Skip to main content

Advertisement

Log in

Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbial technology comprising environment in various aspects of pollution monitoring, treatment of pollutants, and energy generation has been put forth by the researchers worldwide in an eco-friendly manner. During the past few decades, this revolution has pronounced microbial cells in green nanotechnology, extending the scope, efficiency, and investment capita at research institutes, industries, and global markets. In the present review, initially, the source for the microbial synthesis of nanoparticles will be discussed involving bacteria, fungi, actinomycetes, microalgae, and viruses. Further, the mechanism and bio-components of microbial cells such as enzymes, proteins, peptides, amino-acids, exopolysaccharides, and others involved in the bio-reduction of metal ions to corresponding metal nanoparticles will be emphasized. The biosynthesized nanoparticles physicochemical properties and bio-reduction methods’ advantages compared with synthetic methods will be detailed. To understand the suitability of biosynthesized nanoparticles in a wide range of applications, an overview of its blend of medicine, agriculture, and electronics will be discussed. This will be geared up with its applications specific to environmental aspects such as bioremediation, wastewater treatment, green-energy production, and pollution monitoring. Towards the end of the review, nano-waste management and limitations, i.e., void gaps that tend to impede the application of biosynthesized nanoparticles and microbial-based nanoparticles’ prospects, will be deliberated. Thus, the review would claim to be worthy of unwrapping microorganisms sustainability in the emerging field of green nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  • AbdelRahim K, Mahmoud SY, Almarry KS, Mustafa AEZ, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24:208–216

    CAS  Google Scholar 

  • Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A Bacteriophage mediated Gold nanoparticle synthesis and their antibiofilm activity. Indian J Microbiol 57:188–194

    CAS  Google Scholar 

  • Ahmad F, Ashraf T, Zhou R, Bin YDC (2019) Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl Microbiol Biotechnol 103:2913–2935

    CAS  Google Scholar 

  • Ahmed S, Ahmed M, Swami B, Ikram S (2016) A review on plant extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    CAS  Google Scholar 

  • Albanese A, Tang P, Chan W (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  Google Scholar 

  • Almalki MA, Khalifa AYZ (2020) Silver nanoparticle synthesis from Bacillus sp KFU36 and its anticancer effect in breast cancer MCF-7 cells via induction of apoptotic mechanism. Photochem Photobiol B Biol 204:111786

    CAS  Google Scholar 

  • Alshehri ANZ (2018) Using a Novel Mucorindicus CBS 226.29 ET for biosynthesis of gold nanoparticles and applying them in Nanoremediation of Azo Dyes. Res J Appl Sci Eng Technol 15:197–205

    CAS  Google Scholar 

  • Ameen F, AlYahya S, Govarthanan M, ALjahdali N, Al-Enazi N, Alsmhary K, Alshehri WA, Alwakeel SS, Alharbi SA (2020) Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J Mol Struct 1202:127233

    CAS  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K (2015) Myco-synthesis of silver nanoparticles using Metarhiziumanisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256

    Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 825910:1–24

    Google Scholar 

  • Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5:603–607

    CAS  Google Scholar 

  • Annamalai J, Nallamuthu T (2016) Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl Nanosci 6:259–265

    CAS  Google Scholar 

  • Annamalai J, Vasudevan N (2020) Enhanced biodegradation of an endocrine disrupting micro-pollutant: Di (2-ethylhexyl) phthalate using biogenic self-assembled monolayer of silver nanoparticles. Sci Total Environ 719:137115

    CAS  Google Scholar 

  • Antunes FAF, Gaikwad S, Ingle AP, Pandit R, dos Santos JC, Rai M, da Silva SS (2017) Bioenergy and biofuels: nanotechnological solutions for sustainable production. In: Rai M, da Silva SS (eds) Nanotechnology for bioenergy and biofuel production. Springer International Publishing, Cham, pp 3–18

    Google Scholar 

  • Arsiya F, Sayadi M, Sobhani S (2017) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115

    CAS  Google Scholar 

  • Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018:1–9

    Google Scholar 

  • Arya A, Mishra V, Chundawat TS (2019) Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chem Data Collection 20:1–7

    Google Scholar 

  • Badoei-dalfard A, Shaban M, Karami Z (2019) Characterization, antimicrobial, and antioxidant activities of silver nanoparticles synthesized by uricase from Alcaligenes faecalis GH3. Biocatal Agric Biotechnol 20:101257

