997) Landfill leachates pretreatment by coagulation-flocculation. Water Res 31(11):2775–2782

    Article  CAS  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48(5):835–852

    CAS  Google Scholar 

  • Bassam A, Salgado-Tránsito I, Oller I, Santoyo E, Jiménez AE, Hernandez JA, Zapata A, Malato S (2012) Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks. Int J Energy Res 36(14):1314–1324

    Article  CAS  Google Scholar 

  • Bay Area Clean Water Agencies (2017) Nereda® aerobic granular sludge demonstration. BACWA, Netherlands

    Google Scholar 

  • Bengtsson S, De Blois M, Wilén B-M, Gustavsson D (2019) A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ Technol 40(21):2769–2778

    Article  CAS  Google Scholar 

  • Bhalla B, Saini MS, Jha MK (2013) Effect of age and seasonal variations on leachate characteristics of municipal solid waste landfill. Int J Res Eng Technol 02(08):223–232

    Article  Google Scholar 

  • Bohdziewicz J, Kwarciak A (2008) The application of hybrid system UASB reactor-RO in landfill leachate treatment. Desalination 222(1):128–134

    Article  CAS  Google Scholar 

  • Boonnorat J, Techkarnjanaruk S, Honda R, Angthong S, Boonapatcharoen N, Muenmee S, Prachanurak P (2018) Use of aged sludge bioaugmentation in two-stage activated sludge system to enhance the biodegradation of toxic organic compounds in high strength wastewater. Chemosphere 202:208–217

    Article  CAS  Google Scholar 

  • Boyer TH, Graf KC, Comstock SEH, Townsend TG (2011) Magnetic ion exchange treatment of stabilized landfill leachate. Chemosphere 83(9):1220–1227

    Article  CAS  Google Scholar 

  • Brennan RB, Clifford E, Devroedt C, Morrison L, Healy MG (2017) Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. J Environ Manag 188:64–72

    Article  CAS  Google Scholar 

  • Bueno RDF, Faria JK, Uliana DP, Liduino VS (2020) Simultaneous removal of organic matter and nitrogen compounds from landfill leachate by aerobic granular sludge. Environ Technol:1–15

  • Calli B, Mertoglu B, Inanc B (2005) Landfill leachate management in Istanbul: applications and alternatives. Chemosphere 59(6):819–829

    Article  CAS  Google Scholar 

  • Campos F, Bueno RF, Piveli RP (2019) Co-treatment of leachate and domestic sewage and its influence on nitrogen removal. Braz J Chem Eng 36:763–773

    Article  CAS  Google Scholar 

  • Castillo E, Vergara M, Moreno Y (2007) Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Manag 27(5):720–726

    Article  CAS  Google Scholar 

  • Chelliapan S, Arumugam N, Md Din MF, Kamyab H, Ebrahimi SS (2020) Bioreactors. Singh L, Yousuf A, Mahapatra DM (eds), pp. 175-193, Elsevier

  • Chen S, Sun D, Chung J-S (2008) Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic–aerobic moving-bed biofilm reactor system. Waste Manag 28(2):339–346

    Article  CAS  Google Scholar 

  • Chen F-Y, Liu Y-Q, Tay J-H, Ning P (2011) Operational strategies for nitrogen removal in granular sequencing batch reactor. J Hazard Mater 189(1):342–348

    Article  CAS  Google Scholar 

  • Chen Z, Wang X, Yang Y, Mirino MW, Yuan Y (2016) Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresour Technol 218:580–588

    Article  CAS  Google Scholar 

  • Chen C, Feng H, Deng Y (2019) Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Res 153:100–107

    Article  CAS  Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen H-J, Heron G (2001) Biogeochemistry of landfill leachate plumes. Appl Geochem 16(7):659–718

    Article  CAS  Google Scholar 

  • Chung J, Kim S, Baek S, Lee N-H, Park S, Lee J, Lee H, Bae W (2015) Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study. J Hazard Mater 285:436–444

    Article  CAS  Google Scholar 

  • Chys M, Oloibiri VA, Audenaert WTM, Demeestere K, Van Hulle SWH (2015) Ozonation of biologically treated landfill leachate: efficiency and insights in organic conversions. Chem Eng J 277:104–111

    Article  CAS  Google Scholar 

  • Corsino SF, Campo R, Di Bella G, Torregrossa M, Viviani G (2016) Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor. Bioresour Technol 200:1055–1059

