Skip to main content
Log in

Characterization of TiO2 and an as-prepared TiO2/SiO2 composite and their photocatalytic performance for the reduction of low-concentration N-NO3 in water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Excessive N-NO3 water pollution has become a widespread and serious problem that threatens human and ecosystem health. Here, a TiO2/SiO2 composite photocatalyst was prepared via the sol–gel/hydrothermal method. TiO2 and TiO2/SiO2 were characterized by X-ray diffraction (XRD), UV–Vis differential reflectance spectroscopy (DRS), Fourier infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Afterward, the photocatalytic performance of TiO2 and TiO2/SiO2 to reduce low nitrate concentrations (30 mgN L−1) under UV light was evaluated and the effects of different factors on this process were investigated, after which the reaction conditions were optimized. Removal rates of up to 99.93% were achieved at a hole scavenger (formic acid) concentration of 0.6 mL L−1, a CO2 flow rate of 0.1 m3 h−1, and a TiO2 concentration of 0.9 g L−1. In contrast, TiO2/SiO2 at a 1.4 g L−1 concentration and a TiO2 load rate of 40% achieved a removal rate of 83.48%, but with more than 98% of nitrogen generation rate. NO2 and NH4+ were the minor products, whereas N2 was the main product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Abascal E, Gómez-Coma L, Ortiz I, Ortiz A (2022) Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci Total Environ 810:152233

    Article  CAS  Google Scholar 

  • Baniasadi E, Dincer I, Naterer GF (2013) Measured effects of light intensity and catalyst concentration on photocatalytic hydrogen and oxygen production with zinc sulfide suspensions. Int J Hydrogen Energy 38:9158–9168

    Article  CAS  Google Scholar 

  • Bi X, Du G, Kalam A, Sun D, Zhao W, Yu Y, Su Q, Xu B, Al-Sehemi AG (2021) Constructing anatase TiO2/amorphous Nb2O5 heterostructures to enhance photocatalytic degradation of acetaminophen and nitrogen oxide. J Colloid Interface Sci 601:346–354

    Article  CAS  Google Scholar 

  • Cai S, Shi S, Li H, Bai Y, Dang D (2018) Construction of self-sufficient Z-scheme Ag3PW12O40/TiO2 photocatalysts for the improved visible-light-driven photo-degradation of rhodamine B. Res Chem Intermed 44:7769–7788

    Article  CAS  Google Scholar 

  • Caswell T, Dlamini MW, Miedziak P, Pattisson S, Davies P, Taylor S, Hutchings G (2020) Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catal Sci Technol 10:2082–2091

    Article  CAS  Google Scholar 

  • Chu L, Anastasio C (2003) Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice. J Phys Chem A 107:9594–9602

    Article  CAS  Google Scholar 

  • Doudrick K, Monzon O, Mangonon A, Hristovski K, Westerhoff P (2012) Nitrate reduction in water using commercial titanium dioxide photocatalysts (P25, P90, and Hombikat UV100). J Environ Eng Asce 138:852–861

    Article  CAS  Google Scholar 

  • Gao Q, Wang C-Z, Liu S, Hanigan D, Liu S-T, Zhao H-Z (2019) Ultrafiltration membrane microreactor (MMR) for simultaneous removal of nitrate and phosphate from water. Chem Eng J 355:238–246

    Article  CAS  Google Scholar 

  • Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P (2018) Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B Environ 236:546–568

    Article  CAS  Google Scholar 

  • Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—a review. Biores Technol 99:3965–3974

    Article  CAS  Google Scholar 

  • Hou Z, Chu J, Liu C, Wang J, Li A, Lin T, François-Xavier CP (2021) High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@cTiO2 with synergistic effect of light scattering and surface plasmon resonance. Chem Eng J 415:128863

    Article  CAS  Google Scholar 

  • Jesus MAML, Ferreira AM, Lima LFS, Batista GF, Mambrini RV, Mohallem NDS (2021) Micro-mesoporous TiO2/SiO2 nanocomposites: sol-gel synthesis, characterization, and enhanced photodegradation of quinoline. Ceram Int 47:23844–23850

    Article  CAS  Google Scholar 

  • Li H, Cai S, Yang P, Bai Y, Dang D (2018) The synergistic effect of phase heterojunction and surface heterojunction to improve photocatalytic activity of VO•–TiO2: the co-catalytic effect of H3PW12O40. J Nanopart Res 20:1–16

