Skip to main content
Log in

Photoreduction of Cr(VI) in wastewater by anodic nanoporous Nb2O5 formed at high anodizing voltage and electrolyte temperature

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, nanoporous anodic film was produced by anodization of niobium, Nb in a fluoride ethylene glycol electrolyte. The effect of anodization voltage and electrolyte temperature was studied to find an optimum condition for circular, ordered, and uniform pore formation. The diameter of the pores was found to be larger when the applied voltage was increased from 20 to 80 V. The as-anodized porous film was also observed to comprise of nanocrystallites which formed due to high field-induced crystallization. The nanocrystallites grew into orthorhombic Nb2O5 after post-annealing treatment. The Cr(VI) photoreduction property of both the as-anodized and annealed Nb2O5 samples obtained using an optimized condition (anodization voltage: 60 V, electrolyte temperature: 70 °C) was compared. Interestingly, the as-anodized Nb2O5 film was found to display better photoreduction of Cr(VI) than annealed Nb2O5. However, in terms of stability, the annealed Nb2O5 presented high photocatalytic efficiency for each cycle whereas the as-anodized Nb2O5 showed degradation in photocatalytic performance when used continually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  • Ali I, Park K, Kim S-R, Kim J-O (2019) Electrochemical anodization of graphite oxide-TiO2 nanotube composite for enhanced visible light photocatalytic activity. Environ Sci Pollut Res 26(2):1072–1081. https://doi.org/10.1007/s11356-017-8571-y

    Article  CAS  Google Scholar 

  • Alias N, Hussain Z, Tan WK, Kawamura G, Muto H, Matsuda A, Lockman Z (2021) Nanoporous anodic Nb2O5 with pore-in-pore structure formation and its application for the photoreduction of Cr(VI). Chemosphere 283:131231. https://doi.org/10.1016/j.chemosphere.2021.131231

    Article  CAS  Google Scholar 

  • Alias N, Rosli SA, Hussain Z, Kian TW, Matsuda A, Lockman Z (2019) Anodised porous Nb2O5 for photoreduction of Cr(VI). Materials Today: Proceedings 17:1033–1039. https://doi.org/10.1016/j.matpr.2019.06.505

    Article  CAS  Google Scholar 

  • Altomare M, Cha G, Schmuki P (2020) Anodic nanoporous niobium oxide layers grown in pure molten ortho-phosphoric acid. Electrochim Acta 344:136158. https://doi.org/10.1016/j.electacta.2020.136158

    Article  CAS  Google Scholar 

  • Bashirom N, Tan WK, Kawamura G, Matsuda A, Lockman Z (2020) Comparison of ZrO2, TiO2, and α-Fe2O3 nanotube arrays on Cr(VI) photoreduction fabricated by anodization of Zr, Ti, and Fe foils. Mater Res Express 7(5):055013. https://doi.org/10.1088/2053-1591/ab8ee3

    Article  CAS  Google Scholar 

  • Bhembe YA, Dlamini LN (2020) Photoreduction of chromium(VI) by a composite of niobium(V) oxide impregnated with a Ti-based MOF. J Environ Sci Heal A:1Bhembe18. https://doi.org/10.1080/10934529.2020.1763706

  • Bhembe YA, Lukhele LP, Hlekelele L, Ray SS, Sharma A, Vo D-VN, Dlamini LN (2020) Photocatalytic degradation of nevirapine with a heterostructure of few-layer black phosphorus coupled with niobium(V) oxide nanoflowers (FL-BP@Nb2O5). Chemosphere 261:128159. https://doi.org/10.1016/j.chemosphere.2020.128159

    Article  CAS  Google Scholar 

  • Castro DC, Cavalcante RP, Jorge J, Martines MA, Oliveira L, Casagrande GA, Machulek A Jr (2016) Synthesis and characterization of mesoporous Nb2O5 and its application for photocatalytic degradation of the herbicide methylviologen. J Braz Chem Soc 27(2):303–313

    CAS  Google Scholar 

  • Djellabi R, Ghorab MF (2015) Photoreduction of toxic chromium using TiO2-immobilized under natural sunlight: effects of some hole scavengers and process parameters. Desalin Water Treat 55(7):1900–1907. https://doi.org/10.1080/19443994.2014.927335

    Article  CAS  Google Scholar 

  • Du Y, Zhang S, Wang J, Wu J, Dai H (2018) Nb2O5 nanowires in-situ grown on carbon fiber: a high-efficiency material for the photocatalytic reduction of Cr(VI). J Environ Sci 66:358–367. https://doi.org/10.1016/j.jes.2017.04.019