    Article  CAS  Google Scholar 

  • Corsino SF, di Biase A, Devlin TR, Munz G, Torregrossa M, Oleszkiewicz JA (2017) Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater. Bioresour Technol 226:150–157

    Article  CAS  Google Scholar 

  • Corsino SF, Di Trapani D, Torregrossa M, Viviani G (2018) Aerobic granular sludge treating high strength citrus wastewater: analysis of pH and organic loading rate effect on kinetics, performance and stability. J Environ Manag 214:23–35

    Article  CAS  Google Scholar 

  • Costa AM, Alfaia RGdSM, Campos JC (2019) Landfill leachate treatment in Brazil – an overview. J Environ Manag 232:110–116

    Article  CAS  Google Scholar 

  • de Graaff DR, van Loosdrecht MCM, Pronk M (2020) Biological phosphorus removal in seawater-adapted aerobic granular sludge. Water Res 172:115531

    Article  CAS  Google Scholar 

  • de Kreuk MK, van Loosdrecht MCM (2004) Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol 49(11-12):9–17

    Article  Google Scholar 

  • de Kreuk MK, Heijnen JJ, van Loosdrecht MCM (2005) Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol Bioeng 90(6):761–769

    Article  CAS  Google Scholar 

  • Deng Y, Feng C, Chen N, Hu W, Kuang P, Liu H, Hu Z, Li R (2018) Research on the treatment of biologically treated landfill leachate by joint electrochemical system. Waste Manag 82:177–187

    Article  CAS  Google Scholar 

  • Dereli RK, Clifford E, Casey E (2021) Co-treatment of leachate in municipal wastewater treatment plants: critical issues and emerging technologies. Crit Rev Environ Sci Technol 51(11):1079–1128

    Article  CAS  Google Scholar 

  • Di Bella G, Torregrossa M (2014) Aerobic granular sludge for leachate treatment. Chem Eng Trans 38:493–498

    Google Scholar 

  • Di Iaconi C, Ramadori R, Lopez A (2006) Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochem Eng J 31(2):118–124

    Article  CAS  Google Scholar 

  • Eldyasti A, Chowdhury N, Nakhla G, Zhu J (2010) Biological nutrient removal from leachate using a pilot liquid–solid circulating fluidized bed bioreactor (LSCFB). J Hazard Mater 181(1):289–297

    Article  CAS  Google Scholar 

  • Environment Agency (2003) Guidance on monitoring of landfill leachate, groundwater and surface water: LFTGN 02. Environment Agency, Bristol

    Google Scholar 

  • Environment Agency (2007) Guidance for the treatment of landfill leachate. Environment Agency, Bristol

    Google Scholar 

  • European Parliament and Council of the European Union (2008) Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off J Eur Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098. Accessed Nov 2021

  • Fernández Y, Marañón E, Castrillón L, Vázquez I (2005) Removal of Cd and Zn from inorganic industrial waste leachate by ion exchange. J Hazard Mater 126(1):169–175

    Article  CAS  Google Scholar 

  • Ferraz FM, Bruni AT, Povinelli J, Vieira EM (2016) Leachate/domestic wastewater aerobic co-treatment: a pilot-scale study using multivariate analysis. J Environ Manag 166:414–419

    Article  CAS  Google Scholar 

  • Franca RDG, Pinheiro HM, van Loosdrecht MCM, Lourenço ND (2018) Stability of aerobic granules during long-term bioreactor operation. Biotechnol Adv 36(1):228–246

    Article  CAS  Google Scholar 

  • Gao D, Liu L, Liang H, Wu W-M (2011) Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol 31(2):137–152

    Article  CAS  Google Scholar 

  • Gao J, Oloibiri V, Chys M, Audenaert W, Decostere B, He Y, Van Langenhove H, Demeestere K, Van Hulle SWH (2015) The present status of landfill leachate treatment and its development trend from a technological point of view. Rev Environ Sci Biotechnol 14(1):93–122

    Article  CAS  Google Scholar 

  • Gomes AI, Santos SGS, Silva TFCV, Boaventura RAR, Vilar VJP (2019) Treatment train for mature landfill leachates: optimization studies. Sci Total Environ 673:470–479

    Article  CAS  Google Scholar 

  • Guo H, van Lier JB, de Kreuk M (2020) Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system. Water Res 173:115617