    Google Scholar 

  • Bai H, Zhang Z, Guo Y, Yang G (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B 70:142–146

    CAS  Google Scholar 

  • Ben Tahar I, Fickers P, Dziedzic A, Ploch D, Skóra B, Kus-Liskiewic M (2019) Green pyomelanin-mediated synthesis of gold nanoparticles: Modelling and design, physico-chemical and biological characteristics. Microb Cell Factories 18:1–11

    Google Scholar 

  • Bennur T, Khan Z, Kshirsagar R, Javdekar V, Zinjarde S (2016) Biogenic gold nanoparticles from the Actinomycete Gordonia amarae: application in rapid sensing of copper ions. Sensors Actuators B Chem 233:684–690

    CAS  Google Scholar 

  • Binupriya AR, Sathishkumar M, Vijayaraghavan K, Yun SI (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177:539–545

    CAS  Google Scholar 

  • Brayner R, Coradin T, Beaunier P, Greneche J, Djediat C, Yepremian C, Coute A, Fievet F (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloid Surf B 93:20–23

    CAS  Google Scholar 

  • Chen A, Contreras LM, Keitz BK (2017) Imposed environmental stresses facilitate cell-free nanoparticle formation by Deinococcus radiodurans. Appl Environ Microbiol 83:1–14

    Google Scholar 

  • Cologgi D, Lampa-Pastirk S, Speers A, Kelly S, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108:15248–15252

    CAS  Google Scholar 

  • Courchesne NMD, Klug MT, Chen PY, Kooi SE, Yun DS, Hong N, Fang NX, Belcher AM, Hammond PT (2014) Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv Mater 26:3398–3404

    CAS  Google Scholar 

  • Dahl J, Maddux B, Hutchison J (2007) Towards greener nanosynthesis. Chem Rev 107:2228–2269

    CAS  Google Scholar 

  • Dahoumane S, Yepremian C, Djediat C, Coute A, Fievet F, Coradin T, Brayner R (2014) A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:1–12

    CAS  Google Scholar 

  • Dananjaya SHS, Thu Thao NT, Wijerathna HMSM, Lee J, Edussuriya M, Choi D, Kumar SR (2020) In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide. Process Biochem 92:138–148

    CAS  Google Scholar 

  • Das S, Chakraborty J, Chatterjee S, Kumar H (2018) Prospects of biosynthesized nanomaterials for the remediation of organic and inorganic environmental contaminants. Environ Sci Nano 5:2784–2808

  • Das V, Thomas R, Varghese R, Soniya E, Mathew J, Radhakrishnan E (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4:121–126

    Google Scholar 

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol 76:1082–1087

    Google Scholar 

  • De Gusseme B, Hennebel T, Christiaens E, Saveyn H, Verbeken K, Fitts JP, Boon N, Verstraete W (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864

    Google Scholar 

  • Dharmaraj D, Krishnamoorthy M, Rajendran K, Karuppiah K, Annamalai J, Durairaj KR, Santhiyagu P, Ethiraj K (2021) Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J Drug Deliv Sci Technol 61:102111

    CAS  Google Scholar 

  • Dong ZY, Rao MPN, Xiao M, Wang HF, Hozzein WN, Chen W, Li WJ (2017) Antibacterial activity of silver nanoparticles against Staphylococcus warneri synthesized using endophytic bacteria by photo-irradiation. Front Microbiol 8:1–8

    Google Scholar 

  • Duran N, Marcato P, De Conti R, Alves O, Costa F, Brocchi M (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    CAS  Google Scholar 

  • Duran N, Cuevas R, Cordi L, Rubilar O, Diez M (2014) Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor. Springer Plus 3:1–7

    CAS  Google Scholar 

  • Ebrahiminezhad A, Bagheri M, Taghizadeh SM, Berenjian A, Ghasemi Y (2016) Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci 7:015018

  • Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9:12944–12967

    CAS  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Bio Med Res Int 498420:1–8

    Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Google Scholar 

  • Glatstein D, Bruna N, Gallardo-Benavente C, Bravo D, Pérez M, Francisca F, Perez-donoso J (2018) Arsenic and cadmium bioremediation by antarctic bacteria capable of biosynthesizing CdS fluorescent nanoparticles. J Environ Eng 144:1–7

