Skip to main content

Advertisement

Log in

Pricing-decision analysis of green supply chain with two competitive manufacturers considering horizontal and vertical fairness concerns

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A pricing-decision analysis is a critical aspect of supply chain management since it directly affects manufacturers’ and retailers’ profits. The members of a supply chain all want to be treated properly during the pricing process, which means that they pay attention to the fairness of the profit distribution. Additionally, consumers are increasingly gravitating to green products as their awareness of green consumption grows. Thus, incorporating consumers’ green preferences into a supply chain, this paper investigates pricing decisions with two competitive manufacturers under horizontal and vertical fairness concerns and seeks the optimal degrees of product greenness, prices, profits, and utilities. The game-theoretical models with and without bidirectional fairness concerns are constructed and analyzed to identify the implications on pricing, profits, and utilities of competing manufacturers’ bidirectional fairness concerns and consumers’ green preferences. Then, we determine the decisional differences between the two designs using comparative analysis and numerical simulation. Finally, propositions, corollaries, and policy implications are derived. The results indicate that consumers’ green preferences and competition between manufacturers contribute to increasing the optimal pricing and retailer’s profit while harming manufacturers’ utilities and the supply chain’s profits under some conditions. The findings also demonstrate that horizontal and vertical fairness concerns generate different impacts on the product’s greenness degree and pricing. Still, they are detrimental to manufacturers’ utilities and supply chain profit while possessing negligible effects on retailer’s profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

Download references

Acknowledgements

The authors thank the editor Dr. Eyup Dogan and the four anonymous reviewers for their insightful comments and constructive suggestions that substantially improved this article.

Funding

This research is supported by the National Natural Science Foundation of China [Grant No. 71871017] and the Beijing Municipal Education Commission on Social Science-Oriented Project of China [Grant No. SM201910037004].

Author information

Authors and Affiliations

Authors

Contributions

Daoping Wang: Conceptualization, methodology, and funding acquisition. Genhasi Ge: Methodology, data curation, formal analysis, writing (original draft preparation), and reviewing and editing. Yu Zhou: Software and validation. Mengying Zhu: Writing (reviewing and editing).

Corresponding author

Correspondence to Genhasi Ge.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Eyup Dogan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 1

The manufacturers simultaneously and uncooperatively determine the wholesale price and product greening degree, and then the retailer determine the retail price based on the given wholesale price and greening degree. The Stackelberg game between the leader and the follower can be analyzed by backward induction procedure.

In this set-up, we solve for the retailer’s profit function first. We use 1 and 2 to represent the two manufacturers as well as their products, respectively. The first partial derivative of πri to p1 and p2 can be shown as ∂πr/∂p1 = a − 2p1 + 2rp2 − αrτ2 + ατ1 − rw2 + w1, ∂πr/∂p2 = a − 2p2 + 2rp1 − αrτ1 + ατ2 − rw1 + w2. The second partial derivatives of πri to p1 and p2 are \({\partial}^2{\pi}_r/\partial {p}_1^2=-2\), \({\partial}^2{\pi}_r/\partial {p}_2^2=-2\), and 2πr/∂p1∂p2 = 2r; based on the assumption 0 < r < 1, we can derive 4 − 4r2 > 0. Thus, the Hessian matrix is negative. Hence the retailer’s profit is jointly concave in p1 and p2. Equating the first partial derivative to 0, we get \({p}_i^{\ast }=\left(a+\left(1-r\right)\left(\alpha {\tau}_i+{w}_i\right)\right)/\left(2\left(1-r\right)\right)\)i = 1, 2.