    Article  CAS  Google Scholar 

  • Hamza RA, Sheng Z, Iorhemen OT, Zaghloul MS, Tay JH (2018) Impact of food-to-microorganisms ratio on the stability of aerobic granular sludge treating high-strength organic wastewater. Water Res 147:287–298

    Article  CAS  Google Scholar 

  • Hamza RA, Zaghloul MS, Iorhemen OT, Sheng Z, Tay JH (2019) Optimization of organics to nutrients (COD:N:P) ratio for aerobic granular sludge treating high-strength organic wastewater. Sci Total Environ 650:3168–3179

    Article  CAS  Google Scholar 

  • He Q, Chen L, Zhang S, Wang L, Liang J, Xia W, Wang H, Zhou J (2018) Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: impact of aeration time. Bioresour Technol 263:214–222

    Article  CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P, Kennedy C (2013) Environment: waste production must peak this century. Nature 502(7473):615–617

    Article  Google Scholar 

  • Imai A, Onuma K, Inamori Y, Sudo R (1995) Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process. Water Res 29(2):687–694

    Article  CAS  Google Scholar 

  • Iskander SM, Zhao R, Pathak A, Gupta A, Pruden A, Novak JT, He Z (2018) A review of landfill leachate induced ultraviolet quenching substances: sources, characteristics, and treatment. Water Res 145:297–311

    Article  CAS  Google Scholar 

  • Kargi F, Pamukoglu MY (2003) Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation. Process Biochem 38(10):1413–1420

    Article  CAS  Google Scholar 

  • Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a Waste 2.0: a global snapshot of solid waste management to 2050. World Bank, Washington, D.C.

    Book  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and Long-Term Composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336

    Article  CAS  Google Scholar 

  • Kocaturk I, Erguder TH (2015) Investigation of the use of aerobic granules for the treatment of sugar beet processing wastewater. Environ Technol 36(20):2577–2587

    Article  CAS  Google Scholar 

  • Kocaturk I, Erguder TH (2016) Influent COD/TAN ratio affects the carbon and nitrogen removal efficiency and stability of aerobic granules. Ecol Eng 90:12–24

    Article  Google Scholar 

  • Kochling T, Sanz JL, Gavazza S, Florencio L (2015) Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing. Appl Microbiol Biotechnol 99(13):5657–5668

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo W-H, Chan GYS (2006) Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129(1):80–100

    Article  CAS  Google Scholar 

  • Leal C, Val del Río A, Mesquita DP, Amaral AL, Castro PML, Ferreira EC (2020) Sludge volume index and suspended solids estimation of mature aerobic granular sludge by quantitative image analysis and chemometric tools. Sep Purif Technol 234:116049

    Article  CAS  Google Scholar 

  • Lema JM, Mendez R, Blazquez R (1988) Characteristics of landfill leachates and alternatives for their treatment: a review. Water Air Soil Pollut 40:223–250

    Article  CAS  Google Scholar 

  • Leszczyński J, Maria JW (2018) The removal of organic compounds from landfill leachate using ozone-based advanced oxidation processes. E3S Web Conf 45:00046

    Article  CAS  Google Scholar 

  • Li XZ, Zhao QL, Hao XD (1999) Ammonium removal from landfill leachate by chemical precipitation. Waste Manag 19(6):409–415

    Article  CAS  Google Scholar 

  • Li J, Liu X, Liu Y, Ramsay J, Yao C, Dai R (2011) The effect of continuous exposure of copper on the properties and extracellular polymeric substances (EPS) of bulking activated sludge. Environ Sci Pollut Res 18(9):1567–1573

    Article  CAS  Google Scholar 

  • Li J, Ding L-B, Cai A, Huang G-X, Horn H (2014) Aerobic sludge granulation in a full-scale sequencing batch reactor. Biomed Res Int 2014:268789

    Google Scholar 

  • Li J, Wu B, Li Q, Zou Y, Cheng Z, Sun X, Xi B (2019) Ex situ simultaneous nitrification-denitrification and in situ denitrification process for the treatment of landfill leachates. Waste Manag 88:301–308

    Article  CAS  Google Scholar 

  • Liu Y, Tay J-H (2004) State of the art of biogranulation technology for wastewater treatment. Biotechnol Adv 22(7):533–563

    Article  CAS  Google Scholar 

  • Lladó S, Gràcia E, Solanas AM, Viñas M (2013) Fungal and bacterial microbial community assessment during bioremediation assays in an aged creosote-polluted soil. Soil Biol Biochem 67:114–123