    Google Scholar 

  • Grasso G, Zane D, Dragone R (2020) Microbial nanotechnology: challenges and prospects for green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications. Nanomaterials-Basel 10:11

    CAS  Google Scholar 

  • Gulati S, Sachdeva M, Bhasin KK (2018) Various synthetic routes for the preparation of nanoparticles. AIP Conf Proc 1953(030215):1–6

    Google Scholar 

  • Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati S (2017) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cell Nanomed Biotechnol 45:1588–1596

    CAS  Google Scholar 

  • Hamouda RA, Hussein MH, Abo-elmagd RA, Bawazir SS (2019) Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9:13071

    Google Scholar 

  • Hassan SD, Fouda A, Radwan A, Salem S, Barghoth M, Awad M, Abdo A, Mamdouh SG (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J Biol Inorg Chem 24:377–393

    CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211-212:317–331

    CAS  Google Scholar 

  • Hulkoti N, Taranath T (2014) Biosynthesis of nanoparticles using microbes – a review. Colloids Surf B 121:474–483

    CAS  Google Scholar 

  • Ismail GA, Allam NG, El-Gemizy WM, Salem MA (2020) The role of silver nanoparticles biosynthesized by Anabaena variabilis and Spirulina platensis cyanobacteria for malachite green removal from wastewater. Environ Technol:1–15. https://doi.org/10.1080/09593330.2020.1766576

  • Jang EY, Son YJ, Park SY, Yoo JY, Cho YN, Jeong SY, Liu S, Son HJ (2018) Improved biosynthesis of silver nanoparticles using keratinase from Stenotrophomona smaltophilia R13: reaction optimization, structural characterization, and biomedical activity. Bioprocess Biosyst Eng 41:381–393

    CAS  Google Scholar 

  • Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24:522–533

    CAS  Google Scholar 

  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC (2016) Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cell Nanomed Biotechnol 44:1576–1581

    CAS  Google Scholar 

  • Johnson A, Merilis G, Hastings J, Palmer ME, Fitts JP, Chidambaram D (2013) Reductive degradation of organic compounds using microbial nanotechnology. J Electrochem Soc 160:4613–4651

    Google Scholar 

  • Kanmani P, Lim S (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 48:1099–1106

    CAS  Google Scholar 

  • Khoo KS, Chia WY, Tang DYY, Show PL, Chew KW, Chen WH (2020) Nanomaterials utilization in biomass for biofuel and bioenergy production. Energies 892:1–19

    Google Scholar 

  • Kumar K, Doddi S, Arunasree M, Paik P (2015) CPMV-induced synthesis of hollow mesoporous SiO2 nanocapsules with excellent performance in drug delivery. Dalton Trans 44:4308–4317

    CAS  Google Scholar 

  • Kwon C, Park B, Kim H, Jung S (2009) Green synthesis of silver nanoparticles by Sinorhizobialocta saccharide isolated from Sinorhizobium meliloti. B Korean Chem Soc 30:1651–1654

    CAS  Google Scholar 

  • Lateef A, Adelere I, Guegium-Kana E, Asafa T, Beukes L (2014) Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5:29–35

    Google Scholar 

  • Lee SK, Yun DS, Belcher AM (2006) Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co - Pt hybrid material. Biomacromolecules. 7:14–17

    CAS  Google Scholar 

  • Lee M, Lim S, Kim C (2007) Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28:2137–2146

    CAS  Google Scholar 

  • Li G, Sun K, Li D, Lv P, Wang Q, Huang F, Wei Q (2016a) Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection. Colloids Surf A Physicochem Eng Asp 509:408–414

    CAS  Google Scholar 

  • Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y (2016b) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine 11:5931–5944

    CAS  Google Scholar 

  • Lin J, Lin W, Dong R, Hsu S (2012) The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 23:065102

    Google Scholar 

  • Lloyd J (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    CAS  Google Scholar 

  • Lopez-Vargas E, Ortega-Ortíz H, Cadenas-Pliego G, Romenus K, de la Fuente M, Benavides-Mendoza A, Juarez-Maldonado A (2018) Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl Sci 8:1020

    Google Scholar 

  • Luo CH, Shanmugam V, Yeh CS (2015) Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mate 7:1–11

