Skip to main content
Log in

Nusselt number and friction factor correlation development for arc-shape apex upstream artificial roughness in solar air heater

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present work, an outdoor experimental investigation for solar air heater with arc-shape apex upstream flow by the use of circular cross-sectional wires as roughness elements has been carried out. The roughness elements have been expressed in non-dimensionalizing geometric parameters as relative roughness pitch (P/e), relative roughness height (e/D), and flow attack angle (α/60), and the range of these parameters varies from 8 to 15, 0.0454, and 0.75 to 1.25, respectively. For evaluation of performance of the roughened SAH, a novel parameter has been proposed and introduced in the present investigation which is thermo-hydraulic improvement parameter (THIP). With the use of present roughness geometry, considerably, Nusselt number enhancement ratio (NNER) and friction factor enhancement ratio (FFER) have been observed. The maximum NNER and FFER values obtained experimentally are about 2.83 and 1.79 times, respectively, while the maximum THIP obtained is 157.49% higher than the smooth SAH. Using the experimental results, correlations for the output parameters (Nusselt number and friction factor) as a function of input parameters (flow and roughness) have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

A c :

Surface area of absorber plate (m2)

A o :

Cross-sectional area of orifice (m2)

C paSpecifi:

C heat of air (J/kg K)

C d :

Coefficient of discharge for orifice meter

e :

Height of roughness (m)

G :

Mass velocity of air (m/s)

h :

Heat transfer coeffcient (W/m2K)

h w :

Convective heat transfer coefficient due to wind (W/m2K)

H :

SAH duct depth (m)

I :

Intensity of global solar radiation (insolation) (W/m2)

K a :

Thermal conductivity of air (W/mK)

K g :

Thermal conductivity of glass cover (W/mK)

K i :

Thermal conductivity of glass wool insulation (W/mK)

L :

Length of solar air heater duct (m)

L i :

Spacing between glass cover and absorber plate (m)

L g :

Thickness of glass cover (m)

\(\dot{m}\) :

Mass flow rate of air (kg/s)

ΔP :

Pressure drop across the collector duct (N/m2)

p a :

Atmospheric pressure (N/m2)

Qu :

Useful heat gain (W)

V :

Velocity of air (m/s)

T sun :

Sun temperature (K)

\({T}_{g}\) :

Cover glass temperature (°C)

T fo :

Outlet air temperature (°C)

\({T}_{s}\) :

Sky temperature (K)

T fi :

Inlet air temperature (°C)

\({T}_{a}\) :

Ambient temperature (°C)

\({T}_{pm}\) :

Mean absorber plate temperature (°C)

\({T}_{fm}\) :

Mean air temperature (°C)

T bm :

Mean temperature of bottom plate (°C)

e/D :

Relative roughness height

f :

Friction factor

Pr :

Prandtl number

P/e :

Relative roughness pitch

Re :

Reynolds number

Nu :

Nusselt number

\(\mu\) :

Absolute viscosity of air (N s/m2)

\(\rho\) :

Air density (kg/m3)

ρm :

Manometric fluid density (kg/m3)

\(\alpha\) :

Angle of attack (°)

σ:

Stefan-Boltzmann’s constant (W/m2 K4)

\({\delta }_{i}\) :

Thickness of insulation (m)

\(\beta\) :

Tilt angle of collector surface (°)

\(\nu\) :

Air kinematic viscosity (m2/s)

\(\alpha /90\) :

Relative angle of attack

\({\varepsilon }_{p}\) :

Emissivity of absorber plate

\({\eta }_{th}\) :

Thermal efficiency

\({\beta }_{R}\) :

Ratio of orifice diameter (D2) to pipe internal diameter (D1)

\({\eta }_{MTHIP}\) :

Modified thermo-hydraulic improvement parameter

T:

Temperature

GI:

Galvanized iron

SAH:

Solar air heater

R:

Roughened

S:

Smooth

r:

Roughened

s:

Smooth

References

  • Aharwal KR, Gandhi BK, Saini JS (2008) Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew Energy 33:585–596

    Article  CAS  Google Scholar 

  • ASHRAE standard 93–97 (1977) Methods of Testing to Determine the Thermal Performance of Solar Collectors,” ASHRAE, New York, Standard No. 93-1977

  • Bhatti MS, Shah RK (1987) Turbulent flow convective heat transfer, in: Kakac S., Sash R.K., Aung W (Eds.), Handbook of single phase convective heat transfer, John Willey & Sons, New York

  • Cortes A, Piacentini R (1990) Improvement of efficiency of a bare solar collector by means of turbulence promoters. Appl Energy 36:253–261

    Article  Google Scholar 

  • Duffie JA, Beckman WA (1974) Solar engineering of thermal processes, 1st edn. Wiley, New York

