Skip to main content

Advertisement

Log in

Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60

    Google Scholar 

  • Abate T, van Huis A, Ampofo JK (2000) Pest management strategies in traditional agriculture: an African perspective. Annu Rev Entomol 45:631–659

    Article  CAS  Google Scholar 

  • Abbasi NK, Sharif S, Kazmi M, Sultan T, Aslam M (2011) Isolation of plant growth promoting rhizobacteria from wheat rhizosphere and their effect on improving growth, yield and nutrient uptake of plants. Plant Biosyst 145:159–168. https://doi.org/10.1080/11263504.2010.542318

    Article  Google Scholar 

  • Adesemoye AO, Torbert H, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2009) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82:761–766. https://doi.org/10.1007/s00128-009-9692-x

    Article  CAS  Google Scholar 

  • Ahemad M, Khan M (2010) Influence of selective herbicides on plant growth-promoting traits of phosphate solubilising Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan M (2011a) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011b) Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. strain MRM6. Bull Environ Contam Toxicol 86:384–388. https://doi.org/10.1007/s00128-011-0231-1

    Article  CAS  Google Scholar 

  • Ahemad M, Khan M (2012a) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. STRAINMRP1. Emir J Food Agric 24:334–343

    Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950. https://doi.org/10.1016/j.chemosphere.2011.11.013

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012c) Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540. https://doi.org/10.1007/s13213-011-0407-2

    Article  CAS  Google Scholar 

  • Ahemad M, Khan S (2012d) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71. https://doi.org/10.1016/j.jssas.2011.10.001

    Article  CAS  Google Scholar 

  • Akintokun P, Ezaka E, Akintokun A, Oyedele O (2020) Effects of two rhizobacteria inoculants on maize growth performance at different concentrations of glyphosate. Niger J Biotechnol 37:21–37

    Article  Google Scholar 

  • Aliverdi A, Ahmadvand G (2018) Herbicide toxicity to soybean–Rhizobium symbiosis as affected by soil pH. Bull Environ Contam Toxicol 101:434–438. https://doi.org/10.1007/s00128-018-2417-2

    Article  CAS  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    Article  CAS  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2020) Plant growth promoting rhizobacterial biofertilizers for sustainable crop production: the past, present, and future. Preprints 2020090650. doi: https://doi.org/10.20944/preprints202009.0650.v1

  • Aloo BN, Mbega ER, Makumba BA, Hertel R, Danel R (2021a) Molecular identification and in vitro plant growth-promoting activities of culturable Potato (Solanum tuberosum L.) rhizobacteria in Tanzania. Potato Res 64:67–95. https://doi.org/10.1007/s11540-020-09465-x

    Article  CAS  Google Scholar 

  • Aloo BN, Makumba B, Mbega E (2021b) Status of biofertilizer research, commercialization, and practical applications: a global perspective. In: Rakshit A, Meena VS, Parihar M, Singh HB, Singh AK (eds) Biofertilizers. Elsevier, pp 191–208

  • Amber P (2017) Top Pesticide Using Countries. In: WorldAtlas. https://www.worldatlas.com/articles/top-pesticide-consuming-countries-of-the-world.html. Accessed 25 Oct 2020

  • Anderson TH, Domsch KH (1990) Application of ecophysiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Anderson A, Baldock J, Rogers SL, Bellotti W, Gill G (2004) Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea. Aust J Agric Res 55:1059–1070

    Article  CAS  Google Scholar 

  • Anderson CR, Condrona LM, Clough T, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54:309–320

    Article  CAS  Google Scholar 

  • Andrade DFM, Moreira A, Moraes LAC, Petineli R, Santos LO (2020) Chemical and biological properties as affected by glyphosate and zinc application in soybean plants. J Plant Nutr 44:1–10. https://doi.org/10.1080/01904167.2020.1792494

    Article  CAS  Google Scholar 

  • Ankit SL, Kishor V, Bauddh K (2020) Impacts of synthetic pesticides on soil health and non-targeted flora and fauna. In: Bauddh K, Kumar S, Singh RP, Korstad J (eds) Ecological and Practical Applications for Sustainable Agriculture. Springer, Singapore, pp 65–88

  • Avanzi M, Matsumoto L, Albino U, Emiliano J, Liuti G, Andreata M, Dealis M, Niekawa E, Navarro M, Andrade G (2018) Impact of sulfosate on functional groups of microorganisms of the C and N cycles in the soybean rhizosphere. Agron Sci Biotechnol 4:36

    Article  Google Scholar 

  • Babich H, Stotzky G (1980) Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. Crit Rev Microbiol 8:99–145

    Article  CAS  Google Scholar 

  • Backer R, Saeed W, Seguin P, Smith DL (2017) Root traits and nitrogen fertilizer recovery efficiency of corn grown in biochar-amended soil under greenhouse conditions. Plant Soil 415:465–477

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  Google Scholar 

  • Baćmaga M, Kucharski J, Wyszkowska J, Borowik A, Tomkiel M (2014) Responses of microorganisms and enzymes to soil contamination with metazachlor. Environ Earth Sci 72:2251–2262. https://doi.org/10.1007/s12665-014-3134-8

    Article  CAS  Google Scholar 

  • Baćmaga M, Borowik A, Kucharski J, Tomkiel M, Wyszkowska J (2015) Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ Sci Pollut Res 22:643–656. https://doi.org/10.1007/s11356-014-3395-5

    Article  CAS  Google Scholar 

  • Baćmaga M, Wyszkowska J, Kucharski J (2016) The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicol 25:1575–1587. https://doi.org/10.1007/s10646-016-1713-z

    Article  CAS  Google Scholar 

  • Bai Y-C, Chang Y-Y, Hussain M, Lu B, Zhang J-P, Song X-B, Lei X-S, Pei D (2020) Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 8:694

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Gilani Z (2017) Application of mathematical models to describe rice growth and nutrients uptake in the presence of plant growth promoting microorganisms. Appl Soil Ecol 124:171–184. https://doi.org/10.1016/j.apsoil.2017.10.0

    Article  Google Scholar 

  • Balba H (2007) Review of strobilurin fungicide chemicals. J Environ Sci Health A 42:441–451

    Article  CAS  Google Scholar 

  • Barron AR, Wurzburger N, Bellenger JP, Wright SJ, Kraepiel AM, Hedin LO (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat Geosci 2:42–45

    Article  CAS  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed R, Reddy M, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140