    Google Scholar 

  • Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J Hazard Mater 347:141–149

    CAS  Google Scholar 

  • Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017) Titanium as a beneficial element for crop production. Front Plant Sci 8:597

    Google Scholar 

  • Ma L, Su W, Liu JX, Zeng XX, Huang Z, Li W, Liu ZC, Tang JX (2017) Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng C 77:963–971

    CAS  Google Scholar 

  • Malik B, Pirzadah T, Kumar M, Rehman A (2017) Biosynthesis of nanoparticles and their application in pharmaceutical industry. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology. Springer, Singapore, pp 235–252

    Google Scholar 

  • Manimaran M, Kannabiran K (2017) Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges. Lett Appl Microbiol 64:401–408

    CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. Biomed Res Int 287638:1–9

    Google Scholar 

  • Milani N, McLaughlin M, Stacey S, Kirby J, Hettiarachchi G, Beak D, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    CAS  Google Scholar 

  • Mishra A, Sardar M (2012) Alpha-amylase mediated synthesis of silver nanoparticles. Sci. Adv Mater 4:143–146

    CAS  Google Scholar 

  • Mishra A, Mehdi SJ, Irshad M, Ali A, Sardar M, Rizvi MMA (2012) Effect of biologically synthesized silver nanoparticles on human cancer cells. Sci Adv Mater 4(12): 1200–1206

  • Monowar T, Rahman S, Bhore SJ, Raju G, Sathasivam KV (2018) Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23:1–17

    Google Scholar 

  • Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031

    CAS  Google Scholar 

  • Moustafa MT (2017) Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Sci 31:164–176

    Google Scholar 

  • Nag S, Pramanik A, Chattopadhyay D, Bhattacharyya M (2018) Green-fabrication of gold nanomaterials using Staphylococcus warneri from Sundarbans estuary: an effective recyclable nanocatalyst for degrading nitro aromatic pollutants. Environ Sci Pollut Res Int 25:2331–2349

    CAS  Google Scholar 

  • Nancharaiah YV, Lens PNL (2015) Selenium biomineralization for biotechnological applications. Trends Biotechnol 33:323–330

    CAS  Google Scholar 

  • Nandhini JT, Ezhilarasan D, Rajeshkumar S (2021) An ecofriendly synthesized gold nanoparticles induces cytotoxicity via apoptosis in HepG2 cells. Environ Toxicol 36(1):24–32

    CAS  Google Scholar 

  • Narayanan KB, Han SS (2017) Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures. Adv Colloid Interf Sci 248:1–19

    CAS  Google Scholar 

  • Nazari N, Kashi FJ (2021) A novel microbial synthesis if silver nanoparticles: its bioactivity, Ag/Ca-Als beads as an effective catalyst for decolorization Disperse Blue 183 from textile industry effluent. Sep Purif Technol 259:118117

    CAS  Google Scholar 

  • Ng C, Sivakumar K, Liu X, Madhaiyan M, Ji L, Yang L, Tang C, Song H, Kjelleberg S, Cao B (2013) Influence of outer membrane c-type cytochromes on particle size and activity of extracellular nanoparticles produced by Shewanella oneidensis. Biotechnol Bioeng 110:1831–1837

    CAS  Google Scholar 

  • Nguyen NHA, Padil VVT, Slaveykova VI, Cernik M, Sevcu A (2018) Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res Lett 13:1

    Google Scholar 

  • Noah N (2019) Green synthesis, characterization and applications of nanoparticles. In: Shukla A, Iravani S (eds) Micro and Nano Technologies. Elsevier, Amsterdam, pp 111–135

    Google Scholar 

  • Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spec 136:1175–1180

    CAS  Google Scholar 

  • Ovais M, Khalil A, Ayaz M, Ahmad I, Nethi S, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19:4100

    Google Scholar 

  • Pallavi, Mehta CM, Srivatsava R, Arora S, Sharma A (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254

    CAS  Google Scholar 

  • Pantic I (2010) Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches. Rev Adv Mater Sci 26:67–73

    CAS  Google Scholar 

  • Pantidos N, Horsfall L (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:1–10

    Google Scholar 

  • Pasula RR, Lim S (2017) Engineering nanoparticle synthesis using microbial factories. Eng Biol 1:12–17

