Skip to main content
Log in

Bioremediation of heavy metal–polluted environments by non-living cells from rhizobial isolates

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rhizosphere bacteria, for example, rhizobia, can play several roles, and one of the most important, the protection of plant roots against toxic conditions and other environmental stresses. In this work, the action of Cu2+ and Cr6+ on cell growth and EPS production of four strains of rhizobia, Rhizobium tropici (LBMP-C01), Ensifer sp. (LBMP-C02 and LBMP-C03), and Rhizobium sp. LBMP-C04, were tested. The results confirmed the strong effect of Cu2+ and Cr6+ on bacterial exopolysaccharides (EPS) synthesis, and how cells can adsorb these metals, which may be a key factor in the interactions between rhizosphere bacteria and host plants in heavy metal–contaminated soils. Here, we emphasize the importance of proving the potential of treating bacterial cells and their extracellular EPS to promote the bio-detoxification of terrestrial and aquatic systems contaminated by heavy metals in a highly sustainable, economic, and ecological way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Acosta-Jurado, S., Fuentes-Romero, F., Ruiz-Sainz, J. E., Janczarek, M. & Vinardell, J.M.  (2021) Rhizobial Exopolysaccharides: Genetic Regulation of Their Synthesis and Relevance in Symbiosis with Legumes., International journal of molecular scienceshttps://doi.org/10.3390/ijms22126233.

  • Bagchi D, Bagchi M, Stohs SJ (2001) Chromium (VI)-induced oxidative stress, apoptotic cell death, and modulation of p53 tumor suppressor gene. Mol Cell Biochem 222:149–158

    Article  CAS  Google Scholar 

  • Barnhart J (1997) Review: Occurrences, uses, and properties of chromium. Regul Toxicol Pharmacol 26:S03–S07. https://doi.org/10.1006/rtph.1997.1132

    Article  Google Scholar 

  • Batool R, Marghoob U, Kalsoom A (2017) Estimation of exopolysaccharides (EPS) producing ability of Cr(VI) resistant bacterial strains from tannery effluent. J. Basic. Appl. Sci. 13: 589–596. ISSN: 1927–5129 3.

  • Batool R, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22(4):547–554

    Article  CAS  Google Scholar 

  • Beringer JE (1974) R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  Google Scholar 

  • Castellane TCL, Campanharo JC, Colnago LA et al (2017) Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. Inter Jour of Biol Macrom 96:369–371

    Google Scholar 

  • Cavalerro et al (2020) Structural characterization and metal biosorptive activity of the major polysaccharide produced by Pseudomonas veronii 2E. Carbohydr Polym 245:116458. https://doi.org/10.1016/j.carbpol.2020.116458

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-Garcia J, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Chen H, Chen QQ, Jiang XY, Hu HY, Shi ML, Jin RC (2016) Insight into the shortand long-term effects of Cu(II) on denitrifying biogranules. J Hazard Mater 304:448–456

    Article  CAS  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf, B 46:101–107

    Article  CAS  Google Scholar 

  • Cheng TC (1988) In vivo effects of heavy metals on cellular defense mechanisms of Crassostrea virginica: Total and differential cell counts. J Invertebr Pathol 51:207–214

    Article  CAS  Google Scholar 

  • Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int Biodeterior Biodegradation 59:08–15. https://doi.org/10.1016/j.ibiod.2006.05.002

    Article  CAS  Google Scholar 

  • Cieśla J, Kopycińska M, Łukowska M, Bieganowski A, Janczarek M (2016) Surface properties of wild-type Rhizobium leguminosarum bv. trifolii strain 24.2 and its derivatives with different extracellular polysaccharide content. PLoS One 11(10):e0165080. https://doi.org/10.1371/journal.pone.0165080