    Article  CAS  Google Scholar 

  • Bei S, Zhang Y, Li T, Christie P, Li X, Zhang J (2018) Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil. Agric Ecosyst Environ 260:58–69. https://doi.org/10.1016/j.agee.2018.03.014

    Article  Google Scholar 

  • Bennett LT, Adams MA (2001) Response of a perennial grassland to nitrogen and phosphorus additions in sub-tropical, semi-arid Australia. J Arid Environ 48:289–308

    Article  Google Scholar 

  • Boldt TS, Jacobsen CS (1988) Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS Microbiol Lett 161:29–35. https://doi.org/10.1111/j.1574-6968.1998.tb12925.x

    Article  Google Scholar 

  • Borzì D, Abbate C, Martin-Laurent F, El Azhari N, Gennari M (2007) Studies on the response of soil microflora to the application of the fungicide fenhexamid. Int J Environ Anal Chem 87:949–956. https://doi.org/10.1080/03067310701451103

    Article  CAS  Google Scholar 

  • Brtnicky M, Dokulilova T, Holatko J, Pecina V, Kintl A, Latal O, Prichystalova J, Datta R (2019) Long-term effects of biochar-based organic amendments on soil microbial parameters. Agron 9:747

    Article  CAS  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality – a critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

    Article  CAS  Google Scholar 

  • Caradonia F, Ronga D, Catellani M, Giaretta Azevedo CV, Terrazas RA, Robertson-Albertyn S, Francia E, Bulgarelli D (2019) Nitrogen fertilizers shape the composition and predicted functions of the microbiota of field-grown tomato plants. Phytobiomes J 3:315–325. https://doi.org/10.1094/PBIOMES-06-19-0028-R

    Article  Google Scholar 

  • Carey CJ, Dove NC, Beman JM, Hart SC, Aronson EL (2016) Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biol Biochem 99:158–166

    Article  CAS  Google Scholar 

  • Chen WC, Yen JH, Chang CH, Wang YS (2009) Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil. Ecotoxicol Environ Saf 72:120–127. https://doi.org/10.1016/j.ecoenv.2008.03.013

    Article  CAS  Google Scholar 

  • Chen X, Jiang N, Chen Z, Tian J, Sun N, Xu M, Chen L (2017) Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl Soil Ecol 119:197–204. https://doi.org/10.1016/j.apsoil.2017.06.019

    Article  Google Scholar 

  • Chen X, Jiang N, Condron LM, Dunfield KE, Chen Z, Wang J, Chen L (2019) Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Sci Total Environ 669:1011–1018. https://doi.org/10.1016/j.scitotenv.2019.03.172

    Article  CAS  Google Scholar 

  • Chowdhury A, Pradhan S, Saha M, Sanya N (2008) Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian J Microbiol 48:114–127

    Article  CAS  Google Scholar 

  • Chowdhury PS, Babin D, Sandmann M, Jacquiod S, Sommermann L, Sørensen SJ, Fliessbach A, Mäder P, Geistlinger J, Smalla K, Rothballer M, Grosch R (2019) Effect of long-term organic and mineral fertilization strategies on rhizosphere microbiota assemblage and performance of lettuce. Environ Microbiol 21:2426–2439. https://doi.org/10.1111/1462-2920.14631

    Article  CAS  Google Scholar 

  • Chu H, Lin X, Fujii T, Morimoto S, Yagi K, Hu J, Zhang J (2007) Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol Biochem 39:2971–2976. https://doi.org/10.1016/j.soilbio.2007.05.031

    Article  CAS  Google Scholar 

  • Crouzet O, Batisson I, Besse-Hoggan P, Bonnemoy F, Bardot C, Poly F, Bohatier J, Mallet C (2010) Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol Biochem 42:193–202. https://doi.org/10.1016/j.soilbio.2009.10.016

    Article  CAS  Google Scholar 

  • Cycoń M, Piotrowska-Seget Z, Kozdrój J (2010) Linuron effects on microbiological characteristics of sandy soils as determined in a pot study. Ann Microbiol 60:439–449. https://doi.org/10.1007/s13213-010-0061-0

    Article  Google Scholar 

  • Cycoń M, Wójcik M, Borymski S, Piotrowska-Seget Z (2013) Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis. Appl Soil Ecol 66:8–18. https://doi.org/10.1016/j.apsoil.2013.01.014

    Article  Google Scholar 

  • Das AC, Debnath A (2006) Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal. Chemosphere 65:1082–1086. https://doi.org/10.1016/j.chemosphere.2006.02.063

    Article  CAS  Google Scholar 

  • Das AC, Mukherjee D (2000) Influence of insecticides on microbial transformation of nitrogen and phosphorus in Typic Orchragualf soil. J Agric Food Chem 48:3728–3732. https://doi.org/10.1021/jf990811q

    Article  CAS  Google Scholar 

  • Das AC, Chakravarty A, Sukul P, Mukherjee D (2003) Influence and persistence of phorate and carbofuran insecticides on microorganisms in rice field. Chemosphere 53:1033–1037. https://doi.org/10.1016/S0045-6535(03)00713-6

    Article  CAS  Google Scholar 

  • Das R, Das SJ, Das AC (2016) Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil. Eur J Soil Biol 74:9–15. https://doi.org/10.1016/j.ejsobi.2016.02.005

    Article  CAS  Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Worldwide pesticide use. In: De A, Bose R, Kumar A, Mozumdar S (eds) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, Berlin, pp 5–6

  • Demanou J, Monkiédjé A, Njine T, Foto SM, Nola M, Zebaze TSH, Kemka N (2004) Changes in soil chemical properties and microbial activities in response to the fungicide Ridomil gold plus copper. Int J Environ Res Public Health 1:26–34

    Article  CAS  Google Scholar 

  • Dennis PG, Kukulies T, Forstner C, Orton TG, Pattison AB (2018) The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci Rep 8:2119. https://doi.org/10.1038/s41598-018-20589-6

    Article  CAS  Google Scholar 

  • Devashree Y, Dutta BK, Paul SB, Choudhary S (2014) The effect of paraquat and fipronil on the soil and rhizosphere microflora of tea (Camellia sinensis (L) O. kuntze). Int J Innov Appl Stud 7:1534–1543

    Google Scholar 

  • Dong WY, Zhang XY, Liu XY, Fu XL, Chen FS, Wang HM, Sun XM, Wen XF (2015) Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences 12:5537–5546. https://doi.org/10.5194/bg-12-5537-2015