    Google Scholar 

  • Pearce C, Coker V, Charnock J, Pattrick R, Mosselmans J, Law N, Beveridge T, Lloyd J (2008) Microbial manufacture of chalcogenide-based nanoparticles via the reduction of selenite using Veillonella atypica: an in situ EXAFS study. Nanotechnology 19:155603

    Google Scholar 

  • Prakash D, Mahale V, Bankar A, Nawani N, Zinjarde S, Kapadnis B (2013) Biosynthesis of colloidal gold nanoparticles by Streptomyces sp. NK52 and its anti-lipid peroxidation activity. Indian J Exp Biol 51:969

    CAS  Google Scholar 

  • Prakasham RS, Kumar BS, Kumar YS, Kumar KP (2014) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. Indian J Microbiol 54:329–336

    CAS  Google Scholar 

  • Priyadarshini E, Priyadarshini SS, Pradhan N (2019) Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl Microbiol Biotechnol 103:3297–3316

    CAS  Google Scholar 

  • Rajoka MSR, Mehwish HM, Zhang H, Ashraf M, Fang H, Zeng X, Wu Y, Khurshid M, Zhao L, He Z (2020) Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B: Biointerfaces 186:110734

    Google Scholar 

  • Ranjitha V, Rai V (2017) Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech 7:1–7

    Google Scholar 

  • Razack S, Duraiarasan S, Mani V (2016) Biosynthesis of silver nanoparticle and its application in cell wall disruption to release carbohydrate and lipid from C. vulgaris for biofuel production. Biotechnol Rep 11:70–76

    Google Scholar 

  • Roy A, Bulut O, Some S, Mandal A, Yilmaz M (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2706

    CAS  Google Scholar 

  • Sajadi F, Sayadi M, Hajiani M (2016) Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris. J Birjand Univ Med Sci 23:119–129

    Google Scholar 

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5:247–253

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Satapathy S, Shukla SP (2017) Application of a marine cyanobacterium Phormidium fragile for green synthesis of silver nanoparticles. Indian J Biotechnol 16:110–113

    CAS  Google Scholar 

  • Sayadi M, Salmani N, Heidari A, Rezaei M (2018) Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surf Interfaces 10:136–143

    CAS  Google Scholar 

  • Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Nanomaterials utilization in biomass for biofuel and bioenergy production. Fuel 237:380–397

    CAS  Google Scholar 

  • Sen I, Mandal A, Chakraborti S, Dey B, Chakraborti R, Islam S (2013) Green synthesis of silver nanoparticles using glucan from mushroom and study of antibacterial activity. Int J Biol Macromol 62:439–449

    CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy S, Poinern G (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel) 8:7278–7308

    CAS  Google Scholar 

  • Shang Y, Hasan M, Ahammed G, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules (Basel) 24:2558

    CAS  Google Scholar 

  • Sharma D, Kanchi S, Bisetty K (2019) Biogenic synthesis of nanoparticles: a review. Arab J Chem 12:3576–3600

    CAS  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade B (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interf Sci 209:40–48

    CAS  Google Scholar 

  • Shi L, Rosso M, Clarke T, Richardson D, Zachara J, Fredrickson J (2012) Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella oneidensis MR-1. Front Microbiol 3:1–32

    Google Scholar 

  • Shilpi S, Zeba U, Atanas A, Vinod KS, Pratap AN, Ahmed MA et al (2021) Biological nanofactories: using living forms for metal nanoparticle synthesis. Mini-Rev Med Chem 21(2):245–265

    Google Scholar 

  • Shu Y, Ji B, Cui B, Shi Y, Wang J, Hu M, Luo S, Guo D (2020) Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: performance and mechanisms. Nanomaterials 10:198

    CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:1–15

    Google Scholar 

  • Singh M, Srivastava M, Kumar A, Pandey K (2019) Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Singh A, Ummalyma SB, Sahoo D (2020) Bioremediation and biomass production of microalgae cultivation in river water contaminated with pharmaceutical effluent. Bioresour Technol 307:123233

    CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    CAS  Google Scholar 

  • Skladanowski M, Wypij M, Laskowski D, Golinska P, Dahm H, Rai M (2017) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28:59–79

    CAS  Google Scholar 

  • Sowani H, Mohite P, Munot H, Shouche Y, Bapat T, Kumar AR, Kulkarni M, Zinjarde S (2015) Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. Process Biochem 51:374–383

