Skip to main content

Advertisement

Log in

Research trends and emerging physical processing technologies in mitigation of pesticide residues on various food products

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The application of pesticides enhances food production vastly, and it cannot be prevented; longer fresh produce is contaminated with health-threatening pesticides even though traditional processing methods can remove these pesticides from food surfaces to a certain extent; novel emerging technologies such as cold plasma, ultrasound, electrolyzed water, and pulsed electric field could more effectively dissipate the pesticide content in food without the release of toxic residual on the food surface. The present review focuses on applying emerging technologies to degrade pesticide residues in great utility in the food processing industries. This review also discusses the pesticide removal efficacy and its mechanism involved in these technologies. The oxidation principle in cold plasma is recently gaining more importance for the degradation of pesticide residue in the food processing industries. Analysis of the emerging physical processing methods indicated greater efficacy in eradicating pesticide residues during agriculture processing. Even though the technologies such as EO (99% reduction in dimethoate), ultrasound (98.96% for chlorpyrifos), and irradiation (99.8% for pesticide in aqueous solution) can achieve promising results in pesticide degradation level, the rate and inactivation highly depend on the type of equipment and processing parameters involved in different techniques, surface characteristics of produce, treatment conditions, and nature of the pesticide. Therefore, to effectively remove these health-threatening pesticides from food surfaces, it is necessary to know the process parameters and efficacy of the applied technology on various pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71(10):2347–2357. https://doi.org/10.1271/bbb.70015

    Article  CAS  Google Scholar 

  • Agarwal S, Tyagi I, Gupta VK, Dehghani MH, Bagheri A, Yetilmezsoy K, Amrane A, Heibati B, Rodriguez-Couto S (2016) Degradation of azinphos-methyl and chlorpyrifos from aqueous solutions by ultrasound treatment. J Mol Liq 221:1237–1242. https://doi.org/10.1016/j.molliq.2016.04.076

    Article  CAS  Google Scholar 

  • AkdemirEvrendilek G, Keskin E, Golge O (2020) Interaction and multi-objective effects of multiple non-thermal treatments of sour cherry juice: pesticide removal, microbial inactivation, and quality preservation. J Sci Food Agric 100(4):1653–1661. https://doi.org/10.1002/jsfa.10178

    Article  CAS  Google Scholar 

  • J Alarcan J Waizenegger MDLM Solano D Lichtenstein C Luckert A Peijnenburg A Lampen (2020) Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin – individual and mixture effects in a 28-day study in female Wistar rats Food Chem Toxicol 111306https://doi.org/10.1016/j.fct.2020.111306

  • Al-Haq, M (2002) Electrolyzed oxidized water-a new technology for postharvest treatment of fruits and vegetables. In Proc. 9th JIRCAS Intl. Symp.'Value-addition to agricultural products-towards increase of farmers' income and vitalization of rural economy', Tsukuba, Japan, Oct 16–17, 2002

  • Al-haq MI, Sugiyama J, Isobe S (2005) Applications of electrolyzed water in agriculture & food industries. Food Sci Technol Res 11(2):135–150. https://doi.org/10.3136/fstr.11.135

    Article  Google Scholar 

  • Amiri S, Moghanjougi ZM, Bari MR, Khaneghah AM (2021) Natural protective agents and their applications as bio-preservatives in the food industry: an overview of current and future applications. Ital J Food Sci 33(SP1):55–68

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS, Kotsanopoulos KV, Savva AG (2017) Use of ultrasounds in the food industry - methods and effects on quality, safety, and organoleptic characteristics of foods. A review Critical Rev Food Sci Nutrition 57(1):109–128. https://doi.org/10.1080/10408398.2013.860514

    Article  CAS  Google Scholar 

  • Ashokkumar M (2011) The characterization of acoustic cavitation bubbles – an overview. Ultrason Sonochem 18(4):864–872. https://doi.org/10.1016/j.ultsonch.2010.11.016

    Article  CAS  Google Scholar 

  • Augusto, P E D, Tribst, A A L, & Cristianini, M (2018) High hydrostatic pressure and high-pressure homogenization processing of fruit juices. In G. Rajauria& B. K. Tiwari (Eds.), Fruit Juices Extraction, Composition, Quality and Analysis (pp. 393–421)

  • Azam SR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J (2020) Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: a review. Trends Food Sci Technol 97:417–432. https://doi.org/10.1016/j.tifs.2020.01.028