    Article  CAS  Google Scholar 

  • Long B, Yang C-Z, Pu W-H, Yang J-K, Liu F-B, Zhang L, Zhang J, Cheng K (2015) Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor. Bioresour Technol 182:314–322

    Article  CAS  Google Scholar 

  • López-Palau S, Pinto A, Basset N, Dosta J, Mata-Álvarez J (2012) ORP slope and feast–famine strategy as the basis of the control of a granular sequencing batch reactor treating winery wastewater. Biochem Eng J 68:190–198

    Article  CAS  Google Scholar 

  • Luo H, Zeng Y, Cheng Y, He D, Pan X (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468

    Article  CAS  Google Scholar 

  • Lv Y, Wan C, Lee D-J, Liu X, Tay J-H (2014) Microbial communities of aerobic granules: granulation mechanisms. Bioresour Technol 169:344–351

    Article  CAS  Google Scholar 

  • Ma B, Wang S, Cao S, Miao Y, Jia F, Du R, Peng Y (2016) Biological nitrogen removal from sewage via anammox: recent advances. Bioresour Technol 200:981–990

    Article  CAS  Google Scholar 

  • Mahdad F, Younesi H, Bahramifar N, Hadavifar M (2016) Optimization of Fenton and photo-Fenton-based advanced oxidation processes for post-treatment of composting leachate of municipal solid waste by an activated sludge process. KSCE J Civ Eng 20(6):2177–2188

    Article  Google Scholar 

  • Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge—a critical review. Water Res 38(4):793–817

    Article  CAS  Google Scholar 

  • Marttinen SK, Kettunen RH, Sormunen KM, Soimasuo RM, Rintala JA (2002) Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46(6):851–858

    Article  CAS  Google Scholar 

  • Matthews R, Winson M, Scullion J (2009) Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics. Sci Total Environ 407(8):2557–2564

    Article  CAS  Google Scholar 

  • McDougall FR, White PR, Franke M, Hindle P (2001) Integrated solid waste management: a life cycle inventory, 2nd edn. Blackwell Science Ltd., Oxford

    Book  Google Scholar 

  • McSwain BS, Irvine RL, Wilderer PA (2004) The effect of intermittent feeding on aerobic granule structure. Water Sci Technol 49(11-12):19–25

    Article  CAS  Google Scholar 

  • Meloni F, Montegrossi G, Lazzaroni M, Rappuoli D, Nisi B, Vaselli O (2021) Total and leached arsenic, mercury and antimony in the mining waste dumping area of Abbadia San Salvatore (Mt. Amiata, Central Italy). Appl Sci 11(17):7893

    Article  CAS  Google Scholar 

  • Meyer-Dombard DR, Bogner JE, Malas J (2020) A review of landfill microbiology and ecology: a call for modernization with ‘next generation’ technology. Front Microbiol 11:1127

    Article  Google Scholar 

  • Miao L, Wang K, Wang S, Zhu R, Li B, Peng Y, Weng D (2014) Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresour Technol 159:258–265

    Article  CAS  Google Scholar 

  • Miao L, Yang G, Tao T, Peng Y (2019) Recent advances in nitrogen removal from landfill leachate using biological treatments – a review. J Environ Manag 235:178–185

    Article  CAS  Google Scholar 

  • Mojiri A, Zhou JL, Ratnaweera H, Ohashi A, Ozaki N, Kindaichi T, Asakura H (2021) Treatment of landfill leachate with different techniques: an overview. J Water Reuse Desalinat 11(1):66–96

    Article  CAS  Google Scholar 

  • Mokhtarani N, Nasiri A, Ganjidoust H, Yasrobi SY (2014) Post-treatment of composting leachate by ozonation. Ozone Sci Eng 36(6):540–548

    Article  CAS  Google Scholar 

  • Morawe B, Ramteke DS, Vogelpohl A (1995) Activated carbon column performance studies of biologically treated landfill leachate. Chem Eng Process Process Intensif 34(3):299–303

    Article  CAS  Google Scholar 

  • Muszyński A, Miłobędzka A (2015) The effects of carbon/phosphorus ratio on polyphosphate- and glycogen-accumulating organisms in aerobic granular sludge. Int J Environ Sci Technol 12(9):3053–3060

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Reddy GKK (2018) Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications. Bioresour Technol 247:1128–1143