    Article  CAS  Google Scholar 

  • Falk G, Borlaf M, López-Muñoz MJ, Fariñas JC, Rodrigues Neto JB, Moreno R (2017) Microwave-assisted synthesis of Nb2O5 for photocatalytic application of nanopowders and thin films. J Mater Res 32(17):3271–3278. https://doi.org/10.1557/jmr.2017.93

    Article  CAS  Google Scholar 

  • Goswami M, Borah L, Mahanta D, Phukan P (2014) Equilibrium modeling, kinetic and thermodynamic studies on the adsorption of Cr(VI) using activated carbon derived from matured tea leaves. J Porous Mat 21(6):1025–1034. https://doi.org/10.1007/s10934-014-9852-1

    Article  CAS  Google Scholar 

  • Habazaki H, Ogasawara T, Konno H, Shimizu K, Nagata S, Skeldon P, Thompson G (2007) Field crystallization of anodic niobia. Corros Sci 49(2):580–593

    Article  CAS  Google Scholar 

  • Hashemzadeh F, Gaffarinejad A, Rahimi R (2015) Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation. J Hazard Mater 286:64–74. https://doi.org/10.1016/j.jhazmat.2014.12.038

    Article  CAS  Google Scholar 

  • Hsu H-T, Chen S-S, Tang Y-F, Hsi H-C (2013) Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes. J Hazard Mater 248–249:97–106. https://doi.org/10.1016/j.jhazmat.2012.12.058

    Article  CAS  Google Scholar 

  • Islam JB, Furukawa M, Tateishi I, Kawakami S, Katsumata H, Kaneco S (2019) Enhanced photocatalytic reduction of toxic Cr(VI) with Cu modified ZnO nanoparticles in presence of EDTA under UV illumination. SN Appl Sci 1(10):1–11

    Google Scholar 

  • Jackson N, Hendy J (1974) The use of niobium as an anode material in liquid filled electrolytic capacitors. Electrocomp Sci Tech 1(1):27–37

    Article  CAS  Google Scholar 

  • Jehng JM, Wachs IE (1991) Structural chemistry and Raman spectra of niobium oxides. Chem Mater 3(1):100–107

    Article  CAS  Google Scholar 

  • Josué T, Almeida L, Lopes M, Santos O, Lenzi G (2020) Cr(VI) reduction by photocatalytic process: Nb2O5 an alternative catalyst. J. Environ. Manage. 268:110711

    Article  Google Scholar 

  • Kim G, Choi W (2010) Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light. Appl Catal B-Environ 100(1):77–83. https://doi.org/10.1016/j.apcatb.2010.07.014

    Article  CAS  Google Scholar 

  • Kim K, Kim M-S, Cha P-R, Kang SH, Kim J-H (2016) Structural modification of self-organized nanoporous niobium oxide via hydrogen treatment. Chem Mater 28(5):1453–1461. https://doi.org/10.1021/acs.chemmater.5b04845

    Article  CAS  Google Scholar 

  • Kosmulski M (1997) Attempt to determine pristine points of zero charge of Nb2O5, Ta2O5, and HfO2. Langmuir 13(23):6315–6320

    Article  CAS  Google Scholar 

  • Kreissl HT, Li MM, Peng Y-K, Nakagawa K, Hooper TJ, Hanna JV, Shepherd A, Wu T-S, Soo Y-L, Tsang SE (2017) Structural studies of bulk to nanosize niobium oxides with correlation to their acidity. J Am Chem Soc 139(36):12670–12680

    Article  CAS  Google Scholar 

  • Lee S, Teshima K, Niina Y, Suzuki S, Yubuta K, Shishido T, Endo M, Oishi S (2009) Highly crystalline niobium oxide converted from flux-grown K4Nb6O17 crystals. CrystEngComm 11(11):2326–2331

    Article  CAS  Google Scholar 

  • Litter MI (2015) Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl Chem 87(6):557–567

    Article  CAS  Google Scholar 

  • Lopes OF, Paris EC, Ribeiro C (2014) Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Appl Catal B-Environ 144:800–808. https://doi.org/10.1016/j.apcatb.2013.08.031

    Article  CAS  Google Scholar 

  • López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Techn 61(1):1–7. https://doi.org/10.1007/s10971-011-2582-9

    Article  CAS  Google Scholar 

  • Luo S, Xiao Y, Yang L, Liu C, Su F, Li Y, Cai Q, Zeng G (2011) Simultaneous detoxification of hexavalent chromium and acid orange 7 by a novel Au/TiO2 heterojunction composite nanotube arrays. Sep Purif Technol 79(1):85–91. https://doi.org/10.1016/j.seppur.2011.03.019

    Article  CAS  Google Scholar 

  • Macak JM, Schmuki P (2006) Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 52(3):1258–1264. https://doi.org/10.1016/j.electacta.2006.07.021