    Article  CAS  Google Scholar 

  • Cui J-D, Zhang Y-N (2012) Evaluation of metal ions and surfactants effect on cell growth and exopolysaccharide production in two-stage submerged culture of Cordyceps militaris. Appl Biochem and Biotech 168:1394–1404. https://doi.org/10.1007/s12010-012-9865-7

    Article  CAS  Google Scholar 

  • Dönmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762

    Article  Google Scholar 

  • Elahi A, Arooj I, Bukhari DA, Rehman A (2020) Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol 104(9):3729–3743. https://doi.org/10.1007/s00253-020-10533-y

    Article  CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Lodi A, Solisio C, Veglio F (2001) Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy 60:129–141

    Article  CAS  Google Scholar 

  • Fagorzi C et al (2018) Harnessing rhizobia to improve heavy-metal phytoremediation by legumes. Genes (basel) 9(11):542. https://doi.org/10.3390/genes9110542

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  CAS  Google Scholar 

  • Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638

    Article  CAS  Google Scholar 

  • Guibaud G, Hullebusch E, Bordas F (2006) Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere 64:1955–1962. https://doi.org/10.1016/j.chemosphere.2006.01.012

    Article  CAS  Google Scholar 

  • He H, Liu H, Shen TL, Wei SD, Dai JL, Wang RQ (2018) Influence of Cu application on ammonia oxidizers in fluvo-aquic soil. Geoderma 321:141–150

    Article  CAS  Google Scholar 

  • Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164:161–171

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Khan AG (2001) Relation between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plant growth on tannery effluent polluted soil. Environ Int 26:417–423

    Article  CAS  Google Scholar 

  • Leonel TF, Moretto C, Castellane TLC, Inácio P, Lemos EGM. (2019) The influence of cooper and chromium ions on the production of exopolysaccharide and polyhydroxybutyrate by Rhizobium tropici LBMP-C01. Jour of Polym and the Envir 2019; 0(0): 0.

  • Li S, Wu S, Ma B, Bingrui M, Mengchun G, Yuanyuan W, Zonglian S et al (2020) Single and combined effects of divalent copper and hexavalent chromium on the performance, microbial community and enzymatic activity of sequencing batch reactor. Sci Total Environ 719:137289. https://doi.org/10.1016/j.scitotenv.2020.137289

    Article  CAS  Google Scholar 

  • Lu, M., et al. (2017) Transcriptome response to heavy metals in Sinorhizobium meliloti CCNWSX0020 reveals new metal resistance determinants that also promote bioremediation by Medicago lupulina in metal contaminated soil. Appl. Environ. Microbiol. 83https://doi.org/10.1128/AEM.01244-17

  • Mohamad, O.A.; Hao, X.; Xie, P.; Hatab S.; Lin Y.; Wei, G.(2012). Biosorption of copper (II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environ. 27(3):234–241.

  • Mohite BV, Koli SH, Patil SV (2018) Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans. Appl Biochem Biotechnol 19:1–8. https://doi.org/10.1007/s12010-018-2727-1

    Article  CAS  Google Scholar 

  • Moretto C et al (2015) Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia. Int J Biol Macromol 81:291–298

    Article  CAS  Google Scholar 

  • Mouedhen I, Coudert L, Blais JF, Mercier G (2019) Prediction of physical separation of metals from soils contaminated with municipal solid waste ashes and metallurgical residues. Waste Manag 93:138–152. https://doi.org/10.1016/j.wasman.2019.05.031

    Article  CAS  Google Scholar 

  • Ogawa T, Usui M, Yatome C, Idaka E (1989) Influence of chromium compounds on microbial growth and nucleic acid synthesis. Bull Environ Contam Toxicol 43:254–260

    Article  CAS  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci and Bioeng 102:157–161

    Article  CAS  Google Scholar 

  • Ozturk S, Aslim B, Suludere Z, Tan S (2014) Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr Polym 101:265–271

    Article  CAS  Google Scholar 

  • Pagnanelli F, Mainelli S, Bornoroni L, Dionisi D, Toro L (2009) Mechanisms of heavy-metal removal by activated sludge. Chemosphere 75:1028–1034. https://doi.org/10.1016/j.chemosphere.2009.01.043

    Article  CAS  Google Scholar 

  • Pagnanelli, F., Petrangeli Papini, M., Trifoni, M., Toro, L., Vegliò, F., (2000). Biosorption of metals ions on Arthrobacter sp.: biomass characterization and biosorption modeling. Environ. Sci. Technol. 34(13):2773–2778.