    Article  CAS  Google Scholar 

  • Bajwa U, Sandhu KS (2014) Effect of handling and processing on pesticide residues in food – a review. J Food Sci Technol 51(2):201–220. https://doi.org/10.1007/s13197-011-0499-5

    Article  CAS  Google Scholar 

  • Balwinder, S (2017) Role of pesticides in management of crop pests. In Theory and practice of integrated pest management (p. 76)

  • Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798. https://doi.org/10.1016/j.foodres.2015.09.015

    Article  Google Scholar 

  • Basfar AA, Mohamed KA, Al-Saqer OA (2012) De-contamination of pesticide residues in food by ionizing radiation. Radiat Phys Chem 81(4):473–478. https://doi.org/10.1016/j.radphyschem.2011.12.040

    Article  CAS  Google Scholar 

  • Bhilwadikar T, Pounraj S, Manivannan S, Rastogi N, Negi P (2019) Decontamination of microorganisms and pesticides from fresh fruits and vegetables: a comprehensive review from common household processes to modern techniques. Comprehensive Rev in Food Sci Food Safety 18(4):1003–1038. https://doi.org/10.1111/1541-4337.12453

    Article  CAS  Google Scholar 

  • Calvo H, Redondo D, Remón S, Venturini ME, Arias E (2019) Efficacy of electrolyzed water, chlorine dioxide and photocatalysis for disinfection and removal of pesticide residues from stone fruit. Postharvest Biol Technol 148:22–31. https://doi.org/10.1016/j.postharvbio.2018.10.009

    Article  CAS  Google Scholar 

  • Cengiz MF, Certel M, Göçmen H (2006) Residue contents of DDVP (Dichlorvos) and diazinon applied on cucumbers grown in greenhouses and their reduction by duration of a pre-harvest interval and post-harvest culinary applications. Food Chem 98(1):127–135. https://doi.org/10.1016/j.foodchem.2005.05.064

    Article  CAS  Google Scholar 

  • Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18(4):813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023

    Article  CAS  Google Scholar 

  • Chen F, Zeng L, Zhang Y, Liao X, Ge Y, Hu X, Jiang L (2009) Degradation behaviour of methamidophos and chlorpyrifos in apple juice treated with pulsed electric fields. Food Chem 112(4):956–961. https://doi.org/10.1016/j.foodchem.2008.07.016

    Article  CAS  Google Scholar 

  • KC Cheng SRS Dev KL Bialka A Demirci (2012) Electrolyzed oxidizing water for microbial decontamination of food Wood Head Publishing Limited 563–591https://doi.org/10.1533/9780857095756.3.563

  • Chen Q, Wang Y, Chen F, Zhang Y, Liao X (2014) Chlorine dioxide treatment for the removal of pesticide residues on fresh lettuce and in aqueous solution. Food Control 40:106–112. https://doi.org/10.1016/j.foodcont.2013.11.035

    Article  CAS  Google Scholar 

  • Cho T-S, Moon Y (2000) Recognition of farmer and urban resident on pesticide toxicity. The Korean J Pesticide 4(4):48–55

    Google Scholar 

  • Chowdhury MAZ, Jahan I, Karim N, Alam MK, Rahman MA, Moniruzzaman M, Gan SH, Fakhruddin ANM (2014) Determination of carbamate and organophosphorus pesticides in vegetable samples and the efficiency of gamma-radiation in their removal. Biomed Res Int. https://doi.org/10.1155/2014/145159

    Article  Google Scholar 

  • Codex Alimentarius Commission. (2019) Codex pesticides residues in food online database. Retrieved June 22, 2020

  • Deborde M, Von Gunten UJWR (2008) Reactions of chlorine with inorganic and organic compounds during water treatment kinetics and mechanisms: a critical review 42(1–2):13–51. https://doi.org/10.1016/j.watres.2007.07.025

    Article  CAS  Google Scholar 

  • Delsart, C., Franc, C., Grimi, N., De Revel, G., Vorobiev, E., & Peuchot, M. M. (2016). Effects of pulsed electric fields on four residual fungicides in white wines. (Eds.). 1st world congress on electroporation and pulsed electric fields in biology, medicine and Food & Environmental Technologies.