Then, we substitute the  pi* into Eq. (2), and we have the first partial conditions which are \(\partial {\pi}_{m1}/\partial {w}_1=\frac{1}{2}\left(a+c+\alpha {\tau}_1-\alpha r{\tau}_2-2{w}_1+r{w}_2\right)\), \(\partial {\pi}_{m2}/\partial {w}_2=\frac{1}{2}\left(a+c+\alpha {\tau}_2-\alpha r{\tau}_1-2{w}_2+r{w}_1\right)\), \(\partial {\pi}_{m1}/\partial {\tau}_1=\frac{1}{2}\left(\alpha {w}_1-\alpha c-2\beta {\tau}_1\right)\), and \(\partial {\pi}_{m2}/\partial {\tau}_1=\frac{1}{2}\left(\alpha {w}_2-\alpha c-2\beta {\tau}_2\right)\). The second partial derivative \({\partial}^2{\pi}_{mi}/\partial {w}_i^2=-1\), \({\partial}^2{\pi}_{mi}/\partial {\tau}_i^2=-\beta\), and 2πmi/∂wi∂τi = α/2; hence, the Hessian matrix can be shown as \(H=\left(\begin{array}{c}-1\\ {}\frac{\alpha }{2}\end{array}\right.\left.\begin{array}{c}\frac{\alpha }{2}\\ {}-\beta\end{array}\right)\), which is non-negative under condition 4β > α2. Then the πmi is jointly concave in wi and τi. Equating the first partial derivative to 0, we can get \({\tau}_i^{NN^{\ast }}=\frac{\alpha \left[a-c\left(1-r\right)\right]}{2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)}\) and \({w}_i^{NN^{\ast }}=\frac{c\left[2\beta -{\alpha}^2\left(1-r\right)\right]+2 a\beta}{2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)}\). Replacing wi and τi with \({w}_i^{NN^{\ast }}\) and \({\tau}_i^{NN^{\ast }}\) into pi* and the \({p}_i^{NN^{\ast }}\) can be obtained. Substituting \({w}_i^{NN^{\ast }}\), \({\tau}_i^{NN^{\ast }}\), and \({p}_i^{NN^{\ast }}\) into Eqs. (1)–(3), we can derive \({\pi}_r^{NN^{\ast }}\), \({\pi}_{mi}^{NN^{\ast }}\), and\({\pi}^{NN^{\ast }}\).

Proof of Corollary 1

Based on the equilibrium solutions obtained in Proposition 1, we have \(\frac{\partial {\tau}_i^{NN^{\ast }}}{\partial \alpha }=\frac{\alpha \left[a-c\left(1-r\right)\right]\left[2\beta \left(2-r\right)+{\alpha}^2\left(1-r\right)\right]}{{\left[2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)\right]}^2}>0\), \(\frac{\partial {w}_i^{NN^{\ast }}}{\partial \alpha }=\frac{4\beta \alpha \left[a-c\left(1-r\right)\right]\left(1-r\right)}{{\left[2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)\right]}^2}>0\), and \(\frac{\partial {p}_i^{NN^{\ast }}}{\partial \alpha }=\frac{2\beta \alpha \left[a-c\left(1-r\right)\right]\left(3-2r\right)}{{\left[2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)\right]}^2}>0\).

Proof of Corollary 2

Similar to above proof, the following properties hold as \(\frac{\partial {\pi}_r^{NN^{\ast }}}{\partial \alpha }=\frac{8{\beta}^2\alpha {\left[a-c\left(1-r\right)\right]}^2}{{\left[2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)\right]}^3}>0\), \(\frac{\partial {\pi}^{NN^{\ast }}}{\partial \alpha }=\frac{2\alpha \beta {\left[a-c\left(1-r\right)\right]}^2\left[2\beta \left(4-3r\right)-{\alpha}^2\left(1-r\right)\right]}{{\left[2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)\right]}^3}>0\), and \(\frac{\partial {\pi}_{mi}^{NN^{\ast }}}{\partial \alpha }=\frac{\beta \alpha {\left[a-c\left(1-r\right)\right]}^2\left[2\beta \left(2-3r\right)-{\alpha}^2\left(1-r\right)\right]}{{\left[2\beta \left(2-r\right)-{\alpha}^2\left(1-r\right)\right]}^3}\); if r < (4β − α2)/(6β − α2 ), then \(\partial {\pi}_{mi}^{NN^{\ast }}/\partial \alpha >0\), if r > (4β − α2)/(6β − α2 ), then \(\partial {\pi}_{mi}^{NN^{\ast }}/\partial \alpha <0\).