    Google Scholar 

  • Talekar S, Joshi G, Chougle R, Nainegali B, Desai S, Joshi A, Kambale S, Kamat P, Haripurkar R, Jadhav S, Nadar S (2014) Preparation of stable cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase and its use for silver nanoparticle synthesis from silver nitrate. Catal Commun 53:62–66

    CAS  Google Scholar 

  • Tanzil A, Sultana S, Saunders S, Shi L, Marsili E, Beyenal H (2016) Biological synthesis of nanoparticles in biofilms. Enzyme Microb Technol 95:4–12

    CAS  Google Scholar 

  • Tarafdar J (2014) Agricultural and Horticultural Sciences. Agrotechnol 2:307

    Google Scholar 

  • Ummalyma SB, Mathew AK, Pandey A, Sukumaran RK (2016) Harvesting of microalgal biomass: efficient method for flocculation through pH modulation. Bioresour Technol 213:216–221

    CAS  Google Scholar 

  • Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting a microalgae- an overview. Bioresour Technol 242:227–235

    CAS  Google Scholar 

  • Ummalyma SB, Sukumaran RK, Pandey A (2020) Evaluation of freshwater microalgal isolates for growth and oil production in seawater medium. Waste Biomass Valori 11:223–230

    CAS  Google Scholar 

  • Ummalyma SB, Sahoo D, Pandey A (2021) Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-16645-8

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp. for development of antimicrobial textiles. Glob J Biotechnol Biochem 5:153–160

    CAS  Google Scholar 

  • Vahabi K, Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles byfFungus Trichoderma reesei (a route for large-scale production of AgNPs). Insci J 1:65–79

    CAS  Google Scholar 

  • Vijayanandan AS, Balakrishnan RM (2018) Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag 218:442–450

    CAS  Google Scholar 

  • Waghmare S, Deshmukh A, Kulkarni W, Oswaldo L (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univers J Environ Res Technol 1:64–69

    CAS  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B: Biointerfaces 80:94–102

    CAS  Google Scholar 

  • Wang G, Zhang B, Li S, Yang M, Yin C (2017) Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. Bioresour Technol 227:353–358

    CAS  Google Scholar 

  • Wang Y, Shu X, Zhou Q, Fan T, Wang T, Chen X, Li M, Ma Y, Ni J, Hou J, Zhao W, Li R, Huang S, Wu L (2018) Selenite reduction and the biogenesis of Selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternates (Coleoptera: Cerambycidae). Int J Mol Sci 19:2799

    Google Scholar 

  • White BR, Stackhouse BT, Holcombe JA (2009) Magnetic γ-Fe2O3 NPs coated with poly-L-cysteine for chelation of As (III), Cu (II), Cd (II), Ni(II), Pb (II) and Zn(II). J Hazard Mater 161:848–853

    CAS  Google Scholar 

  • Yan W, Lien HL, Koel BE, Zhang WX (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15:63–77

    CAS  Google Scholar 

  • Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials (Basel) 9:424

    CAS  Google Scholar 

  • Yumei L, Yumei L, Qiang L, Jei B (2017) Rapid biosynthesis of silver nanoparticles based on flocculation and reduction of an exopolysaccharide from Arthrobacter sp. B4: its antimicrobial activity and phytotoxicity. Nanomaterials 2017:1–8

  • Zaki SA, Eltarahony MM, Abd-El-Haleem DA (2019) Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B. Environ Sci Pollut Res 26:23661–23673

    CAS  Google Scholar 

  • Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li QL, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723

    CAS  Google Scholar 

Download references

Acknowledgements

Author S. B. U. would like to thank the Director IBSD, for his motivation and support for contributing to this work (MSNOIBSD/2020/01/045).

Author information

Authors and Affiliations

Authors

Contributions

J. A.: Performed data collection, formal analysis, visualization, and writing of the original manuscript

S. B. U.: Conceptualization, designing of the work, and manuscript correction

A. P.: critical review, suggestions

T. B.: review and editing

Corresponding author

Correspondence to Sabeela Beevi Ummalyma.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

All authors mutually agreed to publish the work in this journal.

Competing interest

The authors declare no competing interests.

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annamalai, ., Ummalyma, S.B., Pandey, A. et al. Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environ Sci Pollut Res 28, 49362–49382 (2021). https://doi.org/10.1007/s11356-021-15680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15680-x

Keywords

Navigation