  • Ekezie FGC, Sun DW, Cheng JH (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58

    Article  Google Scholar 

  • Fan X-D, Zhang W-L, Xiao H-Y, Qiu T-Q, Jiang J-G (2015) Effects of ultrasound combined with ozone on the degradation of organophosphorus pesticide residues on lettuce. RSC Adv 5(57):45622–45630. https://doi.org/10.1039/C5RA03024B

    Article  CAS  Google Scholar 

  • FAO ,(2014). Food and Agriculture Organization of the United Nations, International code of conduct on the distribution and use of pesticides, Rome.Available at https://doi.org/http://www.fao.org/3/a-i3604e.pdf

  • Farkas J, Ehlermann DAE, Mohácsi-Farkas C (2014) Food technologies: food irradiation. Encycl Food Safety 3:178–186

    Article  Google Scholar 

  • Forghani F, Park J-H, Oh D-H (2015) Effect of water hardness on the production and microbicidal efficacy of slightly acidic electrolyzed water. Food Microbiol 48:28–34

    Article  CAS  Google Scholar 

  • FSSAI, (2019). Food Safety and Standards Authority of India, File No 7(Robyt) 2019/Pesticide Residues/RCD/FSSAI. Available at https://doi.org/https://fssai.gov.in/upload/advisories/2019/10/5da705b31ca78Letter_Report_Pesticides_MRL_16_10_2019.pdf

  • Gabriel, A A, Melo, K M D, & Michelena, J C D (2020). Determination of the utility of ultraviolet-C irradiation for dried bay leaves microbial decontamination through safety and quality evaluations. LWT - Food Science and Technology, 117(March 2019), 108634

  • Gavahian M, Meng-Jen T, Khaneghah AM (2020) Emerging techniques in food science: the resistance of chlorpyrifos pesticide pollution against arc and dielectric barrier discharge plasma. Qual Assur Safety Crops Foods 12(SP1):9–17

    Article  CAS  Google Scholar 

  • Ghodbane, H, &Hamdaoui, O (2009) Degradation of Acid Blue 25 in aqueous media using 1700 kHz ultrasonic irradiation: ultrasound/Fe (II) and ultrasound/H2O2 combinations. Ultrasonics Sonochemistry, 16(Robyt), 593–598 https://doi.org/10.1016/j.ultsonch.2008.11.006.

  • Gill MI, Vicent M, Gomez-Lopez, Hung, C Y, A A (2015) Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food Bioprocess Technol 8:1336–1348. https://doi.org/10.1016/j.fm.2014.11.020

    Article  CAS  Google Scholar 

  • González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Gonzalez-Barreiro C, Simal-Gándara J (2011) A review on the fate of pesticides during the processes within the food-production chain. Crit Rev Food Sci Nutr 51(2):99–114. https://doi.org/10.1080/10408390903432625

    Article  Google Scholar 

  • Grauwet, T, der Plancken, I, Vervoort, L, Hendrickx, M, & Van Loey, A (2016) High-pressure processing uniformity. In V. M. Balasubramaniam, G. V Barbosa-Cánovas, & H. L. M. Lelieveld (Eds.), High Pressure Processing of Food: Principles, Technol  Appl (pp. 253–268)

  • Guo W, Chen Y, Jiao H, Hu D, Lu P (2021) Dissipation, residues analysis and risk assessment of metconazole in grapes under field conditions using gas chromatography–tandem mass spectrometry. Quality Assurance and Safety of Crops & Foods 13(4):84–97

    Article  CAS  Google Scholar 

  • Hana Y, Songa L, Ana Q, Pana C (2017) Removal of six pesticide residues in cowpea with alkaline electrolysed water. J Sci Food Agric 97(8):2333–2338. https://doi.org/10.1002/jsfa.8043

    Article  CAS  Google Scholar 

  • Hao J, Wuyundalai, Liu H, Chen T, Zhou Y, Su, C Y, Li L (2011) Reduction of pesticide residues on fresh vegetables with electrolyzed water treatment. J Food Sci Technol 76(4):520–524. https://doi.org/10.1111/j.1750-3841.2011.02154.x

    Article  CAS  Google Scholar 

  • Heshmati, A., &Nazemi, F (2018) Dichlorvos (DDVP) residue removal from tomato by washing with tap and ozone water, a commercial detergent solution and ultrasonic cleaner. Food Sci Technol, 38(Robyt), 441–446

  • Heshmati A, Komacki HA, Nazemi F, Khaneghah AM (2020) Persistence and dissipation behavior of pesticide residues in parsley (Petroselinum crispum) under field conditions. Qual Assur Safety Crops Foods 12(3):55–65

    Article  CAS  Google Scholar 

  • Hricova, D, Stephan, R, &Zweifel, C (2008) Electrolyzed water and its application in the food industry. J Food Protection, 71(Robyt): 1934–1947 https://doi.org/10.5167/uzh-4971 

  • Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345. https://doi.org/10.1016/j.foodcont.2007.08.012