    Article  Google Scholar 

  • Donkova R, Kaloyanova N (2008) The impact of soil pollutants on soil microbial activity. In: Simeonov L, Sargsyan V (eds) Soil chemical pollution, risk assessment, remediation and security. Springer, Dordrecht, pp 73–93

  • dos Santos JB, Ferreira EA, Kasuya MCM, da Silva AA, Procópio SD (2005) Tolerance of Bradyrhizobium strains to glyphosate formulations. Crop Prot 24:543–547. https://doi.org/10.1016/j.cropro.2004.10.007

    Article  CAS  Google Scholar 

  • Dubey V, Singh D, Shukla A, Singh N (2012) Effect of application of different pesticides to leguminous crops on soil microflora of Sidhi District (M.P.). Int J Eng Res Dev 3:1–3

    Google Scholar 

  • Duchet C, Moraru GM, Spencer M, Saurav K, Bertrand C, Fayolle S, Gershberg HA, Shapir R, Steindler L, Blaustein L (2018) Pesticide-mediated trophic cascade and an ecological trap for mosquitoes. Ecosphere 9:02179

    Article  Google Scholar 

  • Dutta M, Sardar D, Pal R, Kole RK (2010) Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ Monit Assess 160:385–391. https://doi.org/10.1007/s10661-008-0702-y

    Article  CAS  Google Scholar 

  • Ekin Z (2010) Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr J Biotechnol 9:3794–3800

    CAS  Google Scholar 

  • Fabra A, Duffard R, Evangelista de Duffard A (1997) Toxicity of 2,4-dichlorophenoxyacetic acid to Rhizobium sp. in pure culture. Bull Environ Contam Toxicol 59:645–652. https://doi.org/10.1007/s001289900528

    Article  CAS  Google Scholar 

  • Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu YG, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143. https://doi.org/10.1186/s40168-019-0757-8

    Article  Google Scholar 

  • FAO (2011) Changes in global potato production. Food and Agriculture Organization of the United Nations, Rome. http://www.slideshare.net/rtbcgiar/from-a-poverty-lens-to-a-food-security-lenspotatoes- to-improve-global-food-security-and-sustainability. Accessed 28 Mar 2019

  • FAO (2013) FAO statistical yearbook. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/i3107e/i3107e.PDF. Accessed 11 Jan 2020

  • FAO (2018) Statistical databases. http://apps.fao.org/. Accessed 8 Mar 2021

  • FAO (2021a) Fertilizers by nutrient. http://www.fao.org/faostat/en/#data/RFN/visualize. Accessed 6 Mar 2021

  • FAO (2021b) Pesticides use. http://www.fao.org/faostat/en/#data/RP/visualize. Accessed 6 Mar 2021

  • Feng M, Adams JM, Fan K, Shi Y, Sun R, Wang D, Guo X, Chu H (2018) Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol Biochem 126:151–158. https://doi.org/10.1016/j.soilbio.2018.08.021

    Article  CAS  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631

    Article  CAS  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. https://doi.org/10.1038/ismej.2011.159

    Article  CAS  Google Scholar 

  • Figueriredo MVB, Seldin L, Aruajo FFF, Mariano RIR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant Growth and Health Promoting Bacteria. Springer-Verlag, Berlin, pp 21–42

  • Filimon MN, Voia RP, Dumitrescu G, Ciochina LP, Mituletu M, Vlad DC (2015) The effect of some insecticides on soil microorganisms based on enzymatic and bacteriological analyses. Rom Biotechnol Lett 20:10439–10447

    CAS  Google Scholar 

  • Fiorentino N, Ventorino V, Bertora C, Pepe O, Giancarlo M, Grignani C, Fagnano M (2016) Changes in soil mineral N content and abundances of bacterial communities involved in N reactions under laboratory conditions as predictors of soil N availability to maize under field conditions. Biol Fertil Soils 52:523–537. https://doi.org/10.1007/s00374-016-1095-7

    Article  CAS  Google Scholar 

  • Fox JE, Starcevik M, Kow KY, Burrow ME, McLachlan JA (2001) Nitrogen fixation: endocrine disrupters and flavonoid signalling. Nature 413:128–129

    Article  CAS  Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol Biochem 75:54–63. https://doi.org/10.1016/j.soilbio.2014.03.023

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114:23–34. https://doi.org/10.1016/j.fcr.2009.06.017

    Article  Google Scholar 

  • Glodowska M, Wozniak M (2019) Changes in soil microbial activity and community composition as a result of selected agricultural practices. Agric Sci 10:330–351. https://doi.org/10.4236/as.2019.103028

    Article  CAS  Google Scholar 

  • Glodowska M, Husk B, Schwinghamer T, Smith D (2016) Biochar is a growth-promoting alternative to peat moss for the inoculation of corn with a pseudomonad. Agron Sustain Dev 36:21

    Article  Google Scholar 

  • Gonzalez A, Gonzalez-Murua C, Royuela M (1996) Influence of omazethapyr on Rhizobium Growth and its Symbiosis with Pea (Pisum sativum). Weed Sci 44:31–37

    Article  CAS  Google Scholar 

  • Gundi VA, Viswanath B, Chandra MS, Kumar VN, Reddy BR (2007) Activities of cellulase and amylase in soils as influenced by insecticide interactions. Ecotoxicol Environ Saf 68:278–285

    Article  CAS  Google Scholar 

  • Gupta PK (2011) Herbicides and fungicides. In: Gupta RC (ed) Reproductive and developmental toxicology. Academic Press/Elsevier, Amsterdam, pp 503–521

  • Gupta G, Parihar SS, Ahirwar NK, Sneni SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microbiol Biochem 7:96–102

    CAS  Google Scholar 

  • Gupta RC, Mukherjee MIR, Malik JK, Doss RB, Dettbarn WD, Milatovic D (2019) Insecticides. In: Gupta RC (ed) Biomarkers in Toxicology, 2nd edn. Academic Press, Cambridge, pp 455–475

  • Hallin S, Jones CM, Schloter M, Philippot L (2009) Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME J 3:597–605

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015a) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194. https://doi.org/10.1038/ismej.2014.210

    Article  Google Scholar 

  • Hartmann TE, Yue S, Schulz R, He X, Chen X, Zhang F, Müller T (2015b) Yield and N use efficiency of a maize–wheat cropping system as affected by different fertilizer management strategies in a farmer’s field of the North China Plain. Field Crop Res 174:30–39

    Article  Google Scholar 

  • Hashimi MH, Hashimi R, Ryan Q (2020) Toxic effects of pesticides on humans, plants, animals, pollinators and beneficial organisms. Asian J Plant Sci 5:37–47

