Skip to main content

Advertisement

Log in

Reflection on the joint prevention and control of air pollution from the perspective of environmental justice—insights from a two-stage dynamic game model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The practices of the joint prevention and control of air pollution (JPCAP) present two disadvantages: the low enthusiasm of governance subjects and an unsatisfactory governance effect. Revealing the existing problems and exploring their causes has been a key issue for promoting JPCAP. Given this, we especially establish a two-stage dynamic game model for air pollution control to explore the advantages and dilemmas of JPCAP by analyzing changes in environmental tax rate and social welfare. The results show that the unfair distribution of social welfare among cities is a key reason for the unsatisfactory effect of JPCAP. Therefore, we improve JPCAP by considering both production-oriented and consumption-oriented pollutions based on environmental justice. In the improved JPCAP mode, the social welfare of each city is higher than that of non-joint control of air pollution (NJCAP), in which the increased degree is positively related to the city’s negotiation ability. In addition, the consumption tax rate is negatively correlated with the negotiation ability of the central city and the trade transfer coefficient. This study not only provides a theoretical and methodological reference for formulating effective planning and compensation scheme for JPCAP but also can be extended to the practice and theoretical analysis of other cross-regional public issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • T Bernauer V Koubi 2013 Are bigger governments better providers of public goods? Evidence from Air Pollution Public Choice 156 3-4 593 609

    Article  Google Scholar 

  • Y Bian L Wu M Zhou J Bai 2020 Domestic market segmentation and haze pollution: an empirical research based on SLX Ind Econ Res 105 02 45 57

    Google Scholar 

  • RJ Bruhl SH Linder K Sexton 2013 Case study of municipal air pollution policies: Houston’s air toxic control strategy under the white administration, 2004–2009 Environ Sci Technol 47 9 4022 4028

    Article  CAS  Google Scholar 

  • L Cai 2019 Research on collaborative governance mechanism in Guangdong-Hong Kong-Macao greater bay area-from the perspective of institutional collective action J Acad Res 410 1 56 63+177 178

  • J Cao C Lv 2014 Joint prevention and control: the legal mechanism to combat cross-administrative-region air pollution J Liaoning Univ 42 6 32 40

    Google Scholar 

  • R Cellini L Lambertini GIP Ottaviano 2004 Welfare in a differentiated oligopoly with free entry: a cautionary note Res Econ 58 2 125 133

    Article  Google Scholar 

  • BR Copeland TM Scott 1994 North-south trade and the environment Quart J Econ 109 3 755 787

    Article  Google Scholar 

  • Y Dai Z Tan J Tan L Yan 2019 Regional cooperative pollution control and residents' health expenditures: empirical evidence from China Iran J Public Health 48 6 1033 1042

    Google Scholar 

  • L Davuliene D Jasineviciene I Garbariene J Andriejauskiene V Ulevicius S Bycenkiene 2021 Long-term air pollution trend analysis in the South-eastern Baltic region 1981-2017 Atmos Res 247 105191

    Article  CAS  Google Scholar 

  • R Duarte V Pinilla A Serrano 2018 Factors driving embodied carbon in international trade: a multiregional input-output gravity model Econ Syst Res 30 4 545 566

    Article  Google Scholar 

  • K Fujiwara 2009 Environmental policies in a differentiated oligopoly revisited Resour Energy Econ 31 3 239 247

    Article  Google Scholar 

  • R Hafner 2020 Environmental justice incommen-surabilities framework: monitoring and evaluating environmental justice concepts, thought styles and human-environment relations J Geogr Soc Berlin 151 2-3 67 76

    Google Scholar 

  • Q He R Wang H Ji G Wei J Liu 2019 Theoretical model of environmental justice and environmental inequality in China's four major economic zones Sustainability-Basel 11 21 5923

    Article  Google Scholar 

  • NE Klepeis N Dhaliwal G Hayward AV Bolton WR Ott N Read 2016 Measuring indoor air quality and engaging California Indian Stakeholders at the win-river resort and casino: collaborative smoke-free policy development Int J Environ Res Public Health 13 1 1 26

    Article  CAS  Google Scholar 

  • JCK Lam LYL Cheung S Wang VOK Li 2019 Stakeholder concerns of air pollution in Hong Kong and policy implications: a big-data computational text analysis approach Environ Sci Policy 101 11 374 382

    Article  Google Scholar 

  • L Li D Yan S Xu M Huang X Wang S Xie 2017 Characteristics and source distribution of air pollution in winter in Qingdao, eastern China Environ Pollut 224 5 44 53

    Article  CAS  Google Scholar 

  • Y Li W Zhao J Fu Z Liu C Li J Zhang 2020 Joint governance regions and major prevention periods of PM25 pollution in China based on wavelet analysis and concentration-weighted trajectory Sustainability-Basel 12 5 2019

  • J Liu RT Woodward Y Zhang 2021 Has carbon emissions trading reduced PM25 in China? Environ Sci Technol 55 10 6631 6643