    Article  CAS  Google Scholar 

  • Iizuka T, Shimizu A (2014) Removal of pesticide residue from Brussels sprouts by hydrostatic pressure. Innov Food Sci Emerg Technol 22:70–75. https://doi.org/10.1016/j.ifset.2014.01.009

    Article  CAS  Google Scholar 

  • Iizuka T, Shimizu A (2014) Removal of pesticide residue from cherry tomatoes by hydrostatic pressure (Part 2). Innov Food Sci Emerg Technol 26:34–39. https://doi.org/10.1016/j.ifset.2013.04.011

    Article  CAS  Google Scholar 

  • Iizuka T, Maeda S, Shimizu A (2013) Removal of pesticide residue in cherry tomato by hydrostatic pressure. J Food Eng 116(4):796–800. https://doi.org/10.1016/j.jfoodeng.2013.01.035

    Article  CAS  Google Scholar 

  • Iizuka T, Yahata M, Shimizu A (2013) Potential mechanism involved in removal of hydrophobic pesticides from vegetables by hydrostatic pressure. J Food Eng 119(1):1–6. https://doi.org/10.1016/j.jfoodeng.2013.05.006

    Article  CAS  Google Scholar 

  • Izumi H (1999) Electrolyzed water as a disinfectant for fresh-cut vegetables. J Food Sci 64:536–539

    Article  CAS  Google Scholar 

  • Kaavya R, Pandiselvam R, Abdullah S, Sruthi NU, Jayanath Y, Ashokkumar C, Ramesh SV (2021) Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 112:400–418. https://doi.org/10.1016/j.tifs.2021.04.011

    Article  CAS  Google Scholar 

  • Katsumata H, Okada T, Kaneco S, Suzuki T, Ohta K (2010) Degradation of fenitrothion by ultrasound/ferrioxalate/UV system. Ultrason Sonochem 17(1):200–206. https://doi.org/10.1016/j.ultsonch.2009.06.011

    Article  CAS  Google Scholar 

  • Khare S (2018) Pesticide contamination in India and its health effects. Int J Sci Tech Res Eng 3(4):8–14

    Google Scholar 

  • Kida M, Ziembowicz S, Koszelnik P (2018) Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Sep Purif Technol 192:457–464. https://doi.org/10.1016/j.seppur.2017.10.046

    Article  CAS  Google Scholar 

  • Komachiya M, Yamaguchi A, Hirai K, Kikuchi Y, Mizoue S, Takeda N, Ito M, Kato T, Ishihara K, Yamashita S (2014) Antiseptic effect of slightly acidic electrolyzed water on dental unit water systems. Bull Tokyo Dent Coll 55:77–86

    Article  CAS  Google Scholar 

  • Koubaa, M, Barba, F J, BursaćKovačević, D, Putnik, P, Santos, M D, Queirós, R P, Saraiva, J A (2018) Pulsed electric field processing of fruit juices. In G. Rajauria& B. K. Tiwari (Eds.), Fruit Juices Extraction, Composition, Quality and Analysis (pp. 437–449)

  • Koutchma, T. (2014). Fundamentals of HPP Technology. In Adapting High Hydrostatic Pressure for Food Processing Operations (pp. 5–10).

  • Krautkrämer, J., & Krautkrämer, H. (2013). Ultrasonic testing of materials. Springer Science & Business Media.

  • Király Z (2008) Sustainable agriculture and the use of pesticides. J Environ Sci Health B 31(3):283–291

    Article  Google Scholar 

  • Kumar, M, Chand, R, & Shah, K (2018) Mycotoxins and pesticides: toxicity and applications in food and feed.Microbial Biotechnology (pp. 207–252). Springer https://doi.org/10.1007/978-981-10-7140-9_11.

  • Lalah, J O, &Wandiga, S O (1996). The persistence and fate of malathion residues in stored beans (Phaseolus vulgaris) and maize (Zea mays). Pesticide Sci, 46(Robyt): 215–220

  • Lalah JO, Wandiga SO (2002) The effect of boiling on the removal of persistent malathion residues from stored grains. J Stored Prod Res 38(1):1–10 https://doi.org/10.1016/S0022-474X(00)00036-9

    Article  CAS  Google Scholar 

  • Lee WJ, Kim J, Park HW (2019) Improved corrosion resistance of Mg alloy AZ31B induced by selective evaporation of Mg using large pulsed electron beam irradiation. J Mater Sci Technol 35(Robyt):891–901. https://doi.org/10.1016/j.jmst.2018.12.004