Proof of Proposition 2

Similar to proof of Proposition 1, the reverse induction is applied here as well. In this set-up, we get pi first which can be represented as \(p_i^\ast=\left(a+\left(1-r\right)\left(\alpha\tau_i+w_i\right)\right)/\left(2\left(1-r\right)\right)\), i = 1, 2.

Then we substitute the pi into Eq. (4), and we have the first partial conditions which are \(\partial u_{m1}/\partial w_1=\frac{1}{2}\left[a\left(1+2\lambda+\eta\right)+c\left(1+\lambda+\eta+r\eta\right)+\alpha\tau_1-\alpha r \tau_2-2w_1 +rw_2+2 \alpha\tau_1\lambda-2\alpha r\tau_2\lambda-3w_1\lambda+2rw_2\lambda+\alpha\tau_1\eta-\alpha r\tau_2\eta-2w_1\eta\right]\), \(\partial {u}_{m2}/\partial {w}_2=\frac{1}{2}\left[a\left(1+2\lambda +\eta \right)+c\left(1+\lambda +\eta + r\eta \right)+\alpha {\tau}_2-\alpha r{\tau}_1-2{w}_2+ r{w}_1+2\alpha{\tau}_2\lambda -2\alpha r{\tau}_1\lambda -3{w}_2\lambda +2r{w}_1\lambda +\alpha {\tau}_2\eta -\alpha r{\tau}_1\eta -2{w}_2\eta \right]\), \(\partial {u}_{m1}/\partial {\tau}_1=\frac{1}{2}\left[\alpha \right({w}_1- a\lambda -\alpha {\tau}_1\lambda +\alpha r{\tau}_2\lambda +2{w}_1\lambda -r{w}_2 \lambda +{w}_1\eta +r{w}_2\eta -2\beta {\tau}_1\left(1+\lambda +\eta \right)- c\alpha \left(1+\lambda +\eta + r\eta \right)\Big]\), and \(\partial {u}_{m2}/\partial {\tau}_2=\frac{1}{2}\left[\alpha \right({w}_2- a\lambda -\alpha {\tau}_2\lambda +\alpha r{\tau}_1\lambda +2{w}_2\lambda -r{w}_1 \lambda +{w}_2\eta +r{w}_1\eta -2\beta {\tau}_2\left(1+\lambda +\eta \right)- c\alpha \left(1+\lambda +\eta + r\eta \right)\Big]\). The second partial derivative \(\partial^2u_{mi}/\partial w_i^2=-1-\eta-\frac{3}{2}\lambda\), \(\partial^2u_{mi}/\partial\tau_i^2=-\frac{\alpha^2\lambda}{2}-\beta\left(1+\lambda+\eta\right)\), and \(\partial^2u_{mi}/\partial w_i\partial\tau_i=\frac{\alpha}{2}\left(1+2\lambda+\eta\right)\); hence, the Hessian matrix can be shown as \(H=\left(\begin{array}{c}-1-\eta -\frac{3}{2}\lambda \\ {}\frac{\alpha }{2}\left(1+2\lambda +\eta \right)\end{array}\right.\left.\begin{array}{c}\frac{\alpha }{2}\left(1+2\lambda +\eta \right)\\ {}-\frac{\alpha^2\lambda }{2}-\beta\left(1+\lambda +\eta \right)\end{array}\right)\), which is non-negative under condition β > (α2(1 + λ + η))/(2(2 + 3λ + 2η)). Then the umi is jointly concave in wi and τi. Equating the first partial derivative to 0, we can get \({\tau}_i^{FF^{\ast }}=\frac{\alpha \left[a-c\left(1-r\right)\right]{\varDelta}_2}{\varDelta_3+{\varDelta}_1{\varDelta}_2}\) and \({w}_i^{FF^{\ast }}=\frac{2 a\beta \left(1+2\lambda +\eta \right)+c\left(2\beta +{\varDelta}_1\right){\varDelta}_2}{\varDelta_3+{\varDelta}_1{\varDelta}_2}\). Replacing wi and τi with \({w}_i^{FF^{\ast }}\) and \({\tau}_i^{FF^{\ast }}\) into pi* and \({p}_i^{FF^{\ast }}\) can be obtained as \({p}_i^{FF^{\ast }}=\frac{c\left(\beta +{\varDelta}_1\right)\left(1-r\right){\varDelta}_2+ a\beta \left[5\lambda +3\left(1+\eta \right)-r\left(2+4\lambda +\eta \right)\right]}{\left(1-r\right)\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}\), where Δ1 = α2(r − 1), Δ2 = 1 + λ + η + , and Δ3 = 2β(2 − r + 3λ − 2 + 2η). Finally, substituting \({w}_i^{FF^{\ast }}\), \({\tau}_i^{FF^{\ast }}\), and \({p}_i^{FF^{\ast }}\) into Eqs. (1)–(4), we can get \({\pi}_r^{FF^{\ast }}\), \({\pi}_{mi}^{FF^{\ast }}\), \({\pi}^{FF^{\ast }}\), and \({u}_{mi}^{FF^{\ast }}\).