    Article  CAS  Google Scholar 

  • Y Lu Y Wang L Wang H Zhang S Zhou F Bi 2019 Provincial analysis and zoning of atmospheric pollution in China from the atmospheric transmission and the trade transfer perspective Environ Manage J 249 109377

    Article  CAS  Google Scholar 

  • S Parodi I Santi C Casella A Puppo F Montanaro V Fontana 2015 Risk of leukaemia and residential exposure to air pollution in an industrial area in northern Italy: a case-control study Int J Environ Heal R 25 4 393 404

    Article  Google Scholar 

  • AC Perez B Grafton P Mohai R Hardin K Hintzen S Orvis 2015 Evolution of the environmental justice movement: activism formalization and differentiation Environ Res Lett 10 10 105002

    Article  Google Scholar 

  • H Roelfsema 2007 Strategic delegation of environmental policy making J Environ Econ Manage 53 2 270 275

    Article  Google Scholar 

  • N Sabzevar ST Enns J Bergerson J Kettunen 2017 Modeling competitive firms’ performance under price-sensitive demand and cap-and-trade emissions constraints Int J Prod Econ 184 2 193 209

    Article  Google Scholar 

  • L Sager 2019 Estimating the effect of air pollution on road safety using atmospheric temperature inversions J Environ Econ Manage 98 1 20

    Article  Google Scholar 

  • S Samuelsen S Zhu M Mac Kinnon OK Yang D Dabdub J Brouwer 2021 An episodic assessment of vehicle emission regulations on saving lives in California Environ Sci Technol 55 547 552

    Article  CAS  Google Scholar 

  • E Scandrett 2007 Environmental justice in Scotland: policy, pedagogy and praxis Environ Res Lett 2 4 45002 45002

    Article  Google Scholar 

  • GM Shi JN Wang F Fu WB Xue 2016 A study on transboundary air pollution based on a game theory model: cases of SO2 emission reductions in the cities of Changsha, Zhuzhou and Xiangtan in China Atmos Pollut Res 8 2 244 252

    Article  Google Scholar 

  • Y Song S Chen M Zhang 2020a Local Government heterogeneity and regional environmental cooperation-evolutionary game analysis based on Chinese decentralization Chinese J Manage S 28 01 201 211

    Google Scholar 

  • Y Song Z Li T Yang Q Xia 2020b Does the expansion of the joint prevention and control area improve the air quality?-Evidence from China's Jing-Jin-Ji region and surrounding areas Sci Total Environ 706 136034

    Article  CAS  Google Scholar 

  • Y Song T Yang Z Li X Zhang M Zhang 2020c Research on the direct and indirect effects of environmental regulation on environmental pollution: empirical evidence from 253 prefecture-level cities in China J Clean Prod 269 122425

    Article  Google Scholar 

  • L Sun J Du Y Li 2021 A new method for dividing the scopes and priorities of air pollution control based on environmental justice Environ Sci Pollut R 28 1 12858 12869

    Article  CAS  Google Scholar 

  • L Suo Y Kan 2019 Structural elements and network features of intergovernmental collaborative governance organizations on atmospheric pollution J Beijing Admin i 122 4 9 19

    Google Scholar 

  • AA Vasin AG Divtsova 2019 A game-theoretic model of agreement on limitation of transboundary air pollution Math Game Theor Appl 80 6 1164 1176

    Google Scholar 

  • K Wan S Shackley RM Doherty Z Shi N Golding 2020 Science-policy interplay on air pollution governance in China Environ Sci Policy 107 4 150 157

    Article  Google Scholar 

  • J Wang L Zhang X Niu Z Liu 2020 Effects of PM25 on health and economic loss: evidence from Beijing-Tianjin-Hebei region of China J Clean Prod 257 120605

    Article  Google Scholar 

  • H Wang SC Tan Y Wang C Jiang G Shi MX Zhang 2014 A multisource observation study of the severe prolonged regional haze episode over eastern China in January 2013 Atmos Environ 89 6 807 815

    Article  CAS  Google Scholar 

  • H Wang L Zhao 2018 A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration Atmos Environ 174 2 25 42

    Article  CAS  Google Scholar 

  • L Wang F Zhang P Eva Y Jie C Nie H Jennifer 2018 Taking action on air pollution control in the Beijing-Tianjin-Hebei (BTH) region: progress, challenges and opportunities Int J Environ Res Public Health 15 2 306

    Article  CAS  Google Scholar 

  • LFS Wang J Wang 2009 Environmental taxes in a differentiated mixed duopoly Econ Syst 33 4 389 396

    Article  Google Scholar 

  • T Wang B Zhao K Liu Y Gu Z Jiang K Song 2019a Mortality burdens in California due to air pollution attributable to local and nonlocal emissions Environ Int 133 PtB 105232