    Article  CAS  Google Scholar 

  • Maurer S, Ko E (1992) Structural and acidic characterization of niobia aerogels. J Catal 135(1):125–134

    Article  CAS  Google Scholar 

  • Meichtry JM, Brusa M, Mailhot G, Grela MA, Litter MI (2007) Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: relevance of Cr(V)–citrate complexes. Appl Catal B-Environ 71(1):101–107. https://doi.org/10.1016/j.apcatb.2006.09.002

    Article  CAS  Google Scholar 

  • Meichtry JM, Colbeau-Justin C, Custo G, Litter MI (2014) TiO2-photocatalytic transformation of Cr(VI) in the presence of EDTA: comparison of different commercial photocatalysts and studies by Time Resolved Microwave Conductivity. Appl Catal B-Environ 144:189–195. https://doi.org/10.1016/j.apcatb.2013.06.032

    Article  CAS  Google Scholar 

  • Nakajima K, Baba Y, Noma R, Kitano MN, Kondo J, Hayashi S, Hara M (2011) Nb2O5·nH2O as a heterogeneous catalyst with water-tolerant lewis acid sites. J. Am. Chem. Soc. 133(12):4224–4227. https://doi.org/10.1021/ja110482r

    Article  CAS  Google Scholar 

  • Ng CY, Abdul Razak K, Lockman Z (2015) Effect of annealing temperature on anodized nanoporous WO3. J Porous Mat 22(2):537–544. https://doi.org/10.1007/s10934-015-9924-x

    Article  CAS  Google Scholar 

  • Nyein N, Tan WK, Kawamura G, Matsuda A, Lockman Z (2017) TiO2 nanotube arrays formation in fluoride/ethylene glycol electrolyte containing LiOH or KOH as photoanode for dye-sensitized solar cell. J Photoch Photobio A 343:33–39. https://doi.org/10.1016/j.jphotochem.2017.04.015

    Article  CAS  Google Scholar 

  • Othmani A, Magdouli S, Senthil Kumar P, Kapoor A, Chellam PV, Gökkuş Ö (2022) Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: a review. Environ Res 204:111916. https://doi.org/10.1016/j.envres.2021.111916

    Article  CAS  Google Scholar 

  • Ou JZ, Rani RA, Ham M-H, Field MR, Zhang Y, Zheng H, Reece P, Zhuiykov S, Sriram S, Bhaskaran M, Kaner RB, Kalantar-zadeh K (2012) Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 6(5):4045–4053. https://doi.org/10.1021/nn300408p

    Article  CAS  Google Scholar 

  • Pittman RM, Bell AT (1993) Raman studies of the structure of niobium oxide/titanium oxide (Nb2O5 TiO2). J. Phys. Chem. 97(47):12178–12185

    Article  CAS  Google Scholar 

  • Prakruthi K, Ujwal MP, Yashas SR, Mahesh B, Kumara Swamy N, Shivaraju HP (2021) Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17361-1

    Article  Google Scholar 

  • Rani RA, Zoolfakar AS, O’Mullane AP, Austin MW, Kalantar-Zadeh K (2014) Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J Mater Chem A 2(38):15683–15703. https://doi.org/10.1039/c4ta02561j

    Article  CAS  Google Scholar 

  • Rani RA, Zoolfakar AS, Ou JZ, Kadir RA, Nili H, Latham K, Sriram S, Bhaskaran M, Zhuiykov S, Kaner RB (2013) Reduced impurity-driven defect states in anodized nanoporous Nb2O5: the possibility of improving performance of photoanodes. Chem Commun 49(56):6349–6351

    Article  CAS  Google Scholar 

  • Rosli SA, Alias N, Bashirom N, Ismail S, Tan WK, Kawamura G, Matsuda A, Lockman Z (2021) Hexavalent chromium removal via photoreduction by sunlight on titanium–dioxide nanotubes formed by anodization with a fluorinated glycerol–water electrolyte. Catalysts 11(3):376

    Article  CAS  Google Scholar 

  • Sieber I, Hildebrand H, Friedrich A, Schmuki P (2005) Formation of self-organised niobium porous oxide on niobium. Electrochem Commun 97–100

  • Skrodczky K, Antunes MM, Han X, Santangelo S, Scholz G, Valente AA, Pinna N, Russo PA (2019) Niobium pentoxide nanomaterials with distorted structures as efficient acid catalysts. Commun Chem 2(1):1–11

    Article  Google Scholar 

  • Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M (2013) Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim Acta 104:526–535. https://doi.org/10.1016/j.electacta.2012.12.121

    Article  CAS  Google Scholar 

  • Syrek K, Zaraska L, Zych M, Sulka GD (2018) The effect of anodization conditions on the morphology of porous tungsten oxide layers formed in aqueous solution. J Electroanal Chem 829:106–115