Proof of Corollary 3

Similar to proof of Corollary 1, taking partial derivative of \({\tau}_i^{FF^{\ast }}\), \({w}_i^{FF^{\ast }}\), and \({p}_i^{FF^{\ast }}\) with respect to α, we can get

\(\frac{\partial {\tau}_i^{FF^{\ast }}}{\partial \alpha }=\frac{\left(a-c+ cr\right){\varDelta}_2\left({\varDelta}_3-{\varDelta}_1{\varDelta}_2\right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}>0,\) \(\frac{\partial {w}_i^{FF^{\ast }}}{\partial \alpha }=\frac{4\alpha \beta \left(a-c+ cr\right)\left(1-r\right)\left(1+2\lambda +\eta \right){\varDelta}_2}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}>0\), and \(\frac{\partial {p}_i^{FF^{\ast }}}{\partial \alpha }=\frac{2\alpha \beta \left(a-c+ cr\right)\left[5{\lambda}^2+8\lambda \left(1+\eta \right)+3{\left(1+\eta \right)}^2+{r}^2\eta \left(2+4\lambda +\eta \right)+r\left(2+6\lambda +4{\lambda}^2-2{\eta}^2\right)\right]}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}>0\).

Proof of Corollary 4

Similar to proof of Corollary 3, taking partial derivative of \({D}_i^{FF^{\ast }}\), \({\pi}_r^{FF^{\ast }}\), \({\pi}_{mi}^{FF^{\ast }}\), and \({u}_{mi}^{FF^{\ast }}\) with respect to α, the results can be obtained. Thus, the process is omitted here.

Proof of Corollary 5

Based on the equilibrium solutions obtained in Proposition 2, taking partial derivative of \({\tau}_i^{FF^{\ast }}\), \({w}_i^{FF^{\ast }}\), and \({p}_i^{FF^{\ast }}\) with respect to fairness concern coefficients λ and η, respectively, we can get

  1. (1)

    \(\frac{\partial {\tau}_i^{FF^{\ast }}}{\partial \lambda }=\frac{2\alpha \beta \left(a-c+ cr\right)\left(r-1\right)\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}<0\), \(\frac{\partial {\tau}_i^{FF^{\ast }}}{\partial \eta }=\frac{2\alpha \beta \left(a-c+ cr\right)\left(1-r\right)\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}>0\).

  2. (2)

    \(\frac{\partial {w}_i^{FF^{\ast }}}{\partial \lambda }=\frac{2\beta \left(a-c+ cr\right)\left(2\beta -{\alpha}^2+{\alpha}^2r\right)\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\), \(\frac{\partial {w}_i^{FF^{\ast }}}{\partial \eta }=-\frac{2\beta \left(a-c+ cr\right)\left(2\beta -{\alpha}^2+{\alpha}^2r\right)\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\).