  • Y Wang X Zhao S Sun 2017 The study on the relationship between peer monitoring and team incentive based on dynamic game J Ind Eng Eng Manage 31 2 162 169

    Google Scholar 

  • Z Wang C Li Q Liu B Niu S Peng L Deng 2019b Pollution haven hypothesis of domestic trade in China: a perspective of SO2 emissions Sci Total Environ 663 198 205

    Article  CAS  Google Scholar 

  • HC Wei AT Li WN Wang YH Liao 2021 Sustainability for utility allocation: a game-theoretical mechanism J Intell Fuzzy Syst 41 1 1 9

    CAS  Google Scholar 

  • Y Wolde-Rufael E Mulat-Weldemeskel 2021 Do environmental taxes and environmental stringency policies reduce CO2 emissions? Evidence from 7 emerging economies Environ Sci Pollut Res 28 18 22392 22408

    Article  CAS  Google Scholar 

  • C Wong VJ Karplus 2017 China’s war on air pollution: can existing governance structures support new ambitions? China Quart 2017 231 662 684

    Article  Google Scholar 

  • W Wu M Zhang Y Ding 2020 Exploring the effect of economic and environment factors on PM25 concentration: a case study of the Beijing-Tianjin-Hebei region J Environ Manage 268 110703

    Article  CAS  Google Scholar 

  • Y Xie L Zhao J Xue HO Gao H Li R Jiang 2018 Methods for defining the scopes and priorities for joint prevention and control of air pollution regions based on data-mining technologies J Clean Prod 185 912 921

    Article  CAS  Google Scholar 

  • J Xue S Zhao L Zhao D Zhu S Mao 2020a Cooperative governance of inter-provincial air pollution based on a black-scholes options pricing model J Clean Prod 277 124031

    Article  Google Scholar 

  • L Xue W Wang M Zhang 2020b Research on bonus-penalty mechanism of pollution abatement: a case study of the northeastern region of China J Clean Prod 267 122069

    Article  CAS  Google Scholar 

  • J Yang B Zhang 2018 Air pollution and healthcare expenditure: implication for the benefit of air pollution control in China Environ Int 120 443 455

    Article  Google Scholar 

  • W Yang J Li Z Wang L Wang X Dao L Zhu 2021 Source apportionment of PM25 in the most polluted Central Plains Economic Region in China: implications for joint prevention and control of atmospheric pollution - ScienceDirect J Cleaner Prod 283 124557

    Article  CAS  Google Scholar 

  • X Yao B Ge W Yang J Li D Xu W Wang 2020 Affinity zone identification approach for joint control of PM25 pollution over China Environ. Pollut 265 Pt B 115086

    Article  CAS  Google Scholar 

  • H Zhang S Wang J Hao X Wang S Wang F Chai 2016 Air pollution and control action in Beijing J Clean Prod 2016 112 1519 1527

    Article  CAS  Google Scholar 

  • K Zhang W Ye Y Xu 2017 Multi-participant Coordinated Governance: its logic, dilemma and resolution Chin Pub Adm 384 6 24 29

    Google Scholar 

  • M Zhang X Liu X Sun W Wang 2020 The influence of multiple environmental regulations on haze pollution: evidence from China Atmos Pollut Res 11 6 170 179

    Article  CAS  Google Scholar 

  • S Zhang C Wang C Yu 2019 The evolutionary game analysis and simulation with system dynamics of manufacturer's emissions abatement behavior under cap-and-trade regulation Appl Math Comput 355 343 355

    Google Scholar 

  • W Zhang Y Liu K Fei K Hubacek J Wang M Liu 2018 Revealing environmental inequality hidden in China’s inter-regional trade Environ Sci Technol 52 13 7171 7181

    Article  CAS  Google Scholar 

  • D Zhao H Chen X Li X Ma 2018a Air pollution and its influential factors in China’s hot spots J Clean Prod 185 619 627

    Article  CAS  Google Scholar 

  • F Zhao S Wang Z Zhu S Wang F Liu G Liu 2019 Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment Environ Pollut 249 6 1106 1114

    Article  CAS  Google Scholar 

  • J Zhao L Gladson K Cromar 2018b A novel environmental justice indicator for managing local air pollution Int J Env Res Pub He 15 6 1260

    Article  Google Scholar 

  • L Zhao L Yuan Y Yang J Xue C Wang 2021 A cooperative governance model for SO2 emission rights futures that accounts for GDP and pollutant removal cost Sustain Cities Soc 66 102657

    Article  Google Scholar 

  • J Zhu X Yang 2018 “Quantification of the rule of law” and the development of specialized environmental justice J Shanxi Univ 41 1 95 102

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Editor and anonymous referees for their valuable comments and suggestions.