    Article  Google Scholar 

  • Hayat R, Ali S, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Heydari A, Misaghi IJ, Mccloskey WB (1997) Effects of three soil-applied herbicides on populations of plant disease suppressing bacteria in the cotton rhizosphere. Plant Soil 195:75–81. https://doi.org/10.1023/A:1004299632566

    Article  CAS  Google Scholar 

  • Hu W, Zhang L-M, Dai Y, Di H-J, He J-Z (2013) pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing. J Soils Sediments 13:1439–1449

    Article  Google Scholar 

  • Huang Q, Wang J, Wang C, Wang Q (2019) The 19-years inorganic fertilization increased bacterial diversity and altered bacterial community composition and potential functions in a paddy soil. Appl Soil Ecol 144:60–67. https://doi.org/10.1016/j.apsoil.2019.07.009

    Article  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. In: Sparks DL, du Pont SH (eds) Pesticides Microbial Diversity, and Biochemical Reactions. Elsevier, Amsterdam, pp 159–200

  • Hynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure application on soil organic matter content and soil physical conditions. Nutr Cycl Agroecosyst 51:123–137

    Article  Google Scholar 

  • Imparato V, Santos SS, Johansen A, Geisen S, Winding A (2016) Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley. Appl Soil Ecol 98:47–55

    Article  Google Scholar 

  • Jaskulska I, Jaskulski D, Kobierski M (2014) Effect of liming on the change of some agrochemical soil properties in a long-term fertilization experiment. Plant Soil Environ 60:146–150

    Article  CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    Article  CAS  Google Scholar 

  • Jeenie SP, Khanna V (2011) In vitro sensitivity of rhizobium and phosphate solubilising bacteria to herbicides. Indian J Microbiol 51:230–233. https://doi.org/10.1007/s12088-011-0145-y

    Article  CAS  Google Scholar 

  • Jenkins JR, Viger M, Arnold EC, Harris ZM, Ventura M, Miglietta F, Girardin C, Edwards RJ, Rumpel C, Fornasier F (2017) Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. GCB Bioenergy 9:591–612

    Article  CAS  Google Scholar 

  • Jones WJ, Ananyewa ND (2001) Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems. Biol Fertil Soils 33:477–483

    Article  CAS  Google Scholar 

  • Juo ASR, Dabiri A, Franzluebbers K (1995) Acidification of a kaolinitic Alfisol under continuous cropping with nitrogen fertilization in West Africa. Plant Soil 171:245–253. https://doi.org/10.1007/BF00010278

    Article  CAS  Google Scholar 

  • Kalam A, Mukherjee AK (2001) Influence of hexaconazole, carbofuran and ethion on soil microflora and dehydrogenase activities in soil and intact cell. Indian J Exp Biol 39:90–94

    CAS  Google Scholar 

  • Kaszubiak H, Durska G (2000) Effect of Oxafun T seed dressing on bacteria in rhizosphere and non-rhizosphere soil. Pol J Environ Stud 9:397–401

    CAS  Google Scholar 

  • Katsoula A, Vasileiadis S, Sapountzi M, Karpouzas DG (2020) The response of soil and phyllosphere microbial communities to repeated application of the fungicide iprodione: accelerated biodegradation or toxicity? FEMS Microbiol Ecol 96:fiaa056. https://doi.org/10.1093/femsec/fiaa056

    Article  CAS  Google Scholar 

  • Kaur C, Maini P, Shukla NP (2007) Effect of Captan and Carbendazim fungicides on nodulation and biological nitrogen fixation in soybean. Asian J Exp Sci 21:385–388

    Google Scholar 

  • Kavamura VN, Hayat R, Clark IM, Rossmann M, Mendes R, Hirsch PR, Mauchline TH (2018) Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities. Front Microbiol 9:1074. https://doi.org/10.3389/fmicb.2018.01074

    Article  Google Scholar 

  • Kelly JJ, Policht K, Grancharova T, Hundal LS (2011) Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl Environ Microbiol 77:6551–6558

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2004) Influence of herbicides on Chickpea-Mesorhizobium symbiosis. Agronomie 24:123–127

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Rizvi PC (2006) Biotoxic effects of herbicides on growth, nodulation, nitrogenase activity, and seed production in chickpeas. Commun Soil Sci Plant Anal 37:1783–1793. https://doi.org/10.1080/00103620600710645

    Article  CAS  Google Scholar 

  • Khan MJ, Zia MS, Quasim M (2010) Use of pesticides and their role in environmental pollution. World Acad Sci Eng Technol 72:122–128

    Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Alamri SA (2018) Fertilizers and their contaminants in soils, surface and groundwater. In: Dominick AD, Michael IG (eds) The Encyclopedia of the Anthropocene. Elsevier, Oxford, pp 225–240

  • Khanna V, Singh G, Sharma P, Kaur H (2012) Influence of herbicides on Rhizobium growth and its symbiosis with pigeonpea. Trends Biosci 5:132–135

    Google Scholar 

  • Kinney CA, Mandernack KW, Mosier AR (2005) Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biol Biochem 37:837–850

    Article  CAS  Google Scholar 

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate resistant crop interactions with rhizosphere micro-organisms. Eur J Agron 31:153–161

    Article  CAS  Google Scholar 

  • Kucharski J, Wyszkowska J (2018) Biological properties of soil contaminated with herbicide Apyros 75 WG. J Elem 13:357–371

    Google Scholar 

  • Kudsk P, Mathiassen SK (2020) Pesticide regulation in the European Union and the glyphosate controversy. Weed Sci 68:214–222

    Article  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99. https://doi.org/10.1007/s11104-004-6894-1

    Article  CAS  Google Scholar 

  • Kumar V, Singh S, Upadhyay N (2019) Effects of organophosphate pesticides on siderophore producing soils microorganisms. Biocatal Agric Biotechnol 21:101359. https://doi.org/10.1016/j.bcab.2019.101359

    Article  Google Scholar 

  • Kyei-Boahen S, Slinkard AE, Walley FL (2001) Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Can J Microbiol 47:585–589. https://doi.org/10.1139/w01-038

    Article  CAS  Google Scholar 

  • Lane M, Lorenz N, Saxena J, Ramsier C, Dick RP (2012) The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia 55:335–342

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112:10967–10972. https://doi.org/10.1073/pnas.1508382112

    Article  CAS  Google Scholar 

  • Li Y, Cui S, Chang SX, Zhang Q (2019a) Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis. J Soils Sediments 19:1393–1406