Thus, when 2β − α2 + α2r > 0, then \(\partial {w}_i^{FF^{\ast }}/\partial \lambda >0\) and \(\partial {w}_i^{FF^{\ast }}/\partial \eta <0\); otherwise, \(\partial {w}_i^{FF^{\ast }}/\partial \lambda <0\) and \(\partial {w}_i^{FF^{\ast }}/\partial \eta >0\).

  1. (3)

    \(\frac{\partial {p}_i^{FF^{\ast }}}{\partial \lambda }=\frac{2\beta \left(a-c+ cr\right)\left(\beta -{\alpha}^2+{\alpha}^2r\right)\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\), \(\frac{\partial {p}_i^{FF^{\ast }}}{\partial \eta }=-\frac{2\beta \left(a-c+ cr\right)\left(\beta -{\alpha}^2+{\alpha}^2r\right)\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\).

Thus, when β − α2 + α2r > 0, then \(\partial {p}_i^{FF^{\ast }}/\partial \lambda >0\) and \(\partial {p}_i^{FF^{\ast }}/\partial \eta <0\); otherwise, \(\partial {p}_i^{FF^{\ast }}/\partial \lambda <0\) and \(\partial {p}_i^{FF^{\ast }}/\partial \eta >0\).

Proof of Corollary 6

The proof is similar to that of Corollary 5 and is thus omitted here.

Proof of Proposition 3

From Proposition 1 and Proposition 2, we have

\(\varDelta {\tau}_i^{\ast }={\tau}_i^{FF^{\ast }}-{\tau}_i^{NN^{\ast }}=\frac{2\alpha \beta \left(a-c+ cr\right)\left(1-r\right)\left( r\eta -\lambda \right)}{\left(4\beta -2\beta r+{\varDelta}_1\right)\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}\), \(\varDelta {w}_i^{\ast }={w}_i^{FF^{\ast }}-{w}_i^{NN^{\ast }}=\frac{2\beta \left(a-c+ cr\right)\left(2\beta -{\alpha}^2+{\alpha}^2r\right)\left(\lambda - r\eta \right)}{\left(4\beta -2\beta r+{\varDelta}_1\right)\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}\), and \(\varDelta {p}_i^{\ast }={p}_i^{FF^{\ast }}-{p}_i^{NN^{\ast }}=\frac{2\beta \left(a-c+ cr\right)\left(\beta -{\alpha}^2+{\alpha}^2r\right)\left(\lambda - r\eta \right)}{\left(4\beta -2\beta r+{\varDelta}_1\right)\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}\).

  1. (1)

    If λ < η and 0 < r < λ/η, then \(\varDelta {\tau}_i^{\ast }>0\), namely \({\tau}_i^{FF^{\ast }}>{\tau}_i^{NN^{\ast }}\); when \(\alpha <\sqrt{2\beta /\left(1-r\right)}\), then \({w}_i^{FF^{\ast }}>{w}_i^{NN^{\ast }}\); when \(\alpha <\sqrt{\beta /\left(1-r\right)}\), then \({p}_i^{FF^{\ast }}>{p}_i^{NN^{\ast }}\); else if λ/η < r < 1, we have \({w}_i^{FF^{\ast }}<{w}_i^{NN^{\ast }}\), \({p}_i^{FF^{\ast }}<{p}_i^{NN^{\ast }}\), and \({\tau}_i^{FF^{\ast }}>{\tau}_i^{NN^{\ast }}\).

  2. (2)

    If λ > η, then due to Assumption 4, we have 0 < r < 1; thus,  < λ; similarly, we can derive \({w}_i^{FF^{\ast }}>{w}_i^{NN^{\ast }}\), \({p}_i^{FF^{\ast }}>{p}_i^{NN^{\ast }}\), and \({\tau}_i^{FF^{\ast }}<{\tau}_i^{NN^{\ast }}\).