    Article  CAS  Google Scholar 

  • Li X, Xiong J, Xu Y, Feng Z, Huang J (2019) Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chin J Catal 40:424–433

    Article  CAS  Google Scholar 

  • Li X, Wang S, An H, Dong G, Feng J, Wei T, Ren Y, Ma J (2021) Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: performance and mechanism. Appl Surf Sci 539:148257

    Article  CAS  Google Scholar 

  • Liu W-X, Zhu X-L, Liu S-Q, Gu Q-Q, Meng Z-D (2018) Near-infrared-driven selective photocatalytic removal of ammonia based on valence band recognition of an α-MnO2/N-doped graphene hybrid catalyst. ACS Omega 3:5537–5546

    Article  CAS  Google Scholar 

  • Liu X, Liu H, Wang Y, Yang W, Yu Y (2021) Nitrogen-rich g-C3N4@AgPd Mott-Schottky heterojunction boosts photocatalytic hydrogen production from water and tandem reduction of NO3 and NO2. J Colloid Interface Sci 581:619–626

    Article  CAS  Google Scholar 

  • Lucchetti R, Siciliano A, Clarizia L, Russo D, Di Somma I, Natale F, Guida M, Andreozzi R, Marotta R (2017) Sacrificial photocatalysis: removal of nitrate and hydrogen production by nano-copper-loaded P25 titania. A kinetic and ecotoxicological assessment. Environ Sci Pollut Res 24:5898–5907

    Article  CAS  Google Scholar 

  • Lv T, Wang H, Hong W, Wang P, Jia L (2019) In situ self-assembly synthesis of sandwich-like TiO2/reduced graphene oxide/LaFeO3 Z-scheme ternary heterostructure towards enhanced photocatalytic hydrogen production. Molec Catal 475:110497

    Article  CAS  Google Scholar 

  • Mack J, Bolton JR (1999) Photochemistry of nitrite and nitrate in aqueous solution: a review. J Photochem Photobiol, A 128:1–13

    Article  CAS  Google Scholar 

  • Najafidoust A, Haghighi M, Abbasi Asl E, Bananifard H (2019) Sono-solvothermal design of nanostructured flowerlike BiOI photocatalyst over silica-aerogel with enhanced solar-light-driven property for degradation of organic dyes. Sep Purif Technol 221:101–113

    Article  CAS  Google Scholar 

  • Nguyen V-C, Nguyen T-V (2009) Photocatalytic decomposition of phenol over N-TiO2–SiO2 catalyst under natural sunlight. J Exp Nanosci 4:233–242

    Article  CAS  Google Scholar 

  • Pawar M, Sendoğdular ST, Gouma P, Cozzoli PD (2018) A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system. J Nanomater 2018:13

    Article  CAS  Google Scholar 

  • Peng X, Wang M, Hu F, Qiu F, Zhang T, Dai H, Cao Z (2018) Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen. J Environ Manage 220:173–182

    Article  CAS  Google Scholar 

  • Ren H, Jia S-Y, Zou J-J, Wu S-H, Han X (2015) A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate. Appl Catal B: Environ 176:53–61

    Article  CAS  Google Scholar 

  • Satayeva AR, Howell CA, Korobeinyk AV, Jandosov J, Inglezakis VJ, Mansurov ZA, Mikhalovsky SV (2018) Investigation of rice husk derived activated carbon for removal of nitrate contamination from water. Sci Total Environ 630:1237–1245

    Article  CAS  Google Scholar 

  • Sun H, Zhou G, Liu S, Ang HM, Tadé MO, Wang S (2013) Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants. Chem Eng J 231:18–25

    Article  CAS  Google Scholar 

  • Sun D, Sun W, Yang W, Li Q, Shang JK (2015) Efficient photocatalytic removal of aqueous NH4+–NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions. Chem Eng J 264:728–734

    Article  CAS  Google Scholar 

  • Takari A, Ghasemi AR, Hamadanian M, Sarafrazi M, Najafidoust A (2021) Molecular dynamics simulation and thermo-mechanical characterization for optimization of three-phase epoxy/TiO2/SiO2 nano-composites. Polymer Test 93:106890

    Article  CAS  Google Scholar 

  • Tsang CHA, Li K, Zeng Y, Zhao W, Zhang T, Zhan Y, Xie R, Leung DYC, Huang H (2019) Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast. Environ Int 125:200–228