    Article  CAS  Google Scholar 

  • Z Li Y Zhang Q Zhao C Wang Y Cui J Li A Chen G Liang B Jiao (2020) Occurrence, temporal variation, quality and safety assessment of pesticide residues on citrus fruits in China Chemosphere 127381https://doi.org/10.1016/j.chemosphere.2020.127381

  • Liang Y, Wang W, Shen Y, Liu Y, Liu X (2012) Effects of home preparation on organophosphorus pesticide residues in raw cucumber. Food Chemistry 133(Robyt):636–640. https://doi.org/10.1016/j.foodchem.2012.01.016

    Article  CAS  Google Scholar 

  • Liao X, Liu D, Xiang Q, Ahn J, Chen S, Ye X, Ding T (2017) Inactivation mechanisms of non-thermal plasma on microbes: a review. Food Control 75:83–91

    Article  CAS  Google Scholar 

  • Lin CS, Tsai PJ, Wu C, Yeh JY, Saalia FK (2006) Evaluation of electrolysed water as an agent for reducing methamidophos and dimethoate concentrations in vegetables. Int J Food Sci Technol 41(Robyt):1099–1104. https://doi.org/10.1111/j.1365-2621.2006.01192.x

    Article  CAS  Google Scholar 

  • Liu T, Dodds E, Leong SY, Eyres GT, Burritt DJ, Oey I (2017) Effect of pulsed electric fields on the structure and frying quality of “kumara” sweet potato tubers. Innov Food Sci Emerg Technol 39:197–208. https://doi.org/10.1016/j.ifset.2016.12.010

    Article  CAS  Google Scholar 

  • Liu X, Li Y, Zhou X, Luo K, Hu L, Liu K, Bai L (2018) Photocatalytic degradation of dimethoate in Bok choy using cerium-doped nano titanium dioxide. PLoS ONE 13(Robyt):1–16. https://doi.org/10.1371/journal.pone.0197560

    Article  CAS  Google Scholar 

  • Liu X, Zhan Y, Zhang Z, Pan L, Hu L, Liu K, Bai L (2019) Photocatalytic degradation of profenofos and triazophos residues in the Chinese cabbage, Brassica Chinensis, using ce-doped TiO 2. Catalysts 9(Robyt):1–12. https://doi.org/10.3390/catal9030294

    Article  CAS  Google Scholar 

  • Lozowicka B, Jankowska M, Hrynko I, Kaczynski P (2016) Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ Monit Assess 188(1):51. https://doi.org/10.1007/s10661-015-4850-6

    Article  CAS  Google Scholar 

  • Madhavan J, Kumar PSS, Anandan S, Grieser F, Ashokkumar M (2010) Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+. J Hazard Mater 177(1–3):944–949. https://doi.org/10.1016/j.jhazmat.2010.01.009

    Article  CAS  Google Scholar 

  • Madhu, B, Srinivas, M S, Srinivas, G, & Jain, S (2019) Ultrasonic technology and its applications in quality control, processing and preservation of food: a review Current J Appli Sci Technol 1–11https://doi.org/10.9734/CJAST/2019/46909

  • Malinowska-Pańczyk E (2020) Can high hydrostatic pressure processing be the best way to preserve human milk? Trends Food Sci Technol 101(January):133–138. https://doi.org/10.1016/j.tifs.2020.05.009

    Article  CAS  Google Scholar 

  • Marican A, Durán-Lara EF (2018) A review on pesticide removal through different processes. Environ Sci Pollution Res 25(Robyt):2051–2064. https://doi.org/10.1007/s11356-017-0796-2

    Article  CAS  Google Scholar 

  • Marshall R, C. (2012) Advances in electron beam and X-ray technologies for food irradiation. In: Fan X, Sommers CH (eds) Food Irradiation Research and Technology. John Wiley & Sons Inc, Hoboken, NJ, USA, pp 9–27

    Chapter  Google Scholar 

  • Mason TJ, Peters D (2002) Practical sonochemistry: power ultrasound uses and applications. Woodhead Publishing

    Book  Google Scholar 

  • Misra NN (2015) The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol 45(2):229–244. https://doi.org/10.1016/j.tifs.2015.06.005

    Article  CAS  Google Scholar 

  • Mori Y, Komatsu S, Hata Y (1997) Toxicity of electrolyzed strong acid aqueous solution-subacute toxicity test and effect on oral tissue in rats. Odontology-Tokyo 84:619–626