  • Paperi R, Micheletti E, De Philips R (2006) Optimization of copper sorbing-desorbing cycles with confined cultures of the exopolysaccharide- producing cyanobacterium Cyanospira capsulata. J Appl Microbiol 101:1351–1356. https://doi.org/10.1111/j.1365-2672.2006.03021.x

    Article  CAS  Google Scholar 

  • Peters PJ, Hunziker W (2001) Subcellular localization of Rab17 by cryo-immunogold electron microscopy in epithelial cells grown on polycarbonate filters. Methods Enzymol 329(210–225):31

    Google Scholar 

  • Polak-Berecka M, Szwajgier D, Waśko A (2014) Biosorption of Al(+3) and Cd(+2) by an exopolysaccharide from Lactobacillus rhamnosus. J Food Sci 79(11):T2404–T2408. https://doi.org/10.1111/1750-3841.12674

    Article  CAS  Google Scholar 

  • Pulsawat, W., Leksawasdi, N., Rogers P.L., Foster, L.J.R. (2003). Anion effects on biosorption of Mn(II) by extracellular polymeric substance (EDS) from Rihzobium etli Biotechnology Letters 25(15):1267–70. https://doi.org/10.1023/A:1025083116343

  • Puzon GJ, Petersen JN, Roberts AG, Kramer DM, Xun L (2002) A bacterial flavin reductase system reduces chromate to soluble chromium (III)-NAD+ complex. Biochem Biophys Res Commun 294:76–81

    Article  CAS  Google Scholar 

  • Raaman N, Mahendran B, Jaganathan C, Sukumar S, Chandrasekaran V (2012) Removal of chromium using Rhizobium leguminosarum. World J Microb and Biotechnology 28:627–636

    Article  CAS  Google Scholar 

  • Rathnayake IVN, Megharaj M, Krishnamurti GSR, Bolan NS, Naidu R (2013) Heavy metal toxicity to bacteria – are the existing growth media accurate enough to determine heavy metal toxicity? Chemosphere 90:1195–1200

    Article  CAS  Google Scholar 

  • Rizvi A, Saghir Khan M (2019) Putative role of bacterial biosorbent in metal sequestration revealed by SEM–EDX and FTIR. Indian J Microbiol 59:246–249. https://doi.org/10.1007/s12088-019-00780-7

    Article  CAS  Google Scholar 

  • Romanenko VI, Korenkov VW (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46:414–417

    CAS  Google Scholar 

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972. https://doi.org/10.1016/j.ccr.2010.06.005

    Article  CAS  Google Scholar 

  • Shuaib M et al (2021) Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microb Pathog 150:104713. https://doi.org/10.1016/j.micpath.2020.104713

    Article  CAS  Google Scholar 

  • Shuhong Y, Meiping Z, Hong Y, Han W, Shan X, Yan L, Jihui W (2014) Biosorption of Cu(2+), Pb(2+) and Cr(6+) by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydr Polym 101:50–56. https://doi.org/10.1016/j.carbpol.2013.09.021

    Article  CAS  Google Scholar 

  • Tangaromsuk J, Pokethitiyook P, Kruatrachue M, Upatham ES (2002) Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresour Technol 85:103–105

    Article  CAS  Google Scholar 

  • Teng Z, Shao W, Zhang K, Huo Y, Zhu J, Li M (2019) Pb biosorption by Leclercia adecarboxylata: protective and immobilized mechanisms of extracellular polymeric substances. Chem Eng J 375:122113. https://doi.org/10.1016/j.cej.2019.122113