    Google Scholar 

  • Garg HP, Prakash J (2000) Solar energy fundamentals and applications, 1st edn. Tata McGraw-Hill, New Delhi

    Google Scholar 

  • Gill RS, Hans VS, Saini JS, Singh S (2017) Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct. Renew Energy 104:148–162

    Article  CAS  Google Scholar 

  • Ghritlahre HK, Sahu PK, Chand S (2020) Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – an experimental study. Sol Energy 199:173–182

    Article  Google Scholar 

  • Gupta D, Solanki SC, Saini JS (1997) Thermohydraulic performance of solar air heaters with roughened absorber plates. Sol Energy 61:33–42

    Article  Google Scholar 

  • Hans VS, Saini RP, Saini JS (2010) Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-ribs. Sol Energy 84:898–911

    Article  Google Scholar 

  • Kabeel AE, Hamed MH, Omara ZM, Kandeal AW (2017) Solar air heaters design configurations, improvement methods and applications – a detailed review. Renew Sust Energ Rev 70:1189–1206

  • Kumar R, Varun G, Kumar M (2020a) Effect of providing gap in multiple-arc rib-roughened solar air heater - part 1. J Mech Sci Technol 34:2619–2625

    Article  Google Scholar 

  • Kumar R, Goel V, Bhattacharyya S, Tyagi VV, Abusorrah AM (2021a) Experimental investigation for heat and flow characteristics of solar air heater having symmetrical gaps in multiple-arc rib pattern as roughness elements. Experimental Heat Transfer 35(4):466–483. https://doi.org/10.1080/08916152.2021.1905752

  • Kumar R, Varun G, Paramvir S, Abhishek S, Abhishek SK, Amit Rai (2019) Performance evaluation and optimization of solar assisted air heater with discrete multiple arc-shaped ribs. Journal of Energy Storage 26:100978. https://doi.org/10.1016/j.est.2019.100978

  • Kumar S, Kumar R, Goel V, Bhattacharyya S, Issakhov (2021b) Exergetic performance estimation for roughened triangular duct used in solar air heaters., A. J Therm Anal Calorim 145:1661–1672

  • Kumar R, Abhishek SK, Paramvir S, Varun G, Kumar K (2020b) Innovatively arranged curved-ribbed solar-assisted air heater: performance and correlation development for heat and flow characteristics. J Sol Energy Eng 142(3):031011

  • Kumar A, Bhagoria JL, Sarviya RM (2009) Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs. Energy Convers Manage 50:2106–2117

    Article  CAS  Google Scholar 

  • Kumar K, Prajapati D, Samir S (2017) Heat transfer and friction factor correlations development for solar air heater duct artificially roughened with ‘S’ shape ribs. Exp Therm Fluid Sci 82:249–261. https://doi.org/10.1016/j.expthermflusci.2016.11.012

    Article  CAS  Google Scholar 

  • Kumar V (2019) Nusselt number and friction factor correlations of three sides concave dimple roughened solar air heater, Renewable Energy, Vol. PP- 135:355–377

    Google Scholar 

  • Kline SJ, McClintock FA (1953) Describing uncertainties in single sample experiments. Mech Eng 75:3–8

    Google Scholar 

  • Kumar SM, Manoj Sharma MM, Matheswaran KM (2019) On the use of longitudinal fins to enhance the performance in rectangular duct of solar air heaters- a review. J Sol Energy Engg 141(3):1–16

    Google Scholar 

  • Kumar SM, Prasad RK (2016) A review of the thermal and hydrodynamic performance of solar air heater with roughened absorber plates. J Enhanced Heat Transfer 23(1):47–89

    Article  Google Scholar 

  • Kumar Sahu Mukesh, Priyam A, Mishra S, Bishnoi P (2021) A detailed review on research, technology, configurations and application of wire ribs as artificial roughness in rectangular solar air heater duct. J Process Mech Eng 235:1211–1234

    Article  Google Scholar 

  • Lanjewar A, Bhagoria JL, Sarviya RM (2011a) Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy 36:4531–4541

    Article  Google Scholar 

  • Lanjewar A, Bhagoria JL, Sarviya RM (2011b) Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness. Exp Thermal Fluid Sci 35:986–995

    Article  Google Scholar 

  • Lewis MJ (1975) Optimizing the thermohydraulic performance of rough surfaces. Int J Heat Mass Transf 18:1243–1248

    Article  Google Scholar 

  • Momin AME, Saini JS, Solanki SC (2002) Heat transfer and friction in solar air heater duct with v-shaped rib roughness on absorber plate. Int J Heat Mass Transfer 45:3383–3396

    Article  Google Scholar 

  • Pandey NK, Bajpai VK, Varun., (2016) Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater. Sol Energy 134:314–326