    Article  CAS  Google Scholar 

  • Li Y, Pan F, Yao H (2019b) Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J Soils Sediments 19:1948–1958. https://doi.org/10.1007/s11368-018-2192-z

    Article  CAS  Google Scholar 

  • Li Y, Tremblay J, Bainard LD, Cade-Menun B, Hamel C (2020) Long-term effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environ Microbiol 22:1066–1088. https://doi.org/10.1111/1462-2920.14824

    Article  CAS  Google Scholar 

  • Liao H, Li Y, Yao H (2018) Fertilization with inorganic and organic nutrients changes diazotroph community composition and N-fixation rates. J Soils Sediments 18:1076–1086. https://doi.org/10.1007/s11368-017-1836-8

    Article  CAS  Google Scholar 

  • Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W (2019) The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 14:e0217018. https://doi.org/10.1371/journal.pone.0217018

    Article  CAS  Google Scholar 

  • Liu B, Mørkved PT, Frostegård Å, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417

    Article  CAS  Google Scholar 

  • Liu J, Liu X, Zhang Q, Li S, Sun Y, Lu W, Ma C (2020a) Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express 10:200. https://doi.org/10.1186/s13568-020-01137-w

    Article  CAS  Google Scholar 

  • Liu M, Zhang W, Wang X, Wang F, Dong W, Hu C, Liu B, Sun R (2020b) Nitrogen leaching greatly impacts bacterial community and denitrifiers abundance in subsoil under long-term fertilization. Agric Ecosyst Environ 294:106885. https://doi.org/10.1016/j.agee.2020.106885

    Article  CAS  Google Scholar 

  • Long XE, Yao H (2020) Phosphorus input alters the assembly of Rice (Oryza sativa L.) root-associated communities. Microb Ecol 79:357–366. https://doi.org/10.1007/s00248-019-01407-6

    Article  Google Scholar 

  • Lu Y, Liao Y, Nie J, Zhou X, Xie J, Yang Z, Wu H (2016) Effect of long-term fertilization and lime application on soil acidity of reddish paddy soil. Acta Pedol Sin 53:202–212

    Google Scholar 

  • Lu G, Hua X-M, Liang L, Wen Z-L, Du M-H, Meng F-F, Pang Y-J, Qi J-L, Tang C-Y, Yang Y-H (2018) Identification of major rhizobacterial taxa affected by a glyphosate-tolerant soybean line via shotgun metagenomic approach. Genes 9:214

    Article  Google Scholar 

  • Lupwayi NZ, Fernandez MR, Kanashiro DA, Petri RM (2020) Profiles of wheat rhizobacterial communities in response to repeated glyphosate applications, crop rotation, and tillage. Can J Soil Sci 1–11.

  • Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. Exp Clin Sci 17:1101–1136. https://doi.org/10.17179/excli2018-1710

    Article  Google Scholar 

  • Ma B, Lv X, Cai Y, Chang SX, Dyck MF (2018) Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol Biochem 123:45–53

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Hari K, Saravanan VS, Sa T (2006) Influence of pesticides on the growth rate and plant-growth promoting traits of Gluconacetobacter diazotrophicus. Pestic Biochem Physiol 84:143–154. https://doi.org/10.1016/j.pestbp.2005.06.004

    Article  CAS  Google Scholar 

  • Madhavi A, Anuradha B, Rangaswamy V (2019) Influence of pesticides on Azospirillum sp. population and its nitrogen fixation in groundnut (Arachis hypogaea L.) soils. J Adv Microbiol 15:1–12

    Article  Google Scholar 

  • Maldani M, Messaoud BB, Nassiri L, Ibijbijen J (2018) Influence of paraquat on four rhizobacteria strains: Pantoea agglomerans, Rhizobium nepotum, Rhizobium radiobacter and Rhizobium tibeticum. Open Environ Sci 10:48–55

    Article  Google Scholar 

  • Malik Z, Ahmad M, Abassi GH, Dawood M, Hussain A, Jamil M (2017) Agrochemicals and Soil Microbes: Interaction for Soil Health. In: Hashmi MZ, Kumar V, Varma A (eds) Xenobiotics in the soil environment: monitoring, toxicity and management. Springer International Publishing, Cham, pp 139–152

  • Maliszewka-Kordybach B, Smreczak B (2003) Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728

    Article  Google Scholar 

  • Marfo TD, Datta R, Lojkova R, Janous D, Pavelka M, Formanek P (2015) Limitation of activity of acid phosphomonoesterase in soils. Springer, Wien

    Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9:34

    Article  Google Scholar 

  • Micuti MM, Badulescu L, Israel-Roming F (2018) Effect of pesticides on enzymatic activity in soil. Bull Univ Agrc Sci Vet Med Anim Sci Biotechnol 75:2

    Google Scholar 

  • Mohamad R, Al-naser Z (2018) Effect of pesticides and essential oils in the growth of rhizobial isolated from nodules of some leguminous plants in vitro. Arab J Arid Environ 1:111–117

    Google Scholar 

  • Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Teresa Ceccherini M, Datta R (2017) Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: an incubation study. PLoS One 12:e0180663. https://doi.org/10.1371/journal.pone.0180663

    Article  CAS  Google Scholar 

  • Montoya M, Guardia G, Recio J, Castellano-Hinojosa A, Ginés C, Bedmar EJ, Álvarez JM, Vallejo A (2021) Zinc-nitrogen co-fertilization influences N2O emissions and microbial communities in an irrigated maize field. Geoderma 383:114735. https://doi.org/10.1016/j.geoderma.2020.114735

    Article  CAS  Google Scholar 

  • Moreno JL, Aliaga A, Navarro S, Hermandez T, Garcia C (2007) Effects of atrazine on microbial activity in semiarid soil. Appl Soil Ecol 35:120–127

    Article  Google Scholar 

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. In: Rodriguez-Barrueco C (ed) Fertilizers and environment: proceedings of the international symposium “fertilizers and environment”, held in Salamanca, Spain, 26–29, September, 1994. Springer Netherlands, Dordrecht, pp 5–11

  • Mubeen F, Shiekh MA, Iqbal T, Khan QM, Malik KA, Hafeez FY (2006) In vitro investigations to explore the toxicity of fungicides for plant growth promoting rhizobacteria. Pak J Bot 38:1261–1269

    Google Scholar 

  • Mundi W, Gosal SK, Kaur J (2020) Effect of pesticides on growth kinetics and plant growth promoting activities of biofertilizer. Pharma Innov J 9:442–446