    Article  CAS  Google Scholar 

  • Nancharaiah YV, Sarvajith M, Lens PNL (2018) Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor. Water Res 131:131–141

    Article  CAS  Google Scholar 

  • Ni B-J, Yu H-Q (2010) Mathematical modeling of aerobic granular sludge: a review. Biotechnol Adv 28(6):895–909

    Article  CAS  Google Scholar 

  • Oliveira LF, Silva SMCP, Martinez CBR (2014) Assessment of domestic landfill leachate toxicity to the Asian clam Corbicula fluminea via biomarkers. Ecotoxicol Environ Saf 103:17–23

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  CAS  Google Scholar 

  • Oulego P, Collado S, Laca A, Díaz M (2015) Tertiary treatment of biologically pre-treated landfill leachates by non-catalytic wet oxidation. Chem Eng J 273:647–655

    Article  CAS  Google Scholar 

  • Oulego P, Collado S, Laca A, Díaz M (2016) Impact of leachate composition on the advanced oxidation treatment. Water Res 88:389–402

    Article  CAS  Google Scholar 

  • Palaniandy P, Adlan MN, Aziz HA, Murshed MF (2010) Application of dissolved air flotation (DAF) in semi-aerobic leachate treatment. Chem Eng J 157(2):316–322

    Article  CAS  Google Scholar 

  • Park S, Bae W (2009) Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid. Process Biochem 44(6):631–640

    Article  CAS  Google Scholar 

  • Peng Y, Zhang S, Zeng W, Zheng S, Mino T, Satoh H (2008) Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate. Water Res 42(4-5):883–892

    Article  CAS  Google Scholar 

  • Peng W, Pivato A, Lavagnolo MC, Raga R (2018) Digestate application in landfill bioreactors to remove nitrogen of old landfill leachate. Waste Manag 74:335–346

    Article  CAS  Google Scholar 

  • Pirbazari M, Ravindran V, Badriyha BN, Kim S-H (1996) Hybrid membrane filtration process for leachate treatment. Water Res 30(11):2691–2706

    Article  CAS  Google Scholar 

  • Poot V, Hoekstra M, Geleijnse MAA, van Loosdrecht MCM, Pérez J (2016) Effects of the residual ammonium concentration on NOB repression during partial nitritation with granular sludge. Water Res 106:518–530

    Article  CAS  Google Scholar 

  • Pronk M, Abbas B, Al-zuhairy SHK, Kraan R, Kleerebezem R, van Loosdrecht MCM (2015) Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge. Appl Microbiol Biotechnol 99(12):5257–5268

    Article  CAS  Google Scholar 

  • Queiroz LM, Amaral MS, Morita DM, Yabroudi SC, Sobrinho PA (2011) Aplicação de processos físico-químicos como alternativa de pré e pós-tratamento de lixiviados de aterros sanitários. Engenharia Sanitaria e Ambiental 16(4):403–410

    Article  Google Scholar 

  • Ramos C, Suárez-Ojeda ME, Carrera J (2015) Long-term impact of salinity on the performance and microbial population of an aerobic granular reactor treating a high-strength aromatic wastewater. Bioresour Technol 198:844–851

    Article  CAS  Google Scholar 

  • Rani A, Negi S, Hussain A, Kumar S (2020) Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioresour Technol 297:122437

    Article  CAS  Google Scholar 

  • Regmi P, Miller MW, Holgate B, Bunce R, Park H, Chandran K, Wett B, Murthy S, Bott CB (2014) Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res 57:162–171

    Article  CAS  Google Scholar 

  • Remmas N, Roukouni C, Ntougias S (2017) Bacterial community structure and prevalence of Pusillimonas-like bacteria in aged landfill leachate. Environ Sci Pollut Res Int 24(7):6757–6769

    Article  CAS  Google Scholar 

  • Ren Y, Yan L, Hao G, Zhang X, Wen Y, Guo Y, Chen Z (2016) Shortcut nitrification treatment of high strength ammonia nitrogen wastewater by aerobic granular sludge. J Chem Soc Pak 38(6):1222–1229

    CAS  Google Scholar 

  • Ren Y, Ferraz F, Kang AJ, Yuan Q (2017a) Treatment of old landfill leachate with high ammonium content using aerobic granular sludge. J Biol Eng 11(1):42