Funding

Financial support for this project was provided by the Social Science Foundation of Hebei Province (No. HB21YJ005).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Juan Du: data curation; investigation; formal analysis; roles/writing—original draft preparation; supervision. Liwen Sun: funding acquisition; project administration; conceptualization; writing-reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liwen Sun.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor:  Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of consumer surplus (\({CS}_{a}\) and \({CS}_{b}\))

According to the established game model, consumer surplus equals the difference between consumers’ utility and costs. Given this, we obtain the consumer surplus of the two cities:

$$\begin{array}{l}{CS}_{a}={CS}_{b}={x}_{1a}+{x}_{2a}-{\left({x}_{1a}+{x}_{2a}\right)}^{2}-p\left({x}_{1a}+{x}_{2a}\right)\\ =\frac{1}{2}\left({q}_{1}+{q}_{2}\right)-\frac{1}{4}{\left({q}_{1}+{q}_{2}\right)}^{2}-\frac{1}{2}\left(1-{q}_{1}-{q}_{2}\right)\left({q}_{1}+{q}_{2}\right)\\ =\frac{1}{4}{\left({q}_{1}+{q}_{2}\right)}^{2}\end{array}$$

Proof of Formulas (22)–(24)

When the two cities participate in joint control, their optimizations can be expressed as:

$${\text{MaxW}}={CS}_{a}+{CS}_{b}+{\pi }_{1}+{\pi }_{2}+{tq}_{2}-\frac{1}{2}\left({k}^{2}+{m}^{2}{s}_{b}\right){q}_{2}^{2}$$

The first-order optimality condition (FOC) is:

$$\frac{\partial {W}^{\#}}{\partial {t}^{\#}}=\frac{\partial {CS}_{a}^{\#}}{\partial {t}^{\#}}+\frac{\partial {CS}_{b}^{\#}}{\partial {t}^{\#}}+\frac{\partial {\pi }_{a}^{\#}}{\partial {t}^{\#}}+\frac{\partial {\pi }_{b}^{\#}}{\partial {t}^{\#}}+\frac{\partial {\left({tq}_{2}\right)}^{\#}}{\partial {t}^{\#}}-\frac{1}{2}\frac{\partial {\left[\left({k}^{2}+{m}^{2}s\right){q}_{2}^{2}\right]}^{\#}}{\partial {t}^{\#}}=0$$
$$\iff {t}^{\#}=\frac{2\left(1+c\right)\left({k}^{2}+{m}^{2}s\right)-4c-1}{1+4{k}^{2}+4{m}^{2}s}$$
$$\because {q}_{1}=\frac{1-2c+mt}{3},{q}_{2}=\frac{1-2mt+c}{3}$$
$$\therefore {q}_{1}^{\#}=\frac{2\left[\left(1-c\right)\left({k}^{2}+{m}^{2}s\right)-c\right]}{1+4{k}^{2}+4{m}^{2}s}$$
$${q}_{2}^{\#}=\frac{1+3c}{1+4{k}^{2}+4{m}^{2}s}$$

Proof of Formulas (25)–(27)

To describe the social welfare accurately of the equilibrium state, we substitute equilibrium quantities into equations of social welfare. The results are as follows:

$$\because {W}^{\#}={CS}_{a}^{\#}+{CS}_{b}^{\#}+{\pi }_{1}^{\#}+{\pi }_{2}^{\#}+{g}^{\#}{q}_{2}^{\#}-\frac{1}{2}\left({k}^{2}+{m}^{2}s\right){\left({q}_{2}^{\#}\right)}^{2}$$
$$=\frac{1}{2}{\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}^{2}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}-c\right){q}_{1}^{\#}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}\right){q}_{2}^{\#}-\frac{1}{2}\left({k}^{2}+{m}^{2}s\right){\left({q}_{2}^{\#}\right)}^{2}$$
$${W}_{a}^{\#}=\frac{1}{4}{\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}^{2}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}-c\right){q}_{1}^{\#}-\frac{1}{2}{k}^{2}{\left({q}_{2}^{\#}\right)}^{2}$$
$${W}_{b}^{\#}=\frac{1}{4}{\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}^{2}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}-\right){q}_{2}^{\#}-\frac{1}{2}{m}^{2}s{\left({q}_{2}^{\#}\right)}^{2}$$
$${q}_{1}^{\#}=\frac{2\left[\left(1-c\right)\left({k}^{2}+{m}^{2}s\right)-c\right]}{1+4{k}^{2}+4{m}^{2}s},{q}_{2}^{\#}=\frac{1+3c}{1+4{k}^{2}+4{m}^{2}s}$$
$$\therefore {W}^{\#}=\frac{3{\left(1-c\right)}^{2}\left({k}^{2}+{m}^{2}s\right)+1+3{c}^{2}}{2\left(1+4{k}^{2}+4{m}^{2}s\right)}$$
$${W}_{a}^{\#}=\frac{20{\left(1-c\right)}^{2}{\left({k}^{2}+{m}^{2}s\right)}^{2}+2\left(1-22c+5{c}^{2}\right){k}^{2}+4\left(1-7c\right)\left(1-c\right){m}^{2}s+1+2c+17{c}^{2}}{4{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$${W}_{b}^{\#}=\frac{4{\left(1-c\right)}^{2}{\left({k}^{2}+{m}^{2}s\right)}^{2}+4\left(3+8c+5{c}^{2}\right)\left({k}^{2}+{m}^{2}s\right)-2\left(1+3{c}^{2}\right){m}^{2}s+1-2-11{c}^{2}]}{4{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$