    CAS  Google Scholar 

  • Muturi EJ, Donthu RK, Fields CJ, Moise IK, Kim CH (2017) Effect of pesticides on microbial communities in container aquatic habitats. Sci Rep 7:44565

    Article  Google Scholar 

  • Nascimento FC, Kandasamy S, Lazarovits G, Rigobelo EC (2020) Effect of chemical fertilization on the impacts of plant growth-promoting rhizobacteria in maize crops. Curr Microbiol 77:3878–3887. https://doi.org/10.1007/s00284-020-02207-9

    Article  CAS  Google Scholar 

  • Neog R (2018) Assessing the impact of chemical fertilizers on soil acidification: a study on Jorhat district of Assam, India. Agric Sci Dig 38:270–274

    Google Scholar 

  • Neumann G, Kohls S, Landsberg E, Stock-Oliveira SK, Yamada T, Romheld V (2006) Relevance of glyphosate transfer to non-target plants via the rhizosphere. J Plant Dis Protect 20:963–969

    Google Scholar 

  • Newman MM, Hoilett N, Lorenz N, Dick RP, Liles MR, Ramsier C, Kloepper JW (2016) Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci Total Environ 543:155–160. https://doi.org/10.1016/j.scitotenv.2015.11.008

    Article  CAS  Google Scholar 

  • Nguyen TTN, Xu C-Y, Tahmasbian I, Che R, Xu Z, Zhou X, Wallace HM, Bai SH (2017) Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis. Geoderma 288:79–96

    Article  CAS  Google Scholar 

  • Niewiadomska A (2004) Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pratense L.). Pol J Environ Stud 13:4

    Google Scholar 

  • Norman JS, Friesen ML (2017) Complex N acquisition by soil diazotrophs: how the ability to release exoenzymes affects N fixation by terrestrial free-living diazotrophs. ISME J 11:315–326

    Article  CAS  Google Scholar 

  • Omar SA, Ismail M (1999) Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts. Folia Microbiol 44:205–212

    Article  CAS  Google Scholar 

  • Ouyang Y, Evans SE, Friesen ML, Tiemann LK (2018) Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biol Biochem 127:71–78. https://doi.org/10.1016/j.soilbio.2018.08.024

    Article  CAS  Google Scholar 

  • Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    Article  Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55:197–205. https://doi.org/10.1016/j.chemosphere.2003.10.014

    Article  CAS  Google Scholar 

  • Peterson DE, Shoup DE, Thomson CR, Olson BL (2013) Herbicide mode of action, cooperative extension service. Kansas State University, Kansas

    Google Scholar 

  • Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Sustainable agriculture reviews: volume 19. Springer International Publishing, Cham, pp 331–361

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  Google Scholar 

  • Rani R, Usmani Z, Gupta P, Chandra A, Das A, Kumar V (2018) Effects of organochlorine pesticides on plant growth-promoting traits of phosphate-solubilizing rhizobacterium, Paenibacillus sp. IITISM08. Environ Sci Pollut Res 25:5668–5680. https://doi.org/10.1007/s11356-017-0940-z

    Article  CAS  Google Scholar 

  • Reardon C, Gollany H, Wuest S (2014) Diazotroph community structure and abundance in wheat–fallow and wheat–pea crop rotations. Soil Biol Biochem 69:406–412

    Article  CAS  Google Scholar 

  • Reddy GS, Reddy B, Gundi VA (2011) Phosphatase activity in agricultural soils under the influence of insecticide combinations. J Environ Monit Restor 7:50–55

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Reid TE, Kavamura VN, Abadie M, Torres-Ballesteros A, Pawlett M, Clark IM, Harris J, Mauchline TH (2021) Inorganic chemical fertilizer application to wheat reduces the abundance of putative plant growth-promoting rhizobacteria. Front Microbiol 12:458

    Article  Google Scholar 

  • Riah W, Laval K, Laroche-Ajzenberg E, Mougin C, Latour X, Trinsoutrot-Gattin I (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett 12:257–273. https://doi.org/10.1007/s10311-014-0458-2

    Article  CAS  Google Scholar 

  • Richmond ME (2018) Glyphosate: a review of its global use, environmental impact, and potential health effects on humans and other species. J Environ Stud Sci 8:416–434

    Article  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  Google Scholar 

  • Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger J (2017) Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytol 214:97–107

    Article  CAS  Google Scholar 

  • Sannino F, Gianfreda L (2001) Pesticide influence on soil enzymatic activities. Chemosphere 45:417–425. https://doi.org/10.1016/S0045-6535(01)00045-5

    Article  CAS  Google Scholar 

  • Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–626

    Article  Google Scholar 

  • Sebiomo A, Ogundero VW, Bankole SA (2011) Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10:770–778

    CAS  Google Scholar 

  • Semenov MV, Krasnov GS, Semenov VM, van Bruggen AHC (2020) Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl Soil Ecol 154:103641. https://doi.org/10.1016/j.apsoil.2020.103641

    Article  Google Scholar 

  • Shahid M, Khan MS (2017) Assessment of glyphosate and quizalofop mediated toxicity to greengram [Vigna radiata (L.) Wilczek], stress abatement and growth promotion by herbicide tolerant Bradyrhizobium and Pseudomonas species. Int J Curr Microbiol App Sci 6:3001–3016

    Article  Google Scholar 

  • Shahid M, Khan MS (2018) Cellular destruction, phytohormones and growth modulating enzymes production by Bacillus subtilis strain BC8 impacted by fungicides. Pestic Biochem Physiol 149:8–19. https://doi.org/10.1016/j.pestbp.2018.05.001

    Article  CAS  Google Scholar 

  • Shahid M, Zaidi A, Ehtram A, Khan MS (2019) In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pestic Biochem Physiol 157:33–44. https://doi.org/10.1016/j.pestbp.2019.03.006

    Article  CAS  Google Scholar 

  • Shaikh S, Sayyed RZ (2015) Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Arora NK (ed) Plant Microbes Symbiosis: Applied Facets. Springer, India, pp 37–351

  • Shao H, Zhang Y (2017) Non-target effects on soil microbial parameters of the synthetic pesticide carbendazim with the biopesticides cantharidin and norcantharidin. Sci Rep 7:5521. https://doi.org/10.1038/s41598-017-05923-8

    Article  CAS  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1:1446. https://doi.org/10.1007/s42452-019-1485-1

    Article  CAS  Google Scholar 

  • Sheffer E, Batterman SA, Levin SA, Hedin LO (2015) Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat Plants 1:15182. https://doi.org/10.1038/nplants.2015.182