    CAS  Google Scholar 

  • Misra NN, Moiseev T, Sonal Patil SK, Pankaj PB, Mosnier JP, Keener KM, Cullen PJ (2014) Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technology 7(10):3045–3054. https://doi.org/10.1007/s11947-014-1356-0

    Article  CAS  Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177

    Article  CAS  Google Scholar 

  • Negi, P S, & Rastogi, N K (2019) Application of ultrasonic in food processing. In C. O. P (Barra-Carrasco. et al.), Non-thermal processing of foods (pp. 145–172). CRC Press

  • Niveditha A, Pandiselvam R, Prasath VA, Singh SK, Gul K, Kothakota A (2021) Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods-A review. Food Control 130:108338

    Article  CAS  Google Scholar 

  • Novickij V, Švediene J, Paškevičius A, Markovskaja S, Girkontaite I, Zinkevičiene A, Novickij J (2018) Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Future Microbiol 13:535–546. https://doi.org/10.2217/fmb-2017-0245

    Article  CAS  Google Scholar 

  • Ong K, Cash J, Zabik M, Siddiq M, Jones A (1996) Chlorine and ozone washes for pesticide removal from apples and processed apple sauce. Food Chem 55:153–160

    Article  CAS  Google Scholar 

  • Pallarés, N, Tolosa, J, Gavahian, M, Barba, F J, Mousavi-Khaneghah, A, & Ferrer, E (2020). The potential of pulsed electric fields to reduce pesticides and toxins. In F. J. Barba, O. Parniakov, & A. Wiktor (Eds.), Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow (pp. 141–152)

  • Pandiselvam R, Kaavya R, Jayanath Y, Veenuttranon K, Lueprasitsakul P, Divya V, Kothakota A, Ramesh S (2020) Ozone as a novel emerging technology for the dissipation of pesticide residues in foods – a review. Trends Food Sci Technol 97:38–54. https://doi.org/10.1016/j.tifs.2019.12.017

    Article  CAS  Google Scholar 

  • Pandya IY (2018) Pesticides and their applications in agriculture. Asian J Appl Sci Technol 2(2):894–900

    Google Scholar 

  • Patil PN, Gogate PR (2015) Degradation of dichlorvos using hybrid advanced oxidation processes based on Ultrasound. J Water Process Eng 8:e58–e65. https://doi.org/10.1016/j.jwpe.2014.10.012

    Article  Google Scholar 

  • V Philippe A Neveen A Marwa A-YA Basel (2020) Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health Food Control 107457https://doi.org/10.1016/j.foodcont.2020.107457

  • Pillai SD, Shayanfar S (2017) Electron beam technology and other irradiation technology applications in the food industry. Top Curr Chem 375(1):1–20. https://doi.org/10.1007/978-3-319-54145-7-9

    Article  CAS  Google Scholar 

  • Pizzolato TM, Dallegrave A (2020) Risk assessment of human exposure to pyrethroids through food. In: Eljarrat E. (eds) Pyrethroid Insecticides. The Handbook of Environmental Chemistry, 92. 245–258 Springer, Cham https://doi.org/10.1007/698_2019_429

  • Prithviraj V, Pandiselvam R, Babu AC, Kothakota A, Manikantan MR, Ramesh SV, Hebbar KB (2021) Emerging non-thermal processing techniques for preservation of tender coconut water. LWT 149:111850. https://doi.org/10.1016/j.lwt.2021.111850

    Article  CAS  Google Scholar 

  • H Qi Q Huang Y-C Hung (2018) Effectiveness of electrolyzed oxidizing water treatment in removing pesticide residues and its effect on produce quality Food Chem 561–568https://doi.org/10.1016/j.foodchem.2017.06.144

  • A Rajan J Stephen B BoopathyA Pare R Pandiselvam M Radhakrishnan (2022) Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments LWT 113193https://doi.org/10.1016/j.lwt.2022.113193

  • Raut-Jadhav S, Pinjari DV, Saini DR, Sonawane SH, Pandit AB (2016) Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives. Ultrason Sonochem 31:135–142. https://doi.org/10.1016/j.ultsonch.2015.12.015

    Article  CAS  Google Scholar 

  • Raut-Jadhav S, Saharan VK, Pinjari DV, Saini DR, Sonawane SH, Pandit AB (2013) Intensification of degradation of imidacloprid in aqueous solutions by combination of hydrodynamic cavitation with various advanced oxidation processes (AOPs). J Environ Chem Eng 1(4):850–857. https://doi.org/10.1016/j.jece.2013.07.029