    Article  CAS  Google Scholar 

  • Ren Y, Ferraz F, Lashkarizadeh M, Yuan Q (2017b) Comparing young landfill leachate treatment efficiency and process stability using aerobic granular sludge and suspended growth activated sludge. J Water Process Eng 17:161–167

    Article  Google Scholar 

  • Ren Y, Ferraz FM, Yuan Q (2017c) Landfill leachate treatment using aerobic granular sludge. J Environ Eng 143(9):04017060

    Article  CAS  Google Scholar 

  • Ren Y, Ferraz FM, Yuan Q (2018) Biological leachate treatment using anaerobic/aerobic process: suspended growth-activated sludge versus aerobic granular sludge. Int J Environ Sci Technol 15(11):2295–2302

    Article  CAS  Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150(3):468–493

    Article  CAS  Google Scholar 

  • Robinson HD (1995) A review of the composition of leachates from domestic wastes in landfill sites. Report no. CWM/072/95, Wastes Technical Division, Department of the Environment, London

  • Rodríguez J, Castrillón L, Marañón E, Sastre H, Fernández E (2004) Removal of non-biodegradable organic matter from landfill leachates by adsorption. Water Res 38(14):3297–3303

    Article  CAS  Google Scholar 

  • Rollemberg SLdS, Barros ARM, Firmino PIM, dos Santos AB (2018) Aerobic granular sludge: cultivation parameters and removal mechanisms. Bioresour Technol 270:678–688

    Article  CAS  Google Scholar 

  • Rosman NH, Nor Anuar A, Chelliapan S, Md Din MF, Ujang Z (2014) Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time. Bioresour Technol 161:155–161

    Article  CAS  Google Scholar 

  • Roy D, Azaïs A, Benkaraache S, Drogui P, Tyagi RD (2018) Composting leachate: characterization, treatment, and future perspectives. Rev Environ Sci Biotechnol 17(2):323–349

    Article  CAS  Google Scholar 

  • Rui LM, Daud Z, Latif AAA (2012) Treatment of leachate by coagulation-flocculation using different coagulants and polymer: a review. Int J Adv Sci Eng Info Technol 2(2):114–117

    Article  Google Scholar 

  • Saito T, Brdjanovic D, van Loosdrecht MCM (2004) Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res 38(17):3760–3768

    Article  CAS  Google Scholar 

  • Sarvajith M, Kiran Kumar Reddy G, Nancharaiah YV (2020) Aerobic granular sludge for high-strength ammonium wastewater treatment: effect of COD/N ratios, long-term stability and nitrogen removal pathways. Bioresour Technol 306:123150

    Article  CAS  Google Scholar 

  • Schwarzenbeck N, Erley R, Wilderer PA (2004) Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Sci Technol 49(11-12):41–46

    Article  CAS  Google Scholar 

  • Septiariva IY, Padmi T, Damanhuri E, Helmy Q (2019) A study on municipal leachate treatment through a combination of biological processes and ozonation. MATEC Web Conf 276:06030

    Article  CAS  Google Scholar 

  • Silva TFCV, Fonseca A, Saraiva I, Boaventura RAR, Vilar VJP (2016) Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment. Chem Eng J 283:76–88

    Article  CAS  Google Scholar 

  • Silva TFCV, Soares PA, Manenti DR, Fonseca A, Saraiva I, Boaventura RAR, Vilar VJP (2017) An innovative multistage treatment system for sanitary landfill leachate depuration: studies at pilot-scale. Sci Total Environ 576:99–117

    Article  CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103(32):12115–12120

    Article  CAS  Google Scholar 

  • Soliman M, Eldyasti A (2018) Ammonia-oxidizing bacteria (AOB): opportunities and applications—a review. Rev Environ Sci Biotechnol 17(2):285–321

    Article  CAS  Google Scholar 

  • Song L, Wang Y, Tang W, Lei Y (2015) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99(18):7745–7756

    Article  CAS  Google Scholar 

  • Soubh A, Mokhtarani N (2016) The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. RSC Adv 6(80):76113–76122

    Article  CAS  Google Scholar 

  • Sun H, Peng Y, Shi X (2015) Advanced treatment of landfill leachate using anaerobic–aerobic process: organic removal by simultaneous denitritation and methanogenesis and nitrogen removal via nitrite. Bioresour Technol 177:337–345

    Article  CAS  Google Scholar 

  • Świątczak P, Cydzik-Kwiatkowska A (2018) Treatment of ammonium-rich digestate from methane fermentation using aerobic granular sludge. Water Air Soil Pollut 229(8):247