    Article  CAS  Google Scholar 

  • Shen F, Wu J, Fan H, Liu W, Guo X, Duan H, Hu L, Lei X, Wei X (2019) Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest. Plant Soil 436:91–107

    Article  CAS  Google Scholar 

  • Shukla AK (2000) Impact of fungicides on soil microbial population and enzyme activities. Acta Bot Ind 28:85–88

    Google Scholar 

  • Singh J, Singh DK (2005) Dehydrogenase and phosphomonoesterase activities in groundnut (Arachis hypogaea L.) field after diazinon, imidacloprid and lindane treatments. Chemosphere 60:32–42. https://doi.org/10.1016/j.chemosphere.2004.11.096

    Article  CAS  Google Scholar 

  • Singh R, Singh G (2020) Effect of pendimethalin and imazethapyr on the development of microorganisms in vitro and at field conditions. Toxicol Environ Chem 102:1–16. https://doi.org/10.1080/02772248.2020.1815203

    Article  CAS  Google Scholar 

  • Singh G, Wright D (2002) In vitro studies on the effects of herbicides on the growth of rhizobia. Lett Appl Microbiol 35:12–16. https://doi.org/10.1046/j.1472-765X.2002.01117.x

    Article  CAS  Google Scholar 

  • Snyder J, Smart J, Goeb J, Tschirley D (2015) Pesticide use in Sub-Saharan Africa: estimates, projections, and implications in the context of food system transformation. Agric Res Inst Mozambique, Mozambique. https://doi.org/10.22004/ag.econ.230980 Accessed 25 Oct 2020

  • Sparks TC, Nauen R (2015) IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128. https://doi.org/10.1016/j.pestbp.2014.11.014

    Article  CAS  Google Scholar 

  • Sparks TC, Crossthwaite AJ, Nauen R, Banba S, Cordova D, Earley F, Ebbinghaus-Kintscher U, Fujioka S, Hirao A, Karmon D, Kennedy R, Nakao T, Popham HJR, Salgado V, Watson GB, Wedel BJ, Wessels FJ (2020) Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification - a tool for resistance management. Pestic Biochem Physiol 167:104587. https://doi.org/10.1016/j.pestbp.2020.104587

    Article  CAS  Google Scholar 

  • Strandberg M, Scott-Fordsmand JJ (2004) Effects of pendimethalin at lower trophic levels—a review. Exotoxicol Environ Saf 57:190–201. https://doi.org/10.1016/j.ecoenv.2003.07.010

    Article  CAS  Google Scholar 

  • Sun R, Zhang X-X, Guo X, Wang D, Chu H (2015a) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18

    Article  CAS  Google Scholar 

  • Sun R, Guo X, Wang D, Chu H (2015b) Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl Soil Ecol 95:171–178

    Article  Google Scholar 

  • Sun T, Li M, Saleem M, Zhang X, Zhang Q (2020) The fungicide “fluopyram” promotes pepper growth by increasing the abundance of P-solubilizing and N-fixing bacteria. Ecotoxicol Environ Saf 188:109947. https://doi.org/10.1016/j.ecoenv.2019.109947

    Article  CAS  Google Scholar 

  • Tang Y, Zhang M, Chen A, Zhang W, Wei W, Sheng R (2017) Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agric Ecosyst Environ 247:1–8. https://doi.org/10.1016/j.agee.2017.06.009

    Article  CAS  Google Scholar 

  • Tejada M, García C, Hernández T, Gómez I (2015) Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide. Arch Environ Contam Toxicol 69:8–19

    Article  CAS  Google Scholar 

  • Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L (2019) Effects of herbicide on non-target microorganisms: towards a new class of biomarkers? Sci Total Environ 684:314–325

    Article  CAS  Google Scholar 

  • Thomas EY, Omueti JAJ, Ogundayomi O (2012) The effect of phosphate fertilizer on heavy metal in soils and Amarantus caudatus. Agric Biol J N Am 3:145–149

    Article  CAS  Google Scholar 

  • Thomson L (2012) Pesticide impacts on beneficial species. Australian Government Grape and Wine Research and Development Corporation. http://www.mvwi.com.au/items/511/2012-05-FS-Pesticide-Impacts2.pdf. Accessed 25 Oct 2020

  • Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019

    Article  Google Scholar 

  • Tomkiel M, Baćmaga M, Borowik A, Kucharski J, Wyszkowska J (2019) Effect of a mixture of flufenacet and isoxaflutole on population numbers of soil-dwelling microorganisms, enzymatic activity of soil, and maize yield. J Environ Sci Health B 54:832–842. https://doi.org/10.1080/03601234.2019.1636601

    Article  CAS  Google Scholar 

  • Tripti KA, Kumar V, Anshumali (2015) Effect of commercial pesticides on plant growth-promoting activities of Burkholderia sp. strain L2 isolated from rhizosphere of Lycopersicon esculentum cultivated in agricultural soil. Toxicol Environ Chem 97:1180–1189. https://doi.org/10.1080/02772248.2015.1093632

    Article  CAS  Google Scholar 

  • Ubuoh E, Akhionbare S, Akhionbare W (2012) Effects of pesticide application on soil microbial spectrum: case study-fecolart demonstration farm, Owerri-West, Imo state, Nigeria. Int J Multidiscip Eng Sci Technol 3:34–39

    Google Scholar 

  • Van Bruggen A, He M, Shin K, Mai V, Jeong K, Finckh M, Morris J Jr (2018) Environmental and health effects of the herbicide glyphosate. Sci Total Environ 616:255–268

    Article  Google Scholar 

  • Van Zwieten L, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut 124:331–339. https://doi.org/10.1016/S0269-7491(02)00463-3

    Article  CAS  Google Scholar 

  • Virág D, Naár Z, Kiss A (2007) Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bull Environ Contam Toxicol 79:356–359. https://doi.org/10.1007/s00128-007-9230-7

    Article  CAS  Google Scholar 

  • Walia A, Mehta P, Guleria S, Chauhan A, Shirkot CK (2014) Impact of fungicide Mancozeb at different application rates on soil microbial populations, Soil Biological Processes, and Enzyme Activities in Soil. Sci World J 2014:702909–702909. https://doi.org/10.1155/2014/702909

    Article  Google Scholar 

  • Walvekar VA, Bajaj S, Singh DK, Sharma S (2017) Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata. Environ Sci Pollut Res 24:17175–17186. https://doi.org/10.1007/s11356-017-9284-y