    Article  Google Scholar 

  • Rohsenow WM, Hartnett JP (1998) Cho YI (Eds.), Handbook of heat transfer, McGraw Hill, New York

  • Sahu MK, Prasad, RK (2016) Investigation on optimal thermohydraulic performance of a solar air heater having arc shaped wire rib roughness on absorber plate.International Journal of Thermodynamics 19(4):214–224

  • Sahu MK, Sharma M, Matheswaran MM, Maitra K (2019) On the use of longitudinal fins to enhance the performance in rectangular duct of solar air heaters—A Review. Journal of Solar Energy Engineering 141(3):1–16

    Article  Google Scholar 

  • Sahu MK, Prasad RK (2016a) Investigation on optimal thermohydraulic performance of a solar air heater having arc shaped wire rib roughness on absorber plate. Int J Thermodyn 19:214–224

    Article  CAS  Google Scholar 

  • Sahu MK, Prasad RK (2016b) Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate. Renew Energy 96:233–243

    Article  Google Scholar 

  • Sahu MK, Prasad RK (2017a) Thermohydraulic performance analysis of an arc shape wire roughened solar air heater. Renewable Energy 108:598–614

    Article  Google Scholar 

  • Sahu MK, Prasad RK (2017b) Entropy generation and thermodynamic analysis of solar air heaters with artificial roughness on absorber plate. Archives of Thermodynamics 38(3):23–48

    Article  Google Scholar 

  • Sahu MK, Matheswaran MM, Bishnoi P (2021) Experimental study of thermal performance and pressure drop on a solar air heater with different orientations of roughness. J Therm Anal Calorim 144:1417–1413

    Article  CAS  Google Scholar 

  • Saini SK, Saini RP (2008) Development of correlations for Nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Sol Energy 82:1118–1130

    Article  CAS  Google Scholar 

  • Saini RP, Singal SK (2008) Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on absorber plate. Renew Energy 133:1398–405

    Google Scholar 

  • Singh AP, Varun S (2014) Effect of artificial roughness on heat transfer and friction characteristics having multiple arc shaped roughness element on the absorber plate. Sol Energy 105:479–493

    Article  Google Scholar 

  • Sukhatme SP, Nayak JP (2011) Solar energy, 3rd edn. Tata McGraw Hill, New Delhi

    Google Scholar 

  • Webb RL, Eckert ERG (1972) Application of rough surface to heat exchanger design. Int J Heat Mass Transf 15:1647–1658

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the manuscript. Material preparation, data collection, and analysis were performed by all the authors: Mukesh Kumar Sahu, Manjeet Kharub, M. M. Matheswaran, and Rajneesh Kumar.

Corresponding author

Correspondence to Manjeet Kharub.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Various performance parameters and improvement factors.

Table 4, 5, 6, 7, 8, 9

Table 4 Various performance parameters and improvement factors for arc-shape rib SAH (Saini and Saini (2008))
Table 5 Various performance parameters and improvement factors for V-shape rib SAH (Momin et al. (2002))
Table 6 Various performance parameters and improvement factors for W-shape rib SAH (Lanjewar et al.(2011a, b))
Table 7 Various performance parameters and improvement factors for inclined continuous rib SAH (Gupta et al. (1997))
Table 8 Various performance parameters and improvement factors for discrete W-shape rib SAH (Kumar et al.(2009))
Table 9 Various performance parameters and improvement factors for the present study

Appendix 2

Uncertainty analysis.

A methodology for evaluation of the uncertainty in experimental results which has been suggested by Kline and McClintock (1953) is used in the present work. The procedure is as below:

If a parameter is calculated using certain measured quantities as,

$$Y=y\left({x}_{1},{x}_{2},{x}_{3}\cdots \cdots \cdots \cdots {x}_{n}\right)$$

Then, uncertainty in the measurement of “y” is given as follows:

$$\frac{\delta y}{y} = \left[ {\left( {\frac{\partial y}{{\partial x_{1} }}\delta x_{1} } \right)^{2} + \left( {\frac{\partial y}{{\partial x_{2} }}\delta x_{2} } \right)^{2} + \left( {\frac{\partial y}{{\partial x_{3} }}\delta x_{3} } \right)^{2} + ......\left( {\frac{\partial y}{{\partial x_{n} }}\delta x_{n} } \right)^{2} } \right]^{0.5}$$
  1. (1)

    Area of absorber plate (Ac):

    $$\begin{array}{*{20}c} {A_{c} = W \times L} \\ {\frac{{\delta A_{c} }}{{A_{c} }} = \left[ {\left( {\frac{\delta L}{L}} \right)^{2} + \left( {\frac{\delta W}{W}} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  2. (2)