    Article  CAS  Google Scholar 

  • Tadjenant Y, Dokhan N, Barras A, Addad A, Jijie R, Szunerits S, Boukherroub R (2020) Graphene oxide chemically reduced and functionalized with KOH-PEI for efficient Cr(VI) adsorption and reduction in acidic medium. Chemosphere 258:127316

    Article  CAS  Google Scholar 

  • Taib MAA, Alias N, Jaafar M, Razak KA, Tan WK, Shahbudin IP, Kawamura G, Matsuda A, Lockman Z (2020) Formation of grassy TiO2 nanotube thin film by anodisation in peroxide electrolyte for Cr(VI) removal under ultraviolet radiation. Nanotechnology 31(43):435605. https://doi.org/10.1088/1361-6528/aba3d8

    Article  CAS  Google Scholar 

  • Vera ML, Traid HD, Henrikson ER, Ares AE, Litter MI (2018) Heterogeneous photocatalytic Cr(VI) reduction with short and long nanotubular TiO2 coatings prepared by anodic oxidation. Mater Res Bull 97:150–157. https://doi.org/10.1016/j.materresbull.2017.08.013

    Article  CAS  Google Scholar 

  • Vermilyea D (1955) The crystallization of anodic tantalum oxide films in the presence of a strong electric field. J Electrochem Soc 102(5):207

    Article  CAS  Google Scholar 

  • Wan J, Yao X, Gao X, Xiao X, Li T, Wu J, Sun W, Hu Z, Yu H, Huang L (2016) Microwave combustion for modification of transition metal oxides. Adv Funct Mater 26(40):7263–7270

    Article  CAS  Google Scholar 

  • Wang H, Zhang M, Lv Q (2019) Removal efficiency and mechanism of Cr(VI) from aqueous solution by maize straw biochars derived at different pyrolysis temperatures. Water 11(4):781

    Article  CAS  Google Scholar 

  • Wei W, Lee K, Shaw S, Schmuki P (2012) Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chem Commun 48(35):4244–4246

    Article  CAS  Google Scholar 

  • Yan J, Wu G, Guan N, Li L (2014) Nb2O5/TiO2 heterojunctions: synthesis strategy and photocatalytic activity. Appl Catal B-Environ 152–153:280–288. https://doi.org/10.1016/j.apcatb.2014.01.049

    Article  CAS  Google Scholar 

  • Yang S, Aoki Y, Habazaki H (2011) Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate–glycerol electrolyte. Appl Surf Sci 257(19):8190–8195. https://doi.org/10.1016/j.apsusc.2011.01.041

    Article  CAS  Google Scholar 

  • Yao DD, Rani RA, O’Mullane AP, Kalantar-zadeh K, Ou JZ (2014) High performance electrochromic devices based on anodized nanoporous Nb2O5. J Phys Chem C 118(1):476–481. https://doi.org/10.1021/jp410097y

    Article  CAS  Google Scholar 

  • Zhao J, Wang X, Xu R, Mi Y, Li Y (2007) Preparation and growth mechanism of niobium oxide microcones by the anodization method. Electrochem Solid State Lett 10(4):C31

    Article  CAS  Google Scholar 

  • Zhao W, Zhao W, Zhu G, Lin T, Xu F, Huang F (2016) Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans 45(9):3888–3894. https://doi.org/10.1039/C5DT04578A

    Article  CAS  Google Scholar 

  • Zhu K, Chen C, Xu H, Gao Y, Tan X, Alsaedi A, Hayat T (2017) Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@ zeolitic idazolate frameworks-8 microspheres. ACS Sustain Chem Eng 5(8):6795–6802

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Universiti Sains Malaysia (USM) via Research University Grant (Top Down) 1001/PBAHAN/870048 and USM Fellowship scheme. This research was also supported by the JSPS KAKENHI (grant numbers 22K04737, 21K18823, and 18K14013).

Author information

Authors and Affiliations

Authors

Contributions

Nurhaswani Alias: conceptualization, methodology, writing—original draft. Zuhailawati Hussain: validation. Wai Kian Tan: investigation, validation, writing—review and editing, funding acquisition. Go Kawamura: validation. Hiroyuki Muto: validation. Atsunori Matsuda: validation, resources, funding acquisition. Zainovia Lockman: supervision, writing—review and editing, project administration, funding acquisition.

Corresponding author

Correspondence to Zainovia Lockman.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Weiming Zhang

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alias, N., Hussain, Z., Tan, W.K. et al. Photoreduction of Cr(VI) in wastewater by anodic nanoporous Nb2O5 formed at high anodizing voltage and electrolyte temperature. Environ Sci Pollut Res 29, 60600–60615 (2022). https://doi.org/10.1007/s11356-022-20005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-20005-7

Keywords

Navigation