Skip to main content
Log in

Environmental geochemistry of higher radioactivity in a transboundary Himalayan river sediment (Brahmaputra, Bangladesh): potential radiation exposure and health risks

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study of a downstream segment (Brahmaputra, Bangladesh) of one of the longest transboundary (China-India-Bangladesh) Himalayan rivers reveals elevated radioactivity compared to other freshwater basins across the world. Naturally occurring radioactive nuclides (226Ra, 232Th, and 40K) and metal contents (transition metals, Fe, Ti, Sc, and V; rare earth elements, La, Ce, Eu, Sm, Dy, Yb, and Lu; high field strength elements, Ta and Hf; and actinides, Th and U) in thirty sediment samples were measured by HPGe γ-spectrophotometry and research reactor-based neutron activation analysis, respectively. We systematically investigated the mechanism of the deposition of higher radioactivity concentrations and rare earth elements (REEs) associated with heavy minerals (HMs) and photomicrograph-based mineralogical analysis. The results show that total REEs (∑REE) and Ta, Hf, U, and Th are generally 1.5- to 3.0-fold elevated compared to crustal values associated with -δEu and -δCe anomalies, suggesting a felsic source provenance. The enrichment of light REEs (×1.5 upper continental crust (UCC)) and Th (×1.9 UCC), besides Th/U (=7.74 ± 2.35) and 232Th/40K ratios, along with the micrographic and statistical approaches, revealed the elevated presence of HMs. Fluvial suspended sedimentary transportation (from upstream) followed by mineralogical recycling and sorting enriched the HM depositions in this basin. Bivariate plots, including La/Th-Hf, La/Th-Th/Yb, and La/V-Th/Yb, revealed significant contributions of felsic source rock compared to mafic sources. The assessment of radiological hazards demonstrates ionizing-radiation-associated health risks to the local residents and people inhabiting houses made from Brahmaputra River sediments (as construction material).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The manuscript has data included as supplementary material.

Code availability

Not applicable

References

  • Ahsan MA, Satter F, Siddique MAB, Akbor MA, Shamim A, Shajahan M, Khan R (2019) Chemical and physicochemical characterization of effluents from the tanning and textile industries in Bangladesh with multivariate statistical approach. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7654-2

  • Aközcan S, Külahci F, Mercan Y (2018) A suggestion to radiological hazards characterization of 226Ra, 232Th, 40K and 137Cs: spatial distribution modelling. J Hazard Mater 353:476–489

    Article  Google Scholar 

  • Atibu EK, Devarajan N, Laffite A et al (2016) Assessment of trace metal and rare earth elements contamination in rivers around abandoned and active mine areas. The case of Lubumbashi River and Tshamilemba Canal, Katanga, Democratic Republic of the Congo. Geochem 76(3):353–362.

  • Ali MMM, Zhao H, Yassin N, Al-Shami AA, Alquraishi W, Alfasatleh I, Alqudah O (2021) Multivariate statistical study of technologically enhanced naturally occurring radioactive materials and radiation hazards in crude oil and petroleum products of Ma’rib refinery, Yemen. J Clean Prod 298:126772

    Article  CAS  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214

  • Baturin GN, Lobus NV, Peresypkin VI, Komov VT (2014) Geochemistry of channel drifts of the Kai River (Vietnam) and sediments of its mouth zone. Oceanology, 54(6):788–797. 

  • Begum M, Khan R, Hossain SM, Al Mamun SMMA (2021a) Redistributions of NORMs in and around a gas-field (Shabazpur, Bangladesh): radiological risks assessment. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-08107-x

  • Begum M, Khan R, Roy DK, Habib MA, Rashid MB, Naher K, Islam MA, Tamim U, Das SC, Mamun SMMA, Hossain SM (2021b) Geochemical characterization of Miocene core sediments from Shahbazpur gas-wells (Bangladesh) in terms of elemental abundances by Instrumental Neutron Activation Analysis. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-021-07770-4

  • Campodonico VA, García MG, Pasquini AI (2016) The geochemical signature of suspended sediments in the Parana River basin: implications for provenance, weathering and sedimentary recycling. CATENA 143:201–214. https://doi.org/10.1016/j.catena.2016.04.008

    Article  CAS  Google Scholar 

  • Carvalho C, Anjos RM, Veiga R, Macario K (2011) Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. J Environ Radioact 102:185–192