    Article  CAS  Google Scholar 

  • Rodrigues FT, Marchioni E, Lordel-Madeleine S, Kuntz F, Villavicencio ALCH, Julien-David D (2020) Degradation of profenofos in aqueous solution and in vegetable sample by electron beam radiation. Radiat Phys Chem 166:108441. https://doi.org/10.1016/j.radphyschem.2019.108441

    Article  CAS  Google Scholar 

  • Sajjadi S, Khataee A, Bagheri N, Kobya M, Şenocak A, Demirbas E, Karaoğlu AG (2019) Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@ MOF-2 nanocomposite under ultrasound irradiation. J Ind Eng Chem 77:280–290. https://doi.org/10.1016/j.jiec.2019.04.049

    Article  CAS  Google Scholar 

  • Sakurai Y, Nakatsu M, Sato Y, Sato KJD (2003) Endoscope contamination from HBV- and HCV-positive patients and evaluation of a cleaning/disinfecting method using strongly acidic electrolyzed water. Dig Endosc 15(1):19–24. https://doi.org/10.1046/j.1443-1661.2003.00212.x

    Article  Google Scholar 

  • Santos, H M, & Lodeiro, C (2009). Ultrasound in chemistry: analytical applications, ed. J.-L. Capelo-Martinez

  • Sarangapani C, Scally L, Gulan M, Cullen PJ (2020) Dissipation of pesticide residues on grapes and strawberries using plasma-activated water. Food Bioprocess Technol 13(10):1728–1741. https://doi.org/10.1007/s11947-020-02515-9

    Article  CAS  Google Scholar 

  • Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Non-thermal plasma a tool for decontamination and disinfection. Biotechnol Adv 33(Robyt):1108–1119

    Article  Google Scholar 

  • Sekiguchi K, Sasaki C, Sakamoto K (2011) Synergistic effects of high-frequency ultrasound on photocatalytic degradation of aldehydes and their intermediates using TiO2 suspension in water. Ultrason Sonochem 18(1):158–163. https://doi.org/10.1016/j.ultsonch.2010.04.008

    Article  CAS  Google Scholar 

  • Sharma P, Oey I, Bremer P, Everett DW (2018) Microbiological and enzymatic activity of bovine whole milk treated by pulsed electric fields. Int J Dairy Technol 71(1):10–19. https://doi.org/10.1111/1471-0307.12379

    Article  CAS  Google Scholar 

  • Shriwas AK, Gogate PR (2011) Ultrasonic degradation of methyl Parathion in aqueous solutions: intensification using additives and scale up aspects. Sep Purif Technol 79(1):1–7. https://doi.org/10.1016/j.seppur.2011.02.034

    Article  CAS  Google Scholar 

  • Sivakumar M, Tatake PA, Pandit AB (2002) Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system. Chem Eng J 85(2–3):327–338. https://doi.org/10.1016/S1385-8947(01)00179-6

    Article  CAS  Google Scholar 

  • Sivaperumal P, Anand P, Riddhi L (2015) Rapid determination of pesticide residues in fruits and vegetables, using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry. Food Chem 168:356–365. https://doi.org/10.1016/j.foodchem.2014.07.072

    Article  CAS  Google Scholar 

  • RC Souza RB Portella PVNB Almeida CO Pinto P Gubert JD Santos da Silva EL do Rego 2020 Human milk contamination by nine organochlorine pesticide residues (OCPs) J Environ Sci Health B 1–9https://doi.org/10.1080/03601234.2020.1729630

  • Sung JM, Kwon KH, Kim JH, Jeong JW (2011) Effect of washing treatments on pesticide residues and antioxidant compounds in yuja (Citrus junos Sieb ex Tanaka). Food Sci. Biotechnol 20:767–773. https://doi.org/10.1007/s10068-011-0107-5

    Article  CAS  Google Scholar 

  • Sruthi NU, Josna K, Pandiselvam R, Kothakota A, Gavahian M, Khaneghah AM (2022) Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: a comprehensive review. Food Chem 368:130809. https://doi.org/10.1016/j.foodchem.2021.130809

    Article  CAS  Google Scholar 

  • Tongjai P, Hongsibsong S, Sapbamrer R (2021) The efficiency of various household processing for removing chlorpyrifos and cypermethrin in Chinese kale and Pakchoi. Q Assur Safety Crops Foods 13(3):45–52

    Article  CAS  Google Scholar 

  • Thangavadivel K, Megharaj M, Smart RSC, Lesniewski PJ, Naidu R (2009) Application of high frequency ultrasound in the destruction of DDT in contaminated sand and water. J Hazard Mater 168(2–3):1380–1386. https://doi.org/10.1016/j.jhazmat.2009.03.024