    Article  CAS  Google Scholar 

  • Szabó E, Hermansson M, Modin O, Persson F, Wilén B-M (2016) Effects of wash-out dynamics on nitrifying bacteria in aerobic granular sludge during start-up at gradually decreased settling time. Water 8(5):172

    Article  CAS  Google Scholar 

  • Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 53(7):737–744

    Article  CAS  Google Scholar 

  • Tejera J, Miranda R, Hermosilla D, Urra I, Negro C, Blanco Á (2019) Treatment of a mature landfill leachate: comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments. Water 11(9):1849

    Article  CAS  Google Scholar 

  • Torretta V, Ferronato N, Katsoyiannis I, Tolkou A, Airoldi M (2017) Novel and conventional technologies for landfill leachates treatment: a review. Sustainability 9(1):9

    Article  CAS  Google Scholar 

  • Umar M, Aziz HA, Yusoff MS (2010) Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. Int J Chem Eng 2010:1–6

    Article  CAS  Google Scholar 

  • Uygur A, Kargı F (2004) Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manag 71(1):9–14

    Article  Google Scholar 

  • Wagner J, Weissbrodt DG, Manguin V, Ribeiro da Costa RH, Morgenroth E, Derlon N (2015) Effect of particulate organic substrate on aerobic granulation and operating conditions of sequencing batch reactors. Water Res 85:158–166

    Article  CAS  Google Scholar 

  • Wang Z, Banks CJ (2007) Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter. Waste Manag 27(3):359–366

    Article  CAS  Google Scholar 

  • Wang X-H, Jiang L-X, Shi Y-J, Gao M-M, Yang S, Wang S-G (2012) Effects of step-feed on granulation processes and nitrogen removal performances of partial nitrifying granules. Bioresour Technol 123:375–381

    Article  CAS  Google Scholar 

  • Wang K, Wang S, Zhu R, Miao L, Peng Y (2013) Advanced nitrogen removal from landfill leachate without addition of external carbon using a novel system coupling ASBR and modified SBR. Bioresour Technol 134:212–218

    Article  CAS  Google Scholar 

  • Wang Z, Peng Y, Miao L, Cao T, Zhang F, Wang S, Han J (2016) Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. Bioresour Technol 214:514–519

    Article  CAS  Google Scholar 

  • Wei Y, Ji M, Li R, Qin F (2012) Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manag 32(3):448–455

    Article  CAS  Google Scholar 

  • Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2006) Landfill leachate treatment methods: a review. Environ Chem Lett 4(1):51–61

    Article  CAS  Google Scholar 

  • Wu L, Zhang L, Shi X, Liu T, Peng Y, Zhang J (2015) Analysis of the impact of reflux ratio on coupled partial nitrification–anammox for co-treatment of mature landfill leachate and domestic wastewater. Bioresour Technol 198:207–214

    Article  CAS  Google Scholar 

  • Xiong W, Wang L, Zhou N, Fan A, Wang S, Su H (2020) High-strength anaerobic digestion wastewater treatment by aerobic granular sludge in a step-by-step strategy. J Environ Manag 262:110245

    Article  CAS  Google Scholar 

  • Xue Y, Zhao H, Ge L, Chen Z, Dang Y, Sun D (2015) Comparison of the performance of waste leachate treatment in submerged and recirculated membrane bioreactors. Int Biodeterior Biodegradation 102:73–80

    Article  CAS  Google Scholar 

  • Yadav JS, Dikshit AK (2017) Stabilized old landfill leachate treatment using electrocoagulation. EnvironmentAsia 10(1):25–33

    Google Scholar 

  • Yang S-F, Tay J-H, Liu Y (2004) Inhibition of free ammonia to the formation of aerobic granules. Biochem Eng J 17(1):41–48

    Article  CAS  Google Scholar 

  • Yilmaz G, Lemaire R, Keller J, Yuan Z (2008) Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol Bioeng 100(3):529–541

    Article  CAS  Google Scholar 

  • Yu X, Wan C, Lei Z, Liu X, Zhang Y, Tay JH, Lee D-J (2014) Use of aerobic granules for treating synthetic high-strength ammonium wastewaters. Environ Technol 35(14):1785–1790

    Article  CAS  Google Scholar 

  • Yuan Q, Jia H, Poveda M (2016) Study on the effect of landfill leachate on nutrient removal from municipal wastewater. J Environ Sci 43:153–158