    Article  CAS  Google Scholar 

  • Chen G, Robertson AHF (2020) User's guide to the interpretation of sandstones using whole-rock chemical data, exemplified by sandstones from Triassic to Miocene passive and active margin settings from the Southern Neotethys in Cyprus. Sediment Geol 400. https://doi.org/10.1016/j.sedgeo.2020.105616

  • Chowdhury MA (1989) Petrography of the sand samples of the Brahmaputra-Jamuna river bars. Geol Surv Bangladesh 5(5):1–20

    Google Scholar 

  • Chowdhury MI, Alam MN, Hazari SKS (1999) Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl Radiat Isot 51:747–755

    Article  CAS  Google Scholar 

  • Coleman JM (1969) Brahmaputra river: channel process and sedimentation. Sediment Geol 3(213):239

    Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, U.S.A.: implications for provenance and metamorphic studies. Lithos. 51:181–203. https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  CAS  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327. https://doi.org/10.1016/S0009-2541(02)00133-X

    Article  CAS  Google Scholar 

  • Dahle JT, Arai Y (2015) Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles. Int J Environ Res Public Health 12:1253–1278

    Article  Google Scholar 

  • Darwish DAE, Abul-Nasr KTM, El-Khayatt AM (2015) The assessment of natural radioactivity and its associated radiological hazards and dose parameters in granite samples from South Sinai, Egypt. J Radiat Res Appl Sc 8:17–25

    CAS  Google Scholar 

  • Das N, Das A, Sarma KP, Kumar M (2018) Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain. Chemosphere 194:755–772

    Article  CAS  Google Scholar 

  • Dentoni V, Da Pelo S, Aghdam MM, Randaccio P, Loi A, Careddu N, Bernardini A (2020) Natural radioactivity and radon exhalation rate of Sardinian dimension stones. Constr Build Mater 247:118377

    Article  CAS  Google Scholar 

  • Duong NT, Hao DV, Bui VL, Duong DT, Phan TT, Xuan HL (2021) Natural radionuclides and assessment of radiological hazards in MuongHum, Lao Cai, Vietnam. Chemosphere 270:128671

    Article  Google Scholar 

  • Eker ÇS, Kiliç ED (2018) Geochemistry of Çoruh river bed sediments in NE Turkey: implications in weathering-sedimentary cycle, provenance, and metal pollution. Geochem Int 56(6):579–600. https://doi.org/10.1134/s0016702918060095

    Article  CAS  Google Scholar 

  • El-Gamal A, Nasr S, El-Taher A (2007) Study of the spatial distribution of natural radioactivity in the upper Egypt Nile river sediments. Radiat Meas 42(3):457–465. https://doi.org/10.1016/j.radmeas.2007.02.054

    Article  CAS  Google Scholar 

  • El-Taher A, Madkour HA (2014) Environmental and radio-ecological studies on shallow marine sediments from harbour areas along the Red Sea coast of Egypt for identification of anthropogenic impacts Isotopes in Environmental and Health Studies. J Isot Environ Health Stud 50:120–133

    Article  CAS  Google Scholar 

  • Faweya EB, Oniya EO, Ojo FO (2013) Assessment of radiological parameters and heavy-metal contents of sediment samples from lower Niger river, Nigeria. Arab J SciEng 38:1903–1908

    Article  CAS  Google Scholar 

  • Florou H, Kritidis P (1991) Natural radioactivity in environmental samples from an island of volcanic origin (Milos, Aegean Sea). Mar Pollut Bull 22(8):417–419

    Article  CAS  Google Scholar 

  • Habib MA, Khan R (2021) Environmental impacts of coal-mining and coal-fired power-plant activities in a developing country with global context. Spatial modeling and assessment of environmental contaminants (Chapter 24), Environmental challenges and solutions, Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-63422-3_24

  • Habib MA, Basuki T, Miyashita S, Bekelesi W, Nakashima S, Phoungthong K, Khan R, Rashid MB, Islam ARMT, Techato K (2019a) Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim Acta 107(3):243–259. https://doi.org/10.1515/ract-2018-3044

    Article  CAS  Google Scholar 

  • Habib MA, Basuki T, Miyashita S, Bekelesi W, Nakashima S, Techato K, Khan R, Majlis ABK, Phoungthong K (2019b) Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: Implications for radiological health hazards. Environ Monit Assess 191:27. https://doi.org/10.1007/s10661-018-7160-y

    Article  CAS  Google Scholar 

  • Hasan ASMM, Hossain I, Rahman MA, Rahman MS, Zaman MN, Biswas PK (2018) FEG-EPMA mapping and Fe-Ti oxide mineral chemistry of Brahmaputra River sediments in Bangladesh: provenance and petrogenetic implications. Arab J Geosci 11:567