    Article  CAS  Google Scholar 

  • Tugaoen HON, Garcia-Segura S, Hristovski K, Westerhoff PJSoTTE, (2017) Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci Total Environ 599–600:1524–1551

    Article  CAS  Google Scholar 

  • Velu M, Balasubramanian B, Velmurugan P, Kamyab H, Ravi AV, Chelliapan S, Lee CT, Palaniyappan J (2021) Fabrication of nanocomposites mediated from aluminium nanoparticles/Moringa oleifera gum activated carbon for effective photocatalytic removal of nitrate and phosphate in aqueous solution. J Clean Prod 281:124553

    Article  CAS  Google Scholar 

  • Wang Y, Xing Z, Li Z, Wu X, Wang G, Zhou W (2017) Facile synthesis of high-thermostably ordered mesoporous TiO2/SiO2 nanocomposites: an effective bifunctional candidate for removing arsenic contaminations. J Colloid Interface Sci 485:32–38

    Article  CAS  Google Scholar 

  • Wang B, An B, Su Z, Li L, Liu Y (2021) A novel strategy for sequential reduction of nitrate into nitrogen by CO2 anion radical: experimental study and DFT calculation. Chemosphere 269:128754

    Article  CAS  Google Scholar 

  • Wang L, Fu W, Zhuge Y, Wang J, Yao F, Zhong W, Ge X (2021) Synthesis of polyoxometalates (POM)/TiO2/Cu and removal of nitrate nitrogen in water by photocatalysis. Chemosphere 278:130298

    Article  CAS  Google Scholar 

  • Woottikrai C, Arisa S, Pimluck K, Yothin C (2022) Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate. J Chemosph 286:131762

    Article  CAS  Google Scholar 

  • Yang Y, Li X-j, Chen J-t, Wang L-y (2004) Effect of doping mode on the photocatalytic activities of Mo/TiO2. J Photochem Photobiol, A 163:517–522

    Article  CAS  Google Scholar 

  • Yao F, Fu W, Ge X, Wang L, Wang J, Zhong W (2020) Preparation and characterization of a copper phosphotungstate/titanium dioxide (Cu-H3PW12O40/TiO2) composite and the photocatalytic oxidation of high-concentration ammonia nitrogen. Sci Total Environ 727:138425

    Article  CAS  Google Scholar 

  • Yu W, Liu X, Pan L, Li J, Liu J, Zhang J, Li P, Chen C, Sun Z (2014) Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl Surf Sci 319:107–112

    Article  CAS  Google Scholar 

  • Zhang Y, Li F, Zhang Q, Li J, Liu Q (2014) Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes. Sci Total Environ 490:213–222

    Article  CAS  Google Scholar 

  • Zhang Q, Xu P, Qian H (2020) Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Expos Health 12:487–500

    Article  CAS  Google Scholar 

  • Zhou G, Sun H, Wang S, Ming Ang H, Tadé MO (2011) Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations. Sep Purif Technol 80:626–634

    Article  CAS  Google Scholar 

  • Zhou G, Shen L, Xing Z, Kou X, Duan S, Fan L, Meng H, Xu Q, Zhang X, Li L, Zhao M, Mi J, Li Z (2017) Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. J Colloid Interface Sci 505:1031–1038

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation (grant number U1906219), Shandong Province major scientific and technological innovation project (grant number 2019JZZY010723), and Natural Science Foundation of Shandong Province (grant number ZR2020MB087).

Author information

Authors and Affiliations

Authors

Contributions

Wanzhen Zhong: conceptualization, methodology, writing — original draft. Weizhang Fu: supervision, project administration. Shujuan Sun: writing — review and editing. Lingsheng Wang: investigation, software, resources. Huaihao Liu: validation, formal analysis. Junzhi Wang: data curation, visualization.

Corresponding authors

Correspondence to Weizhang Fu or Shujuan Sun.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Sami Rtimi

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, W., Fu, W., Sun, S. et al. Characterization of TiO2 and an as-prepared TiO2/SiO2 composite and their photocatalytic performance for the reduction of low-concentration N-NO3 in water. Environ Sci Pollut Res 29, 40585–40598 (2022). https://doi.org/10.1007/s11356-022-18793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-022-18793-z

Keywords

Navigation