Proof of Formulas (30)–(34 )

When the two cities control air pollution separately, their optimization can be expressed as:

$${\text{MaxW}}_{a}={CS}_{a}+{\pi }_{1}+{t}_{a}{kq}_{2}-\frac{{k}^{2}}{2}{q}_{2}^{2}$$
$${\text{MaxW}}_{b}={CS}_{b}+{\pi }_{2}+{t}_{b}{mq}_{2}-\frac{{m}^{2}{s}_{b}}{2}{q}_{2}^{2}$$

The first-order optimality conditions (FOCs) are:

$$\frac{\partial {W}_{a}^{*}}{\partial {t}_{a}^{*}}=\frac{\partial {CS}_{a}^{*}}{\partial {t}_{a}^{*}}++\frac{\partial {\pi }_{a}^{*}}{\partial {t}_{a}^{*}}+\frac{\partial {\left({t}_{a}{kq}_{2}\right)}^{*}}{\partial {t}_{a}^{*}}-\frac{1}{2}\frac{\partial {\left({k}^{2}{q}_{2}^{2}\right)}^{*}}{\partial {t}_{a}^{*}}=0\iff {t}_{a}^{*}\in \left[0,+\infty \right)$$
$$\frac{\partial {W}_{a}^{*}}{\partial {t}^{*}}=\frac{\partial {CS}_{b}^{*}}{\partial {t}_{b}^{*}}+\frac{\partial {\pi }_{b}^{\#}}{\partial {t}_{b}^{*}}+\frac{\partial {\left({t}_{b}{mq}_{2}\right)}^{*}}{\partial {t}_{b}^{*}}-\frac{1}{2}\frac{\partial {\left[{m}^{2}{sq}_{2}^{2}\right]}^{*}}{\partial {t}_{a}^{*}}=0\iff {t}_{b}^{*}=\frac{4{m}^{2}s\left(1+c\right)-4-c}{7+8{m}^{2}s}$$
$$\because {q}_{1}=\frac{1-2c+{mt}_{b}}{3},{q}_{2}=\frac{1-2{mt}_{b}+c}{3}$$
$$\therefore {q}_{1}^{*}=\frac{4{m}^{2}s\left(1-c\right)+1-5c}{7+8{m}^{2}s},{q}_{2}^{*}=\frac{5+3c}{7+8{m}^{2}s}$$

Proof of Formulas (34)–(36)

For the same reason as A.4., we get the following results:

$$\because {W}_{a}^{*}={CS}_{a}^{*}+{\pi }_{1}^{*}+{t}_{a}^{*}{kq}_{2}^{*}-\frac{1}{2}{\left({kq}_{2}^{*}\right)}^{2}$$
$$=\frac{1}{4}{\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}^{2}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}-c\right){q}_{1}^{\#}-\frac{1}{2}{k}^{2}{\left({q}_{2}^{\#}\right)}^{2},$$
$${W}_{b}^{*}={CS}_{b}^{*}+{\pi }_{2}^{*}+{t}_{b}^{*}{mq}_{2}^{*}-\frac{1}{2}s{\left({mq}_{2}^{*}\right)}^{2}$$
$$=\frac{1}{4}{\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}^{2}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}-\right){q}_{2}^{\#}-\frac{1}{2}{m}^{2}s{\left({q}_{2}^{\#}\right)}^{2},$$
$${W}^{*}={CS}_{a}^{*}+{CS}_{b}^{*}+{\pi }_{1}^{*}+{\pi }_{2}^{*}+{t}_{a}^{*}{kq}_{2}^{*}+{t}_{b}^{*}{mq}_{2}^{*}-\frac{1}{2}\left({k}^{2}+{m}^{2}s\right){\left({q}_{2}^{*}\right)}^{2}$$
$$=\frac{1}{2}{\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}^{2}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}-c\right){q}_{1}^{\#}+\left(1-{q}_{1}^{\#}-{q}_{2}^{\#}\right){q}_{2}^{\#}-\frac{1}{2}\left({k}^{2}+{m}^{2}s\right){\left({q}_{2}^{\#}\right)}^{2},$$
$${q}_{1}^{*}=\frac{4{m}^{2}s\left(1-c\right)+1-5c}{7+8{m}^{2}s},{q}_{2}^{*}=\frac{5+3c}{7+8{m}^{2}s},{t}_{a}^{*}=0,{t}_{b}^{*}=\frac{4{m}^{2}s\left(1+c\right)-4-c}{\left(7+8{m}^{2}s\right)m}$$
$$\therefore {W}_{a}^{*}=\frac{40{m}^{4}{s}^{2}{\left(1-c\right)}^{2}+8{m}^{2}s\left(1-c\right)\left(5-11c\right)-{k}^{2}{\left(5+3c\right)}^{2}+20-32c+52{c}^{2}}{2{\left(7+8{m}^{2}s\right)}^{2}}$$
$${W}_{b}^{*}=\frac{{\left(1-c\right)}^{2}{m}^{2}{s}_{b}+4+2c+2{c}^{2}}{2\left(7+8{m}^{2}{s}_{b}\right)}$$
$${W}^{*}={W}_{a}^{*}+{W}_{b}^{*}$$
$$=\frac{48{m}^{4}{s}^{2}{\left(1-c\right)}^{2}+\left(79-126c+111{c}^{2}\right){m}^{2}s-{k}^{2}{\left(3c+5\right)}^{2}+48-18c+66{c}^{2}}{2{\left(7+8{m}^{2}s\right)}^{2}}$$