    Article  Google Scholar 

  • Hetzel A, Böttcher ME, Wortmann UG, Brumsack H (2009) Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr Palaeoclimatol Palaeoecol 273:302–328

    Article  Google Scholar 

  • Isinkaye MO, Emelue HU (2015) Natural radioactivity measurements and evaluation of radiological hazards in sediment of Oguta Lake, South East Nigeria. J Radiat Res Appl Sci 8(3):459–469

    Article  Google Scholar 

  • Islam ARMT, Hasanuzzaman M, Islam HMT, Mia MU, Khan R, Habib MA, Rahman MM, Siddique MAB, Moniruzzaman M, Rashid MB (2020) Quantifying source apportionment, co-occurrence and ecotoxicological risk of metals from up-mid-downstream river segments, Bangladesh. Environ Toxicol Chem. https://doi.org/10.1002/etc.4814

  • Ketris MP, Yudovich YE (2009) Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. Int J Coal Geol 78(2):135–148. https://doi.org/10.1016/j.coal.2009.01.002

    Article  CAS  Google Scholar 

  • Khalil MI, Majumder RK, Kabir MZ, Deeba F, Khan MZI, Ali MI, Paul D, Haydar MA, Islam SMA (2016) Assessment of naural radioactivity levels and identification of minerals in Brahmaputra (Jamuna) river sand and sediment, Bangladesh. Radiat Prot Environ 39(4):204–211. https://doi.org/10.4103/0972-0464.199980

    Article  Google Scholar 

  • Khan R, Shirai N, Ebihara M (2015) Chemical characteristic of R chondrites in the light of P, REEs, Th and U abundances. Earth Planet Sci Lett 422:18–27

    Article  CAS  Google Scholar 

  • Khan R, Rouf MA, Das S, Tamim U, Naher K, Podder J, Hossain SM (2017) Spatial and multi-layered assessment of heavy metals in the sand of Cox’s-Bazar beach of Bangladesh. Reg Stud Mar Sci 16:171–180. https://doi.org/10.1016/j.rsma.2017.09.003

    Article  Google Scholar 

  • Khan R, Parvez MS, Tamim U, Das S, Islam MA, Naher K, Khan MHR, Nahid F, Hossain SM (2018) Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochim Acta 106(6):515–524. https://doi.org/10.1515/ract-2017-2867

    Article  CAS  Google Scholar 

  • Khan R, Ghosal S, Sengupta D, Tamim U, Hossain SM, Agrahari S (2019a) Studies on heavy mineral placers from eastern coast of Odisha, India by instrumental neutron activation analysis. J Radioanal Nucl Chem 319(1):471–484. https://doi.org/10.1007/s10967-018-6250-1

    Article  CAS  Google Scholar 

  • Khan R, Das S, Kabir S, Habib MA, Naher K, Islam MA, Tamim U, Rahman AKMR, Deb AK, Hossain SM (2019b) Evaluation of the elemental distribution in soil samples collected from ship-breaking areas and an adjacent island. J Environ Chem Eng:7. https://doi.org/10.1016/j.jece.2019.103189

  • Khan R, Parvez MS, Jolly YN, Haydar MA, Alam MF, Khatun MA, Sarker MMR, Habib MA, Tamim U, Das S, Sultana S, Islam MA, Naher K, Paul D, Akter S, Khan MHR, Nahid F, Huque R, Rajib M, Hossain SM (2019c) Elemental abundances, natural radioactivity and physicochemical records of a southern part of Bangladesh: implication for assessing the environmental geochemistry. Environ Nanotechnol Monitor Manag 12. https://doi.org/10.1016/j.enmm.2019.100225

  • Khan R, Islam MS, Tareq ARM, Naher K, Islam ARMT, Habib MA, Siddique MAB, Islam MA, Das S, Rashid MB, Ullah AKMA, Miah MMH, Masrura SU, Bodrud-Doza M, Sarker MR, Badruzzaman ABM (2020) Elemental and polycyclic aromatic hydrocarbons distributions in the sediments of an urban river: Influence of anthropogenic runoffs. Environ Nanotechnol Monitor Manag 14:100318. https://doi.org/10.1016/j.enmm.2020.100318

    Article  Google Scholar 

  • Khan R, Islam HMT, Islam ARMT (2021a) Mechanism of elevated radioactivity in a freshwater basin: radiochemical characterization, provenance and associated hazards. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128459