    Article  CAS  Google Scholar 

  • Tyagi, B., Gupta, B., Thakur, I.S. (2020) Biosorption of Cr (VI) from aqueous solution by extracellular polymeric substances (EPS) produced by Parapedobacter sp. ISTM3 strain isolated from Mawsmai cave, Meghalaya, India. Environ. Res. 191:110064. https://doi.org/10.1016/j.envres.2020.110064

  • Wang S, Li H, Zhang A, Fang F, Chen Y et al (2020) Importance of exopolysaccharide branched chains in determining the aggregation ability of anammox sludge Sci. Total Environ 734:139470. https://doi.org/10.1016/j.scitotenv.2020.139470

    Article  CAS  Google Scholar 

  • Waturangi DE, Rahayu BS, Lalu KY, Mulyono N (2016) Characterization of bioactive compound from actinomycetes for antibiofilm activity against Gram-negative and Gram-positive bacteria. Malays J Microbiol 12:291–299

    CAS  Google Scholar 

  • Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Meth 43:153–164

    Article  CAS  Google Scholar 

  • Xia S, Song Z, Jeyakumar P, Bolan N, Wang H (2020) Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environ Geochem Health 42(6):1543–1567. https://doi.org/10.1007/s10653-019-00445-w

    Article  CAS  Google Scholar 

  • Xie P, Hao X, Mohamad OA, Liang J, Wei G (2013) Comparative study of chromium biosorption by Mesorhizobium amorphae Strain CCNWGS0123 in single and binary mixtures Appl. Biochem and Biotechn 169:570–587

    Article  CAS  Google Scholar 

  • Yang QJ, Li ZY, Lu XN, Duan QN, Huang L, Bi J (2018) A review of soil heavy metal pollution from industrial and agricultural regions in China: pollution and risk assessment. Sci Total Environ 642:690–700

    Article  CAS  Google Scholar 

  • Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831. https://doi.org/10.1016/j.jenvman.2016.06.059

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Suzuki K, Maekawa T (2003) Uptake and mass balance of trace metals for methane producing bacteria. Biomass Bioenergy 25:427–443

    Article  CAS  Google Scholar 

  • Zhang, Z., Cai, R., Zhang, W., Fu, Y., Jiao, N. (2017) A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar Drugs. 15(6):175. https://doi.org/10.3390/md15060175

  • Zhang Z, Chen Y, Wang R, Cai R, Fu Y, Jiao N (2015) The fate of marine bacterial exopolysaccharide in natural marine microbial communities. PLoS ONE 10(11):e0142690. https://doi.org/10.1371/journal.pone.0142690

    Article  CAS  Google Scholar 

  • Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol 18:3–11

    Article  CAS  Google Scholar 

Download references

Funding

The study is funded by the National Council for Scientific and Technological Development (CNPq), Brazil (Proceeding No. 401886/2016–1) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 – Postgraduate Program in Agronomy (Genetics and Plant Breeding) pertained to Unesp/FCAV.

Author information

Authors and Affiliations

Authors

Contributions

CM: conception and design, acquisition of data, analysis and interpretation of data, and reviewed the manuscript; TCLC: conception and design, analysis and interpretation of data, wrote the manuscript, and critically reviewed manuscript; JCC and TLF: partial acquisition of data; EGML conception, design and funded the experiments.

Corresponding author

Correspondence to Tereza Cristina Luque Castellane.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Elena Maestri

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moretto, C., Castellane, T.C.L., Leonel, T.F. et al. Bioremediation of heavy metal–polluted environments by non-living cells from rhizobial isolates. Environ Sci Pollut Res 29, 46953–46967 (2022). https://doi.org/10.1007/s11356-022-18844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18844-5

Keywords

Navigation