Proof of Formula (37)

To assess the impacts of pollution transmission on the environmental tax of air pollution and equilibrium quantities, we compute:

$$\frac{\partial {t}^{\#}}{\partial k}=\frac{12\left(1+3c\right)\left(k-ms\right)}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$$\frac{\partial {q}_{1}^{\#}}{\partial k}=\frac{4\left(1+3c\right)\left(k-ms\right)}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$$\frac{\partial {q}_{2}^{\#}}{\partial k}=\frac{-8\left(1+3c\right)\left(k-ms\right)}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$$\frac{\partial \left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}{\partial k}=\frac{-4\left(1+3c\right)\left(k-ms\right)}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$

which leads to the following conclusion:

$$\frac{\partial {t}^{\#}}{\partial k}<0,\frac{\partial {q}_{1}^{\#}}{\partial k}<0,\frac{\partial {q}_{2}^{\#}}{\partial k}>0,\frac{\partial \left({q}_{1}^{\#}+{q}_{2}^{\#}\right)}{\partial k}>0$$

Proof of Formula (38)

To analyze the impacts of environmental injustice on social welfare, we calculate the partial derivatives of \({W}_{a}^{\#},{W}_{b}^{\#},{W}^{\#}\) with respect to the pollution transmission coefficient \(k\) respectively:

$$\frac{\partial {W}_{a}^{\#}}{\partial k}=\frac{\partial {CS}_{a}^{\#}}{\partial k}+\frac{\partial {\pi }_{a}^{\#}}{\partial k}+\frac{\partial {\left({tkq}_{2}\right)}^{\#}}{\partial k}-\frac{1}{2}\frac{\partial {\left({k}^{2}{q}_{2}^{2}\right)}^{\#}}{\partial k}$$
$$=\frac{2\left(k-ms\right)\left(1+3c\right)\left[-1+10{k}^{2}+6{m}^{2}s-3c\left(3-2{k}^{2}+2{m}^{2}s\right)\right]}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$$\frac{\partial {W}_{b}^{\#}}{\partial k}=\frac{\partial {CS}_{b}^{\#}}{\partial k}+\frac{\partial {\pi }_{a}^{\#}}{\partial k}+\frac{\partial {\left({tmq}_{2}\right)}^{\#}}{\partial k}-\frac{1}{2}\frac{\partial {\left({k}^{2}{q}_{2}^{2}\right)}^{\#}}{\partial k}$$
$$=\frac{\left(k-ms\right)\left(1+3c\right)\left[1-24{k}^{2}-16{m}^{2}s+\left(5-8{k}^{2}\right)c\right]}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{3}}$$
$$\frac{\partial {W}^{\#}}{\partial k}=\frac{\partial {W}_{a}^{\#}}{\partial k}+\frac{\partial {W}_{b}^{\#}}{\partial k}=\frac{-\left(k-ms\right){\left(1+3c\right)}^{2}}{{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$

According to the above polynomials, we could easily obtain the following inequalities:

$$\frac{\partial {W}_{a}^{\#}}{\partial k}<0,\frac{\partial {W}_{b}^{\#}}{\partial k}>0,\frac{\partial {W}^{\#}}{\partial k}>0$$

Proof of Formula (39)

To assess the impacts of environmental injustice on the environmental tax of air pollution control and equilibrium quantities, we compute their first partial derivatives and get the following conclusions:

$$\frac{\partial {t}^{*}}{\partial k}=\frac{-24ms\left(5+3c\right)}{{\left(7+8{m}^{2}s\right)}^{2}}<0$$
$$\frac{\partial {q}_{1}^{*}}{\partial k}=\frac{-8ms\left(5+3c\right)}{{\left(7+8{m}^{2}s\right)}^{2}}<0$$
$$\frac{\partial {q}_{2}^{*}}{\partial k}=\frac{16ms\left(5+3c\right)}{{\left(7+8{m}^{2}s\right)}^{2}}>0$$