  • Khan R, Mohanty S, Sengupta D (2021b) Studying the elemental distribution in the core sediments of Podampata, Eastern coast of Odisha, India: potentiality of rare earth elements and Th exploration. Arab J Geosci 14:81. https://doi.org/10.1007/s12517-020-06371-x

    Article  CAS  Google Scholar 

  • Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO (2018) Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Mar Pollut Bull 127:654–663. https://doi.org/10.1016/j.marpolbul.2017.12.055

    Article  CAS  Google Scholar 

  • Kormoker T, Kabir MH, Khan R, Islam MS, Shammi RS, Al MA, Proshad R, Tamim U, Sarker ME, Taj MTI, Akter A, Idris AM (2021) Road dust-driven elemental distribution in megacity Dhaka, Bangladesh: environmental, ecological and human health risks assessment. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-17369-7

  • Krmar M, Slivka J, Varga E, Bikit I, Vesković M (2009) Correlations of natural radionuclides in sediment from Danube. J Geochem Explor 100:20–24

    Article  CAS  Google Scholar 

  • Kumar M, Goswami R, Awasthi N, Das R (2019) Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124477

  • Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Khan R, Islam MS (2021a) Preliminary appraisal of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. J Environ Manag 298. https://doi.org/10.1016/j.jenvman.2021.113517

  • Kumar S, Islam ARMT, Islam HMT, Hasanuzzaman M, Ongoma V, Khan R, Mallick J (2021b) Water resources pollution associated with risks of heavy metals from Vatukoula Goldmine, region, Fiji. J Environ Manag 293. https://doi.org/10.1016/j.jenvman.2021.112868

  • Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Islam MS, Khan R, Rahman MS, Pal SC, Ali MM, Idris AM, Gustave W, Elbeltagi A (2022) Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18734-w

  • Lu X, Zhang X, Wang F (2008) Natural radioactivity in sediment of Wei River, China. Environ Geol 53:1475–1481

    Article  CAS  Google Scholar 

  • Mange MA, Maurer H (2012) Heavy minerals in colour. Springer Science & Business Media. https://doi.org/10.1007/978-94-011-2308-2

    Book  Google Scholar 

  • McLennan SM, Nance WB, Taylor SR (1980) Rare earth element thorium correlation in sedimentary rocks and the composition of the continental crust. Geochim Cosmochim Acta 44:1833–1839. https://doi.org/10.1016/0016-7037(80)90232-X

    Article  CAS  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050. https://doi.org/10.1016/0016-7037(90)90269-Q

    Article  CAS  Google Scholar 

  • McLennan SM, Bock B, Hemming SR, Hurowitz JA, Lev SM, McDaniel DK (2003) The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. Geochemistry of sediments and sedimentary rocks: evolutionary considerations to mineral deposit-forming environments, vol 4. Geological Association of Canada, GeoText, pp 7–38

    Google Scholar 

  • Mohanty AK, Sengupta D, Das SK, Saha SK, Van KV (2004) Natural radioactivity and radiation exposure in the high background area at Chhatrapur beach placer deposit of Orissa, India. J Environ Radioact 75(1):15–33. https://doi.org/10.1016/j.jenvrad.2003.09.004

    Article  CAS  Google Scholar 

  • Mondal MEA, Wani H, Mondal B (2012) Geochemical signature of provenance, tectonics and chemical weathering in the Quaternary flood plain sediments of the Hindon River, Gangetic plain, India. Tectonophysics 566–567: 87–94. https://doi.org/10.1016/j.tecto.2012.07.001

  • Ndjigui P-D, Beauvais A, Fadil-Djenabou S, Ambrosi J-P (2014) Origin and evolution of Ngaye River alluvial sediments, Northern Cameroon: geochemical constraints. J Afr Earth Sci 100:164–178. https://doi.org/10.1016/j.jafrearsci.2014.06.005

    Article  CAS  Google Scholar 

  • Nguyen DC, Pieczonka J, Piestrzynski A, Hao DV, Le KP, Jod, łowski, P. (2017) General characteristics of rare earth and radioactive elements in dong pao deposit. Lai Chau Vietnam J Earth Sci 39(1):14–26

    Google Scholar 

  • OECD (1979) Nuclear Energy Agency, Exposure to radiation from natural radioactivity in building materials. Reported by NEA group of Experts, OECD, Paris