    Cross-sectional area of air flow duct (A)

    $$\begin{array}{*{20}c} {A = W \times H} \\ {\frac{\delta A}{A} = \left[ {\left( {\frac{\delta W}{W}} \right)^{2} + \left( {\frac{\delta H}{H}} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  3. (3)

    Perimeter of duct (P)

    $$\begin{array}{*{20}c} {P = 2(W + H)} \\ {\frac{\delta P}{P} = \left[ {\left( {2.\frac{\delta W}{W}} \right)^{2} + \left( {2\frac{\delta H}{H}} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  4. (4)

    Hydraulic diameter of duct (Dh)

    $$\begin{array}{*{20}c} {D_{h} = \frac{2.WH}{{\left( {W + H} \right)}}} \\ {\frac{{\delta D_{h} }}{{D_{h} }} = \left[ {\left( {\frac{\delta A}{A}} \right)^{2} + \left( {\frac{\delta P}{P}} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  5. (5)

    Area of orifice meter (Ao)

    $$\begin{array}{*{20}c} {A_{o} = \frac{\pi }{4} \times D_{2}^{2} } \\ {\frac{{\delta A_{o} }}{{A_{o} }} = \left[ {\frac{{2\delta D_{2} }}{{D_{2} }}} \right]} \\ \end{array}$$
  6. (6)

    Density (ρ)

    $$\begin{array}{*{20}c} {\rho = \frac{{P_{atm} }}{{R.T_{fo} }}} \\ {\frac{\delta \rho }{\rho } = \left[ {\left( {\frac{{\delta P_{atm} }}{{P_{atm} }}} \right)^{2} + \left( {\frac{{\delta T_{o} }}{{T_{o} }}} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  7. (7)

    Mass flow rate (m)

    $$\begin{array}{*{20}c} {m = C_{d} .A_{o} \sqrt {\frac{{2\rho (\Delta P_{o} )}}{{1 - \beta_{R}^{4} }}} } \\ {\frac{\delta m}{m} = \left[ {\left( {\frac{{\delta C_{d} }}{{C_{d} }}} \right)^{2} + \left( {\frac{{\delta A_{o} }}{{A_{o} }}} \right)^{2} + \left( {2\frac{\delta \rho }{\rho }} \right)^{2} + \left( {\frac{{\delta (\Delta P_{o} )}}{{(\Delta P_{o} )}}} \right)^{2} \left( {\frac{{2.\beta_{R}^{3} .\delta \beta_{R} }}{{1 - \beta_{R}^{2} }}} \right)} \right]^{0.5} } \\ \end{array}$$
  8. (8)

    Reynolds number (Re)

    $$\begin{array}{*{20}c} {{\text{Re}} = \frac{{\rho VD_{h} }}{\mu }} \\ {\frac{{\delta {\text{Re}} }}{{\text{Re}}} = \left[ {\left( {\frac{\delta V}{V}} \right)^{2} + \left( {\frac{\delta \rho }{\rho }} \right)^{2} + \left( {\frac{{\delta D_{h} }}{{D_{h} }}} \right)^{2} + \left( {\frac{\delta \mu }{\mu }} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  9. (9)

    Useful heat gain (Qu)

    $$\begin{array}{*{20}c} {Qu = \dot{m}C_{pa} .\Delta T} \\ {\frac{\delta Qu}{{Qu}} = \left[ {\left( {\frac{\delta m}{m}} \right)^{2} + \left( {\frac{{\delta C_{pa} }}{{C_{pa} }}} \right)^{2} + \left( {\frac{\delta (\Delta T)}{{\Delta T}}} \right)^{2} } \right]^{0.5} } \\ \end{array}$$
  10. (10)

    (10). Heat transfer coefficient (h)

    $$\frac{\delta h}{h} = \left[ {\left( {\frac{\delta Qu}{{Qu}}} \right)^{2} + \left( {\frac{{\delta A_{c} }}{{A_{c} }}} \right)^{2} + \left( {\frac{{\delta (T_{pm} )}}{{(T_{pm} )}}} \right)^{2} } \right]^{0.5}$$
  11. (11)

    (11). Nusselt number (Nu)

    $$\frac{\delta Nu}{{Nu}} = \left[ {\left( {\frac{\delta h}{h}} \right)^{2} + \left( {\frac{{\delta D_{h} }}{{D_{h} }}} \right)^{2} + \left( {\frac{{\delta (K_{a} )}}{{(K_{a} )}}} \right)^{2} } \right]^{0.5}$$
  12. (12)

    Friction factor (f)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M.K., Kharub, M. & Matheswaran, M.M. Nusselt number and friction factor correlation development for arc-shape apex upstream artificial roughness in solar air heater. Environ Sci Pollut Res 29, 65025–65042 (2022). https://doi.org/10.1007/s11356-022-20222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20222-0

Keywords

Navigation