Proof of Formula (40)

Similar to A.7., we get the following results:

$$\frac{\partial {W}_{a}^{*}}{\partial k}=\frac{\partial {CS}_{a}^{*}}{\partial k}+\frac{\partial {\pi }_{a}^{*}}{\partial k}+\frac{\partial {\left({tkq}_{2}\right)}^{*}}{\partial k}-\frac{1}{2}\frac{\partial {\left({k}^{2}{q}_{2}^{2}\right)}^{*}}{\partial k}$$
$$=\frac{-8ms\left(5+3c\right)\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}{{\left(7+8{m}^{2}s\right)}^{3}}<0$$
$$\frac{\partial {W}_{b}^{*}}{\partial k}=\frac{\partial {CS}_{b}^{*}}{\partial k}+\frac{\partial {\pi }_{a}^{*}}{\partial k}+\frac{\partial {\left({tmq}_{2}\right)}^{*}}{\partial k}-\frac{1}{2}\frac{\partial {\left({k}^{2}{q}_{2}^{2}\right)}^{*}}{\partial k}=\frac{{\left(5+3c\right)}^{2}ms}{{\left(7+8{m}^{2}s\right)}^{2}}>0$$
$$\frac{\partial {W}^{*}}{\partial k}=\frac{\partial {W}_{a}^{*}}{\partial k}+\frac{\partial {W}_{b}^{*}}{\partial k}=\frac{-ms\left(5+3c\right)\left[16\left(5+3c\right){k}^{2}+8\left(1-9c\right){m}^{2}s-43-93c\right]}{{\left(7+8{m}^{2}s\right)}^{3}}>0$$

Proof of Formula (41)

The differences between the environmental taxes, outputs of city a, city b and the sum of them are shown as follows:

$${t}^{\#}-{t}_{b}^{*}=\frac{2\left(1+c\right)\left({k}^{2}+{m}^{2}s\right)-4c-1}{1+4{k}^{2}+4{m}^{2}s}-\frac{4{m}^{2}s\left(1+c\right)-4-c}{7+8{m}^{2}s}$$
$$=\frac{2\left[\left({k}^{2}+{m}^{2}s\right)\left(1+c\right)-\left(4c+1\right)\right]\left(7+8{m}^{2}s\right)-\left[4{m}^{2}s\left(1+c\right)-4-c\right]\left(1+4{k}^{2}+4{m}^{2}s\right)}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$=\frac{3\left[\left(10+6c\right){k}^{2}+6\left(1-c\right)s-1-9c\right]}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$${q}_{1}^{\#}-{q}_{1}^{*}=\frac{2\left[\left(1+c\right)\left({k}^{2}+{m}^{2}s\right)-c\right]}{1+4{k}^{2}+4{m}^{2}s}-\frac{4{m}^{2}s\left(1-c\right)+1-5c}{7+8{m}^{2}s}$$
$$=\frac{2\left[\left(1+c\right)\left({k}^{2}+{m}^{2}s\right)-c\right]\left(7+8{m}^{2}s\right)-\left[4{m}^{2}s\left(1-c\right)+1-5\mathrm{c}\right]\left(1+4{k}^{2}+4{m}^{2}s\right)}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$=\frac{14\left(1-c\right)\left({k}^{2}+{m}^{2}s\right)-14c-16{m}^{2}s-4{m}^{2}s\left(1-c\right)-1-5c-4\left({k}^{2}+{m}^{2}s\right)+20\left({k}^{2}+{m}^{2}s\right)c}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$=\frac{{k}^{2}\left(10+6c\right)+6{m}^{2}s\left(1-c\right)-9c-1}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$${q}_{2}^{\#}-{q}_{2}^{*}=\frac{1+3c}{1+4{k}^{2}+4{m}^{2}s}-\frac{5+3c}{7+8{m}^{2}s}=\frac{\left(1+3c\right)\left(7+8{m}^{2}s\right)-\left(5+3c\right)\left(1+4{k}^{2}+4{m}^{2}s\right)}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$=\frac{7+21c+8{m}^{2}s+24{m}^{2}sc-\left(5+3c\right)-4\left(5+3c\right)\left({k}^{2}+{m}^{2}s\right)}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$=\frac{-2{k}^{2}\left(10+6c\right)+12{m}^{2}s\left(c-1\right)+18c+2}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)-\left({q}_{1}^{*}+{q}_{2}^{*}\right)=\left({q}_{1}^{\#}-{q}_{1}^{*}\right)+\left({q}_{2}^{\#}-{q}_{2}^{*}\right)$$
$$=\frac{{k}^{2}\left(10+6c\right)+6{m}^{2}s\left(1-c\right)-9c-1}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}+\frac{-2{k}^{2}\left(10+6c\right)+12{m}^{2}s\left(c-1\right)+18c+2}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$=-\frac{{k}^{2}\left(10+6c\right)+6{m}^{2}s\left(1-c\right)-9c-1}{\left(1+4{k}^{2}+4{m}^{2}s\right)\left(7+8{m}^{2}s\right)}$$
$$\because {k}^{2}>\frac{1+9c-6{m}^{2}s\left(1-c\right)}{10+6c}$$
$$\therefore {t}^{\#}-{t}_{b}^{*}>0,{q}_{1}^{\#}-{q}_{1}^{*}>0,{q}_{2}^{\#}-{q}_{2}^{*}<0,\left({q}_{1}^{\#}+{q}_{2}^{\#}\right)-\left({q}_{1}^{*}+{q}_{2}^{*}\right)<0$$