Proof of Corollary 7

According to the Proposition 4, we derive

  1. (1)

    \(\frac{\partial \varDelta {\tau}_i^{\ast }}{\partial \lambda }=\frac{2\alpha \beta \left(a-c+ cr\right)\left(r-1\right)\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}<0\); \(\frac{\partial \varDelta {\tau}_i^{\ast }}{\partial \eta }=\frac{2\alpha \beta \left(a-c+ cr\right)\left(r-1\right)\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}>0\).

  2. (2)

    \(\frac{\partial \varDelta {w}_i^{\ast }}{\partial \lambda }=\frac{2\beta \left(a-c+ cr\right)\left(2\beta -{\alpha}^2+{\alpha}^2r\right)\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\), \(\frac{\partial \varDelta {w}_i^{\ast }}{\partial \eta }=-\frac{2\beta \left(a-c+ cr\right)\left(2\beta -{\alpha}^2+{\alpha}^2r\right)\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\).

Thus, if \(\alpha <\sqrt{2\beta /\left(1-r\right)}\), then \(\partial \varDelta {w}_i^{\ast }/\partial \lambda >0\) and \(\partial \varDelta {w}_i^{\ast }/\partial \eta <0\); if \(\alpha >\sqrt{2\beta /\left(1-r\right)}\), then \(\partial \varDelta {w}_i^{\ast }/\partial \lambda <0\) and \(\partial \varDelta {w}_i^{\ast }/\partial \eta >0\).

  1. (3)

    \(\frac{\partial \varDelta {p}_i^{\ast }}{\partial \lambda }=\frac{2\beta \left(a-c+ cr\right)\left(\beta -{\alpha}^2+{\alpha}^2r\right)\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\), \(\frac{\partial \varDelta {p}_i^{\ast }}{\partial \eta }=-\frac{2\beta \left(a-c+ cr\right)\left(\beta -{\alpha}^2+{\alpha}^2r\right)\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\).

Thus, if \(\alpha <\sqrt{\beta /\left(1-r\right)}\), then \(\partial \varDelta {p}_i^{\ast }/\partial \lambda >0\) and \(\partial \varDelta {p}_i^{\ast }/\partial \eta <0\); if \(\alpha >\sqrt{\beta /\left(1-r\right)}\), then \(\partial \varDelta {p}_i^{\ast }/\partial \lambda <0\) and \(\partial \varDelta {p}_i^{\ast }/\partial \eta >0\).

Proof of Proposition 4

\(\varDelta {\pi}_r^{\ast }={\pi}_r^{FF^{\ast }}-{\pi}_r^{NN^{\ast }}=\frac{8{\beta}^3{\left(a-c+ cr\right)}^2\left[\beta \left(4+5\lambda -2r-3 r\lambda + r\eta +4\eta -{r}^2\eta \right)+{\varDelta}_1{\varDelta}_2\right]\left( r\eta -\lambda \right)}{{\left(4\beta -2\beta r+{\varDelta}_1\right)}^2{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^2}\), as we know Δ3 + Δ1Δ2 > 0; hence, when  − λ > 0 is satisfied, then \(\varDelta {\pi}_r^{\ast }>0\), namely, \({\pi}_r^{FF^{\ast }}>{\pi}_r^{NN^{\ast }}\) can be obtained.

Proof of Corollary 8

According to Proposition 5, we derive

\(\frac{\partial \varDelta {\pi}_r^{\ast }}{\partial \lambda }=-\frac{8{\beta}^3{\left(a-c+ cr\right)}^2{\varDelta}_2\left(1+\eta +2 r\eta \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^3}<0\)and \(\frac{\partial \varDelta {\pi}_r^{\ast }}{\partial \eta }=\frac{8{\beta}^3{\left(a-c+ cr\right)}^2{\varDelta}_2\left(r+\lambda +2 r\lambda \right)}{{\left({\varDelta}_3+{\varDelta}_1{\varDelta}_2\right)}^3}>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Ge, G., Zhou, Y. et al. Pricing-decision analysis of green supply chain with two competitive manufacturers considering horizontal and vertical fairness concerns. Environ Sci Pollut Res 29, 66235–66258 (2022). https://doi.org/10.1007/s11356-022-19892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19892-7

Keywords

Navigation