  • Papadopoulos A, Koroneos A, Christofides G, Papadopoulou L, Tzifas I, Stoulos S (2016) Assessment of gamma radiation exposure of beach sands in highly touristic areas associated with plutonic rocks of the Atticocycladic zone (Greece). J Environ Radioact 162-163:235–243. https://doi.org/10.1016/j.jenvrad.2016.05.035

    Article  CAS  Google Scholar 

  • Pourmand A, Dauphas N, Ireland TJ (2012) A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and post-Archean Australian Shale (PAAS) abundances. Chem Geol 291:38–54

    Article  CAS  Google Scholar 

  • Prabakaran K, Nagarajan R, Eswaramoorthi S, Anandkumar A, Franco FM (2018) Environmental significance and geochemical speciation of trace elements in Lower Baram river sediments. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.11.158

  • Pradhan NS, Das PJ, Gupta N, Shrestha AB (2021) Sustainable management options for healthy rivers in South Asia: the case of Brahmaputra. Sustainability 13:1087. https://doi.org/10.3390/su13031087

    Article  Google Scholar 

  • Qureshi AA, Tariq S, Din KU, Manzoor S, Calligaris C, Waheed A (2014) Evaluation of excessive lifetime cancer risk due to natural radioactivity in the river’s sediments of Northern Pakistan. J Radiat Res Appl Sci 7(4):438–447

    Article  Google Scholar 

  • Radenković MB, Alshikh SM, Andrić VB, Miljanić ŠS (2009) Radioactivity of sand from several renowned public beaches and assessment of the corresponding environmental risks. J Serb Chem Soc 74(4):461–470

    Article  Google Scholar 

  • Rahman MA, Das SC, Pownceby MI, Tardio J, Alam MS, Zaman MN (2020) Geochemistry of recent Brahmaputra river sediments: provenance, tectonics, source area weathering and depositional environment. Minerals 10(9):813. https://doi.org/10.3390/min10090813

    Article  CAS  Google Scholar 

  • Ramasamy V, Suresh G, Rajkumar P, Murugesan S, Mullainathan S, Meenakshisundaram V (2012) Reassessment and comparison of natural radioactivity levels in relation to granulometric contents of recently excavated major river sediments. J Radioanal Nucl Chem 292(1):381–393. https://doi.org/10.1007/s10967-011-1486-z

    Article  CAS  Google Scholar 

  • Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Function of minerals in the natural radioactivity level of Vaigai River sediments, Tamil Nadu, India – spectroscopical approach. Spectrochim Acta A Mol Biomol Spectrosc 117:340–350. https://doi.org/10.1016/j.saa.2013.08.022

    Article  CAS  Google Scholar 

  • Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, Guilherme LRG (2016) Rare earth elements in the soil environment. Curr Pollution Rep 2:28–50

    Article  CAS  Google Scholar 

  • Rao NS, Sengupta D, Guin R, Saha SK (2009) Natural radioactivity measurements in beach sand along southern coast of Orissa, eastern India. Environ Earth Sic 59:593–601

    Article  CAS  Google Scholar 

  • Rashid MB, Habib MA, Khan R, Islam ARMT (2021) Land transform and its consequences due to the route change of the Brahmaputra River in Bangladesh. Int J River Basin Manag. https://doi.org/10.1080/15715124.2021.1938095

  • Roddaz M, Viers J, Moreira-Turcq P et al (2014) Evidence for the control of the geochemistry of Amazonian floodplain sediments by stratification of suspended sediments in the Amazon. Chem Geol 387:101-110. 

  • Rudnick RL, Gao S (2014) Composition of the continental crust. Treatise on Geochemistry, Second ed., pp, 1-64 (Chapter 4)

  • Sarma JN (2005) Fluvial process and morphology of the Brahmaputra River in Assam, India. In: Latrubesse EM, Stevaux JC, Sinha R (Eds.), Tropical Rivers: Geomorphology, Special issue, 70:226–256

  • Sharma A, Sensarma S, Kumar K et al (2013) Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: Implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate. Geochim Cosmochim Acta 104:63–83

  • Sasaki T, Rajib M, Akiyoshi M, Kobayashi T, Takagi I, Fujii T, Zaman MM (2014) Laboratory enrichment of radioactive assemblages and estimation of thorium and uranium radioactivity in fractions separated from placer sands in Southeast Bangladesh. Nat Resour Res 24(2):209–220. https://doi.org/10.1007/s11053-014-9248-6