Proof of Formula (42)

We calculate the differences of the social welfares of city a, city b, and the sum of them. The details are as follows:

$${W}^{\#}-{W}^{*}=\frac{3{\left(1-c\right)}^{2}\left({k}^{2}+{m}^{2}s\right)+1+3{c}^{2}}{2\left(1+4{k}^{2}+4{m}^{2}s\right)}$$
$$-\frac{48{m}^{4}{s}^{2}{\left(1-c\right)}^{2}+\left(79-126c+111{c}^{2}\right){m}^{2}s-{k}^{2}{\left(3c+5\right)}^{2}+48-18c+66{c}^{2}}{2{\left(7+8{m}^{2}s\right)}^{2}}$$
$$=\frac{{\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}^{2}}{4\left(1+4{k}^{2}+4{m}^{2}s\right){\left(7+8{m}^{2}s\right)}^{2}}>0$$
$${W}_{a}^{\#}-{W}_{a}^{*}=\frac{20{\left(1-c\right)}^{2}{\left({k}^{2}+{m}^{2}s\right)}^{2}+2\left(1-22c+5{c}^{2}\right){k}^{2}+4\left(1-7c\right)\left(1-c\right){m}^{2}s+1+2c+17{c}^{2}}{4{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$$-\frac{40{m}^{4}{s}^{2}{\left(1-c\right)}^{2}+8{m}^{2}s\left(1-c\right)\left(5-11c\right)-{k}^{2}{\left(5+3c\right)}^{2}+20-32c+52{c}^{2}}{2{\left(7+8{m}^{2}s\right)}^{2}}$$
$$=\frac{{\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}^{2}\left(9+8{k}^{2}+16{m}^{2}s\right)}{4{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}{\left(7+8{m}^{2}s\right)}^{2}}>0$$
$${W}_{b}^{\#}-{W}_{b}^{*}=\frac{4{\left(1-c\right)}^{2}{\left({k}^{2}+{m}^{2}s\right)}^{2}+4\left(3+8c+5{c}^{2}\right)\left({k}^{2}+{m}^{2}s\right)-2\left(1+3{c}^{2}\right){m}^{2}s+1-2-11{c}^{2}]}{4{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}}$$
$$-\frac{{\left(1-c\right)}^{2}{m}^{2}s+4+2c+2{c}^{2}}{2\left(7+8{m}^{2}s\right)}=-\frac{{\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}^{2}}{4{\left(1+4{k}^{2}+4{m}^{2}s\right)}^{2}\left(7+8{m}^{2}s\right)}<0$$

Proof of Formula (51)

The partial derivatives of the consumption environmental tax to environmental injustice and negotiation ability of central city are as follows:

$${t}^{c}=\frac{{\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}^{2}\left[9+8{k}^{2}+16{m}^{2}s-2u\left(1+4{k}^{2}+4{m}^{2}s\right)\right]}{4e\left(1+3c\right)\left(1+4{k}^{2}+4{m}^{2}s\right){\left(7+8{m}^{2}s\right)}^{2}}$$
$$\frac{\partial {t}^{c}}{\partial e}=-\frac{{\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}^{2}\left[9+8{k}^{2}+16{m}^{2}s-2u\left(1+4{k}^{2}+4{m}^{2}s\right)\right]}{4{e}^{2}\left(1+3c\right)\left(1+4{k}^{2}+4{m}^{2}s\right){\left(7+8{m}^{2}s\right)}^{2}}<0$$
$$\frac{\partial {t}^{c}}{\partial u}=-\frac{2\left(1+4{k}^{2}+4{m}^{2}s\right){\left[\left(10+6c\right){k}^{2}+6\left(1-c\right){m}^{2}s-1-9c\right]}^{2}}{4e\left(1+3c\right)\left(1+4{k}^{2}+4{m}^{2}s\right){\left(7+8{m}^{2}s\right)}^{2}}<0$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Sun, L. Reflection on the joint prevention and control of air pollution from the perspective of environmental justice—insights from a two-stage dynamic game model. Environ Sci Pollut Res 29, 40550–40566 (2022). https://doi.org/10.1007/s11356-021-17911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-17911-7

Keywords

Navigation