    Article  CAS  Google Scholar 

  • Thihara Rodrigues, F, Marchioni, E, Lordel-Madeleine, S, Kuntz, F, Casañas Haasis Villavicencio, A L, & Julien-David, D (2020). Degradation of profenofos in aqueous solution and in vegetable sample by electron beam radiation. Radiation Phys  Chem, 166(August 2019) 108441 https://doi.org/10.1016/j.radphyschem.2019.108441

  • Torbati M, Farajzadeh MA, Torbati M, Nabil AAA, Mohebbi A, Mogaddam MRA (2018) Development of salt and pH-induced solidified floating organic droplets homogeneous liquid-liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry. Talanta 176:565–572. https://doi.org/10.1016/j.talanta.2017.08.074

    Article  CAS  Google Scholar 

  • U.S. FDA (2018) Irradiation of Food & Packaging. Retrieved June 22, 2020

  • Wang CK, Shih YH (2016) Facilitated ultrasonic irradiation in the degradation of diazinon insecticide. Sustain Environ Res 26(Robyt):110–116. https://doi.org/10.1016/j.serj.2016.04.003

    Article  CAS  Google Scholar 

  • Weavers LK, Malmstadt N, Hoffmann MR (2000) Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environ Sci Technol 34(7):1280–1285. https://doi.org/10.1021/es980795y

    Article  CAS  Google Scholar 

  • Wen H-W, Hsieh M-F, Wang Y-T, Chung H-P, Hsieh P-C, Lin I-H, Chou F-I (2010) Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination. J Hazard Mater 176(1–3):280–287. https://doi.org/10.1016/j.jhazmat.2009.11.025

    Article  CAS  Google Scholar 

  • Woldemariam HW, Emire SA (2019) High pressure processing of foods for microbial and mycotoxins control: current trends and future prospects. Cogent Food Agri 5(1):1622184. https://doi.org/10.1080/23311932.2019.1622184

    Article  CAS  Google Scholar 

  • Yamamoto K (2017) Food processing by high hydrostatic pressure. Biosci Biotechnol Biochem 81(4):672–679. https://doi.org/10.1080/20024091054274

    Article  CAS  Google Scholar 

  • Zaouak A, Noomen A, Jelassi H (2020) Gamma radiation-induced degradation of the phenoxy acid herbicide diclofop-methyl in aqueous solutions. Appl Radiat Isot 156:108939. https://doi.org/10.1016/j.apradiso.2019.108939

    Article  CAS  Google Scholar 

  • Zhang M, Dong H, Zhao L, Wang D-X, Meng D (2019) A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ 670:110–121. https://doi.org/10.1016/j.scitotenv.2019.03.180

    Article  CAS  Google Scholar 

  • Zhang Y, Hou Y, Zhang Y, Chen J, Chen F, Liao X, Hu X (2012) Reduction of diazinon and dimethoate in apple juice by pulsed electric field treatment. J Sci Food Agric 92(4):743–750. https://doi.org/10.1002/jsfa.4636

    Article  CAS  Google Scholar 

  • Zhang Y, Xiao Z, Chen F, Ge Y, Wu J, Hu X (2010) Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Ultrason Sonochem 17(1):72–77. https://doi.org/10.1016/j.ultsonch.2009.06.003

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Chen F, Zhang H, Hu X (2012) Effect of sonication on eliminating of phorate in apple juice. Ultrason Sonochem 19(1):43–48. https://doi.org/10.1016/j.ultsonch.2011.05.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pandiselvam, R. Kaavya, Anandu Chandra Khanashyam: investigation, data curation, conceptualization, methodology, writing – original draft. Divya, V and S. Abdulla, Fawzan Sigma Aurum: supervision, literature searching, writing and editing. Anjineyulu Kothakota and S.V. Ramesh: software, conceptualization, methodology, writing – original draft. Amin Mousavi Khaneghah: resources, supervision, review and editing.

Corresponding author

Correspondence to Amin Mousavi Khaneghah.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors declare their Consent to participate in this article.

Consent for publication

The authors declare their Consent for publication in this article.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiselvam, R., Kaavya, R., Khanashyam, A.C. et al. Research trends and emerging physical processing technologies in mitigation of pesticide residues on various food products. Environ Sci Pollut Res 29, 45131–45149 (2022). https://doi.org/10.1007/s11356-022-20338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20338-3

Keywords

Navigation