Skip to main content
Log in

Combined effects of copper and microplastics on physiological parameters of Tubastrea aurea corals

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microplastics (MPs) have been a serious environmental problem because it can carry pollution like heavy metals and organic pollutants. However, the combined effect of MPs and bivalent copper ion (Cu(II)) on the coral azooxanthellate has been rarely studied. In the present study, the combined effects of PVC and Cu(II) on the physiological responses of Tubastrea aurea were studied. Our results showed that MPs alone enhanced the activity of catalase (CAT), superoxide dismutase (SOD), and reduced glutathione (GSH). The mixture groups had the same effects on the CAT and GSH, which enhanced CAT and GSH activity by 97% and 53% respectively. MPs alone and the combined treatment groups decreased the activity of lipid peroxide (LPO) and the content of metallothionein (MT) by 45% and 20% of the coral Tubastrea aurea. Cu(II) exposure always had negative effect on the physiological parameters of coral, and MPs decreased the toxicity of Cu(II) in the combined groups. This work is the first time to report the combined effects of Cu(II) and microplastics on azooxanthellate coral, which will provide important preliminary data for the following research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abel DSM, Anderson, Kloas W, Zarfl C, Hempel S, Rillig MC (2017) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24:1405–1416

    Google Scholar 

  • Abujamara LD, Prazeres MDF, Borges VD, Bianchini A (2014) Influence of copper pre-exposure on biochemical responses of the sea anemone Bunodosoma cangicum to changes in oxygen availability. Comp Biochem Physiol Part C 162:34–42

    CAS  Google Scholar 

  • Araujo CF, Nolasco MM, Ribeiro AMP, Ribeiro-Claro PJA (2018) Identification of microplastics using Raman spectroscopy: latest developments and future prospects. Water Res 142:426–440

    Article  CAS  Google Scholar 

  • Bakir A, Thompson RC, Henry TB (2017) Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish. Mar Pollut Bull 116:291–297

    Article  Google Scholar 

  • Bakus GJ (1975) Marine zonation and ecology of Cocos Island, Off Central America. Atoll Res Bull 179:1–8

    Article  Google Scholar 

  • Batel A, Borchert F, Reinwald H, Erdinger L, Braunbeck T (2018) Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos. Environ Pollut 235:918–930

    Article  CAS  Google Scholar 

  • Bhargava P, Mishra Y, Srivastava AK, Narayan OP, Rai LC (2008) Excess copper induces anoxygenic photosynthesis in Anabaena doliolum: a homology based proteomic assessment of its survival strategy. Photosynth Res 96:61–74

    Article  CAS  Google Scholar 

  • Bindoli (1988) Lipid peroxidation in mitochondria. Free Radic Biol Med 5:247–261

    Article  CAS  Google Scholar 

  • Brennecke D, Duarte B, Paiva F, CaaAdor I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 78:189–195

    Article  Google Scholar 

  • Brock JR, Bielmyer GK (2013) Metal accumulation and sublethal effects in the sea anemone, Aiptasia pallida, after waterborne exposure to metal mixtures. Comp Biochem Physiol Part C 158:150–158

    CAS  Google Scholar 

  • Cachet N, Loffredo L, Vicente OO, Thomas OP (2013) Chemical diversity in the scleractinian coral Astroides calycularis. Phytochem Lett 6:205–208

    Article  CAS  Google Scholar 

  • Canesi L, Viarengo A, Leonzio C, Filippelli M, Gallo G (1999) Heavy metals and glutathione metabolism in mussel tissues. Aquat Toxicol 46:67–76

    Article  CAS  Google Scholar 

  • Carbery M, O'Connor W, Palanisami T (2018) Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environ Int 115:400–409

    Article  Google Scholar 

  • da Silva Fonseca J, de Barros Marangoni LF, Marques JA, Bianchini A (2019) Energy metabolism enzymes inhibition by the combined effects of increasing temperature and copper exposure in the coral Mussismilia harttii. Chemosphere 236:124420

    Article  Google Scholar 

  • Davarpanah E, Guilhermino L (2015) Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii. Estuar Coast Shelf Sci 167:269–275

    Article  CAS  Google Scholar 

  • Debelius B, Forja JM, Delvalls A, Lubian LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72:1503–1513

    Article  CAS  Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  Google Scholar 

  • Dris R, Imhof H, Sanchez W, Gasperi J, Galgani FO, Tassin B, Laforsch C (2015) Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environ Chem 12:539–550

    Article  CAS  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    Article  CAS  Google Scholar 