    Article  CAS  Google Scholar 

  • Sorokina OA, Zarubina NV (2013) The content of chemical elements in alluvial soils and bottom sediments of the Urkan River (the Amur River basin). Eurasian Soil Sci 46(6):644–653

  • Sow MA, Payre-Suc V, Julien F et al (2018) Geochemical composition of fluvial sediments in the Milo River basin (Guinea): is there any impact of artisanal mining and of a big African city, Kankan?. J African Earth Sci 145:102–114

  • Stojanovic A, Kogelnig D, Mitteregger B et al (2009) Major and trace element geochemistry of superficial sediments and suspended particulate matter of shallow saline lakes in Eastern Austria. Geochem 69(3):223–234 

  • Suresh G, Ramasamy V, Meenakshisundaram V, Venkatachalapathy R, Ponnusamy V (2011) A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar river sediments, India. J Environ Radioact 102(4):370–377. https://doi.org/10.1016/j.jenvrad.2011.02.003

    Article  CAS  Google Scholar 

  • Tamim U, Khan R, Jolly YN, Fatema K, Das S, Naher K, Islam MA, Islam SMA, Hossain SM (2016) Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemospher 155:509–518. https://doi.org/10.1016/j.chemosphere.2016.04.099

    Article  CAS  Google Scholar 

  • Taskin H, Karavus MELDA, Ay P, Topuzoglu AHMET, Hidiroglu SEYHAN, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100(1):49–53

    Article  CAS  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 312

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72(2):175

    Article  CAS  Google Scholar 

  • UNSCEAR (2000) United Nations scientific committee on the effects of atomic radiation, 2000. In: sources, effects and risks of ionizing radiation. Report to the General Assembly with Scientific Annexes, Annex-B, United Nations, NewYork

  • UNSCEAR (2008) Sources and Effects of Ionizing Radiation, Report to General Assembly, with Scientific Annexes United Nations. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New York

  • Van HD, Lantoarindriaka A, Piestrzynski A, Trinh PT (2020) Fort-Dauphin beach sands, south Madagascar: natural radionuclides and mineralogical studies. Vietnam. J Earth Sci 42(2):118e129. https://doi.org/10.15625/0866-7187/42/2/14951

    Article  Google Scholar 

  • Wang X, Griffin WL, Chen J (2010) Hf contents and Zr/Hf ratios in granitic zircons. Geochem J 44:65–72

    Article  CAS  Google Scholar 

  • Wang L, Han X, Liang T, Guo Q, Li J, Dai L, Ding S (2019) Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China. Chemosphere 217:851–857. https://doi.org/10.1016/j.chemosphere.2018.11.060

    Article  CAS  Google Scholar 

  • Wu W, Zheng H, Xu S, Yang J, Liu W (2013) Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River. J Geochem Explor 124:67–78

  • Zhang J, Geng H, Pan B, Hu X, Chen L, Wang W, Chen D, Zhao Q (2020) Climatic zonation complicated the lithology controls on the mineralogy and geochemistry of fluvial sediments in the Heihe River basin, NE Tibetan Plateau. Quat Int 537:33–47. https://doi.org/10.1016/j.quaint.2020.01.016

    Article  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  CAS  Google Scholar 

  • Zorer ÖS (2019) Evaluation of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments. Microchem J 145:762–766

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Group Research Project under grant number (R.G.P.2/146/43). We are thankful to the technical personnel associated with this study, especially to the persons involve in the TRIGA Mark II research reactor operation at the center for research reactor, AERE, Bangladesh atomic energy commission.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Group Research Project under grant number (R.G.P.2/146/43).

Author information

Authors and Affiliations

Authors

Contributions

Rahat Khan and ARM Towfiqul Islam: Conceptualization, methodology, validation, writing — original draft preparation and supervision. H.M. Touhidul Islam and Md. Adnan Sarker Apon: Methodology, investigation, sample collections, and preparation. Md. Ahosan Habib and Khamphe Phoungthong: Mineralogical study and explaining the data outcomes. Abubakr M. Idris and Kuaanan Techato: Reviewing, editing, and original draft preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rahat Khan.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Georg Steinhauser

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2581 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Islam, H.M.T., Apon, M.A.S. et al. Environmental geochemistry of higher radioactivity in a transboundary Himalayan river sediment (Brahmaputra, Bangladesh): potential radiation exposure and health risks. Environ Sci Pollut Res 29, 57357–57375 (2022). https://doi.org/10.1007/s11356-022-19735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-19735-5

Keywords

Navigation