    Article  CAS  Google Scholar 

  • Wan W, Tan J, Wang Y, Qin Y, He H, Wu H, Zuo W, He D (2020) Responses of the rhizosphere bacterial community in acidic crop soil to pH: Changes in diversity, composition, interaction, and function. Sci Total Environ 700:134418

    Article  CAS  Google Scholar 

  • Wang M, Zhou Q (2006) Effects of herbicide chlorimuron-ethyl on physiological mechanisms in wheat (Triticum aestivum). Ecotoxicol Environ Saf 64:190–197

    Article  CAS  Google Scholar 

  • Wang J, Zhang D, Zhang L, Li J, Raza W, Huang Q, Shen Q (2016) Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agric Ecosyst Environ 216:116–124. https://doi.org/10.1016/j.agee.2015.09.039

    Article  CAS  Google Scholar 

  • Wang B, Gao B, Fang J (2017a) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47:2158–2207

    Article  CAS  Google Scholar 

  • Wang C, Zheng M, Song W, Wen S, Wang B, Zhu C, Shen R (2017b) Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem 113:240–249. https://doi.org/10.1016/j.soilbio.2017.06.019

    Article  CAS  Google Scholar 

  • Wang Q, Wang C, Yu W, Turak A, Chen D, Huang Y, Ao J, Jiang Y, Huang Z (2018a) Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. Front Microbiol 9:1543. https://doi.org/10.3389/fmicb.2018.01543

    Article  Google Scholar 

  • Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y (2018b) Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci Total Environ 619–620:1530–1537. https://doi.org/10.1016/j.scitotenv.2017.10.064

    Article  CAS  Google Scholar 

  • Wang J, Li Q, Shen C, Yang F, Wang J, Ge Y (2020) Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment. Land Degrad Dev n/a:1–10 32:420–429. https://doi.org/10.1002/ldr.3736

    Article  Google Scholar 

  • Weishou S, Ni Y, Nan G, Bian B, Zheng S, Lin X, Chu H (2016) Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Appl Soil Ecol 108:76–83

    Article  Google Scholar 

  • Winbourne JB, Brewer SW, Houlton BZ (2017) Iron controls over di-nitrogen fixation in karst tropical forest. Ecology 98:773–781

    Article  Google Scholar 

  • Wolmarans K, Swart WJ (2014) Influence of glyphosate, other herbicides and genetically modified herbicide-resistant crops on soil microbiota: a review. S Afr J Plant Soil 31:177–186. https://doi.org/10.1080/02571862.2014.960485

    Article  Google Scholar 

  • Wurzburger N, Bellenger JP, Kraepiel AM, Hedin LO (2012) Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PLoS One 7:e33710

    Article  CAS  Google Scholar 

  • Wyszkowska J, Kucharski J (2004) Biochemical and physicochemical properties of soil contaminated with herbicide Triflurotox 250 EC. Pol J Environ Stud 13:223–231

    CAS  Google Scholar 

  • Xiao D, Liu X, Yang R, Tan Y, Zhang W, He X, Xu Z, Wang K (2020a) Nitrogen fertilizer and Amorpha fruticosa leguminous shrub diversely affect the diazotroph communities in an artificial forage grassland. Sci Total Environ 711:134967. https://doi.org/10.1016/j.scitotenv.2019.134967

    Article  CAS  Google Scholar 

  • Xiao D, Xiao L, Che R, Tan Y, Liu X, Yang R, Zhang W, He X, Wang K (2020b) Phosphorus but not nitrogen addition significantly changes diazotroph diversity and community composition in typical karst grassland soil. Agric Ecosyst Environ 301:106987. https://doi.org/10.1016/j.agee.2020.106987

    Article  CAS  Google Scholar 

  • Yan P, Wu L, Wang D, Fu J, Shen C, Li X, Zhang L, Zhang L, Fan L, Wenyan H (2020) Soil acidification in Chinese tea plantations. Sci Total Environ 715:136963

    Article  CAS  Google Scholar 

  • Yang Y, Zhao J, Jiang Y, Hu Y, Zhang M, Zeng Z (2017) Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil. Eur J Soil Biol 82:1–9

    Article  CAS  Google Scholar 

  • Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351. https://doi.org/10.1111/1462-2920.12925

    Article  Google Scholar 

  • Zawoznik MS, Tomaro ML (2005) Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean. Pest Manag Sci 61:1003–1008. https://doi.org/10.1002/ps.1077

    Article  CAS  Google Scholar 

  • Zhang W (2018) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8:1–27

    Google Scholar 

  • Zhang W, Jiang F, Qu J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1:125–144

    CAS  Google Scholar 

  • Zhang Y, Zhang S, Wang R, Cai J, Zhang Y, Li H, Huang S, Jiang Y (2016) Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Sci Plant Nutr 62:432–439

    Article  CAS  Google Scholar 

  • Zhang Y, Shen H, He X, Thomas BW, Lupwayi NZ, Hao X, Thomas MC, Shi X (2017) Fertilization shapes bacterial community structure by alteration of soil pH. Front Microbiol 8:1325

    Article  Google Scholar 

  • Zhao Y, Bian S-M, Zhou H-N, Huang J-F (2006) Diversity of nitrogenase systems in diazotrophs. J Integr Plant Biol 48:745–755. https://doi.org/10.1111/j.1744-7909.2006.00271.x

    Article  CAS  Google Scholar 

  • Zhao S, Qiu S, Cao C, Zheng C, Zhou W, He P (2014) Responses of soil properties, microbial community and crop yields to various rates of nitrogen fertilization in a wheat–maize cropping system in north-central China. Agric Ecosyst Environ 194:29–37

    Article  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44:1295–1301

    Article  CAS  Google Scholar 

Download references

Funding

The preparation of this manuscript was supported with funds from the African-German Network of Excellence in Science (AGNES), the Federal Ministry of Education and Research (BMBF), and the Alexander von Humboldt Foundation (AvH).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization of the review. Literature search and data analysis were conducted by BNA, BAM, and ERM. The first draft of the manuscript was written by BNA, and all authors commented on previous versions of the manuscript. JBT critically reviewed the work, and all authors read and approved the final manuscript. Funding acquisition was done by Becky Nancy Aloo.

Corresponding author

Correspondence to Becky Nancy Aloo.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloo, B.N., Mbega, E.R., Makumba, B.A. et al. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. Environ Sci Pollut Res 28, 60406–60424 (2021). https://doi.org/10.1007/s11356-021-16191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16191-5

Keywords

Navigation