  • Egli D, Yepiskoposyan H, Selvaraj A, Balamurugan K, Rajaram R, Simons A, Multhaup G, Mettler S, Vardanyan A, Georgiev O, Schaffner W (2006) A family knockout of all four Drosophila Metallothioneins reveals a central role in copper homeostasis and detoxification. Mol Cell Biol 26:2286–2296

    Article  CAS  Google Scholar 

  • Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, Braun U (2017) Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut 231:1256–1264

    Article  CAS  Google Scholar 

  • Franklin NM, Stauber JL, Apte SC, Lim RP (2002) Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxicol Chem 21:742–751

    Article  CAS  Google Scholar 

  • Fu D, Zhang Q, Fan Z, Qi H, Wang Z, Peng L (2019) Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquat Toxicol 216:105319

    Article  CAS  Google Scholar 

  • Fusetani N, Asano M, Matsunaga S, Hashimoto K (1986) Bioactive marine metabolites—XV. Isolation of aplysinopsin from the scleractinian coral Tubastrea aurea as an inhibitor of development of fertilized sea urchin eggs. Comp Biochem Physiol Part B Comp Biochem 85:845–846

    Article  Google Scholar 

  • Gaetke L (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  • Gaston E, Woo M, Steele C, Sukumaran S, Anderson S (2020) Microplastics differ between indoor and outdoor air masses: insights from multiple microscopy methodologies. Appl Spectrosc 74:000370282092065

    Article  Google Scholar 

  • Geracitano L, Monserrat JM, Bianchini A (2002) Physiological and antioxidant enzyme responses to acute and chronic exposure of Laeonereis acuta (Polychaeta, Nereididae) to copper. J Exp Mar Biol Ecol 277:145–156

    Article  CAS  Google Scholar 

  • Gravato C, Teles M, Oliveira M, Santos MA (2006) Oxidative stress, liver biotransformation and genotoxic effects induced by copper in Anguilla anguilla L.--the influence of pre-exposure to beta-naphthoflavone. Chemosphere 65:1821–1830

    Article  CAS  Google Scholar 

  • Gu W, Shi GX, Zhang CY, Wang W, Zhou HW (2002) Toxic effects of Hg2+, Cd2+ and Cu2+ on photosynthetic systems and protective enzyme systems of Potamogeton crispus. J Plant Physiol Mol Biol 28:69–74

    CAS  Google Scholar 

  • Hall NM, Berry K, Rintoul L, Hoogenboom MO (2015) Microplastic ingestion by scleractinian corals. Mar Biol 162:725–732

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J (2010) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  Google Scholar 

  • Higuchi T, Fujimura H, Arakaki T, Oomori T, 2008. Activities of antioxidant enzymes (SOD and CAT) in the coral Galaxea fascicularis against increased hydrogen peroxide concentrations in seawater. Int Coral Reef Symp 926-930.

  • Hill K (1996) Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiol 112:697–704

    Article  CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    Article  CAS  Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    Article  CAS  Google Scholar 

  • Huang W, Chen M, Song B, Deng J, Liang J (2020) Microplastics in the coral reefs and their potential impacts on corals: a mini-review. Sci Total Environ 762:143112

    Article  Google Scholar 

  • Kolandhasamy P, Su L, Li J, Qu X, Jabeen K, Shi H (2018) Adherence of microplastics to soft tissue of mussels: a novel way to uptake microplastics beyond ingestion. Sci Total Environ 610-611:635–640

    Article  CAS  Google Scholar 

  • Krueger T, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK, Lin S (2015) Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J Phycol 50:1035–1047

    Article  Google Scholar 

  • Law K, Lavender T, Richard C (2014) Microplastics in the seas. Science 345:144–145

    Article  CAS  Google Scholar 

  • Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328:35–46

    Article  CAS  Google Scholar 

  • Levy JL, Stauber JL, Jolley DF (2007) Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Sci Total Environ 387:141–154

    Article  CAS  Google Scholar 

  • Marangoni LFB, Marques JA, Duarte GAS, Pereira CM, Calderon EN, Castro CBE, Bianchini A (2017) Copper effects on biomarkers associated with photosynthesis, oxidative status and calcification in the Brazilian coral Mussismilia harttii (Scleractinia, Mussidae). Mar Environ Res 130:248–257

    Article  CAS  Google Scholar 

  • Oliveira P, Barboza LGA, Branco V, Figueiredo N (2018) Effects of microplastics and mercury in the freshwater bivalve Corbicula fluminea (Müller, 1774): filtration rate, biochemical biomarkers and mercury bioconcentration. Ecotoxicol Environ Saf 164:155–163