    Article  CAS  Google Scholar 

  • Yuan Q, Gong H, Xi H, Xu H, Jin Z, Ali N, Wang K (2019) Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate. J Environ Sci 84:144–154

    Article  Google Scholar 

  • Zamora RMR, Moreno AD, Velásquez MTO, Ramírez IM (2000) Treatment of landfill leachates by comparing advanced oxidation and coagulation-flocculation processes coupled with activated carbon adsorption. Water Sci Technol 41(1):231–235

    Article  CAS  Google Scholar 

  • Zhang H, Choi HJ, Huang C-P (2005) Optimization of Fenton process for the treatment of landfill leachate. J Hazard Mater 125(1):166–174

    Article  CAS  Google Scholar 

  • Zhang H, He Y, Jiang T, Yang F (2011) Research on characteristics of aerobic granules treating petrochemical wastewater by acclimation and co-metabolism methods. Desalination 279(1):69–74

    Article  CAS  Google Scholar 

  • Zhang W, Yue B, Wang Q, Huang Z, Huang Q, Zhang Z (2012) Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills. J Environ Sci 23(11):1770–1777

    Article  CAS  Google Scholar 

  • Zhang C, Zhang H, Yang F (2014) Optimal cultivation of simultaneous ammonium and phosphorus removal aerobic granular sludge in A/O/A sequencing batch reactor and the assessment of functional organisms. Environ Technol 35(15):1979–1988

    Article  CAS  Google Scholar 

  • Zhang C, Zhang H, Yang F (2015) Diameter control and stability maintenance of aerobic granular sludge in an A/O/A SBR. Sep Purif Technol 149:362–369

    Article  CAS  Google Scholar 

  • Zhang X, Zheng S, Xiao X, Wang L, Yin Y (2017) Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking. Bioresour Technol 226:267–271

    Article  CAS  Google Scholar 

  • Zhao R, Novak JT, Goldsmith CD (2012) Evaluation of on-site biological treatment for landfill leachates and its impact: a size distribution study. Water Res 46(12):3837–3848

    Article  CAS  Google Scholar 

  • Zheng S, Lu H, Zhang G (2020) The recent development of the aerobic granular sludge for industrial wastewater treatment: a mini review. Environ Technol Rev 9(1):55–66

    Article  Google Scholar 

  • Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 45(15):4672–4682

    Article  CAS  Google Scholar 

  • Zou J, Pan J, Wu S, Qian M, He Z, Wang B, Li J (2019) Rapid control of activated sludge bulking and simultaneous acceleration of aerobic granulation by adding intact aerobic granular sludge. Sci Total Environ 674:105–113

    Article  CAS  Google Scholar 

  • Zouboulis AI, Jun W, Katsoyiannis IA (2003) Removal of humic acids by flotation. Colloids Surf A Physicochem Eng Asp 231(1):181–193

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by (i) Capes/FCT, project number 88887.309177/2018-00 and CNPq, and (ii) LA/P/0045/2020 (ALiCE), UIDB/50020/2020 and UIDP/50020/2020 (LSRE-LCM), funded by national funds through FCT/MCTES (PIDDAC). Sara G.S. Santos received from the FCT her Ph.D. scholarship (2020.04970.BD). Tânia F.C.V. Silva and Vítor J.P. Vilar received the FCT Individual Call to Scientific Employment Stimulus 2017 (CEECIND/01386/2017 and CEECIND/01317/2017, respectively).

Author information

Authors and Affiliations

Authors

Contributions

The statement to specify the contribution of each co-author is as follows:

Vicente E.P.S.G. da Silva, Silvio L.S. Rollemberg, Sara G.S. Santos: writing — original draft ; writing — review and editing

Tânia F.C.V. Silva, Vítor J.P. Vilar, André B. dos Santos: writing — review and editing; funding acquisition

Corresponding author

Correspondence to André B. dos Santos.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

This manuscript describes an original work, has not been published before, and is not under consideration by any other journal.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

P. S. G. da Silva, V.E., de S. Rollemberg, S.L., da S. e Santos, S.G. et al. Landfill leachate biological treatment: perspective for the aerobic granular sludge technology. Environ Sci Pollut Res 29, 45150–45170 (2022). https://doi.org/10.1007/s11356-022-20451-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20451-3

Keywords

Navigation