    Article  CAS  Google Scholar 

  • Paul-Pont I, Lacroix C, Gonzalez Fernandez C, Hegaret H, Lambert C, Le Goic N, Frere L, Cassone AL, Sussarellu R, Fabioux C, Guyomarch J, Albentosa M, Huvet A, Soudant P (2016) Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ Pollut 216:724–737

    Article  CAS  Google Scholar 

  • Prasad M, Malec P, Waloszek A, Bojko M, Strzaka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    Article  CAS  Google Scholar 

  • Qiao R, Lu K, Deng Y, Ren H, Zhang Y (2019) Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Sci Total Environ 682:128–137

    Article  CAS  Google Scholar 

  • Reichert J, Schellenberg J, Schubert P, Wilke T (2017) Responses of reef building corals to microplastic exposure. Environ Pollut 237:955–960

    Article  Google Scholar 

  • Ribeiro-Claro P, Nolasco MM, Araújo C (2017) Characterization of microplastics by Raman spectroscopy. Compr Anal Chem 75:119–151

    Article  CAS  Google Scholar 

  • Rochman CM, Hentschel BT, Teh SJ (2014) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9:e85433

    Article  Google Scholar 

  • Roda JFB, Lauer MM, Risso WE, Martinez CBDR (2020) Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: Is there any interaction? Comp Biochem Physiol Part A 242:110659

    Article  CAS  Google Scholar 

  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 16:6044–6066

    Article  Google Scholar 

  • Santos D, Félix L, Luzio A, Parra S, Monteiro SM (2020) Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere 261:127748

    Article  CAS  Google Scholar 

  • Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144:461–511

    Article  CAS  Google Scholar 

  • Sun J, Sudong X, Yan N, Pan X, Jiahao Q, Xu Y (2019) Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Mar Pollut Bull 149:110510.110511–110510.110517

    Google Scholar 

  • Tamara G, Ceri L (2017) Marine microplastics. Curr Biol 27:445–446

    Article  Google Scholar 

  • Thornalley PJ, Vaák M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim et Biophys Acta (BBA)/Protein Struct Mol Enzymol 827:36–44

    Article  CAS  Google Scholar 

  • Tunali M, Uzoefuna EN, Tunali MM, Yenigün O (2020) Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci Total Environ 743:140479

    Article  CAS  Google Scholar 

  • Vaák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. Jbic J Biol Inorg Chem 16:1067–1078

    Article  Google Scholar 

  • Van Cauwenberghe L, Devriese L, Galgani F, Robbens J, Janssen CR (2015) Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17

    Article  Google Scholar 

  • Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z, Jin Y (2019) Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere 217:646–658

    Article  CAS  Google Scholar 

  • Wei H, Bsa B, Jie L, Qna B, Gza B, Msa B, Jda B, Yuan L, Xwa B, Yza B (2020) Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J Hazard Mater 405:124187

    Google Scholar 

  • Wen B, Jin S-R, Chen Z-Z, Gao J-Z, Liu Y-N, Liu J-H, Feng X-S (2018) Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ Pollut 243:462–471

    Article  CAS  Google Scholar 

  • Zhu X, Zhao W, Chen X, Zhao T, Wang J (2020) Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Mar Environ Res 158:105005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors were grateful to all of the laboratory members for their continuous technical advice and helpful discussions.

Funding

The study was funded by Shenzhen Science and Technology R&D Fund (project number: KJYY20180213182720347, JCYJ20200109144803833, KCXFZ202002011011057), Guangdong Key Area R & D Program Project (project number: 2020B1111030002), Project of Enhancing School with Innovation of Guangdong Ocean University (2020ZDZX2029).

Author information

Authors and Affiliations

Authors

Contributions

Baohua Xiao: conceptualization, methodology, investigation, writing—original draft, writing—review and editing. Junjie Wang: conceptualization, methodology, investigation, writing—original draft, writing—review and editing. Baolin Liao: validation, methodology, formal analysis, funding acquisition. Huina Zheng: validation, methodology, formal analysis. Xiaodong Yang: investigation, methodology. ZiqiangXie: methodology. Dongdong Li: methodology. Chengyong Li: formal analysis, writing—review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Chengyong Li.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: V.V.S.S. Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Wang, J., Liao, B. et al. Combined effects of copper and microplastics on physiological parameters of Tubastrea aurea corals. Environ Sci Pollut Res 29, 14393–14399 (2022). https://doi.org/10.1007/s11356-021-16665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16665-6

Keywords

Navigation