Skip to main content

Advertisement

Log in

Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lithium-ion batteries and supercapacitors are examples of energy storage technologies that have a lot of promise in a variety of applications. Herein, NiO-porous carbon composites were prepared by a green and cost-effective facile synthesis route from banana peel waste materials. The surface morphology and chemical composition of the NiO-porous carbon composite were investigated using a scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDX). The prepared samples were also described through Fourier transform infrared (FTIR) spectroscopy, x-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), and surface area measurements. The electrochemical behavior of prepared materials was studied by cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance (EIS) to test their applicable suitability as supercapacitor electrode. PC-NiO (3) composite exhibits a remarkable specific capacitance of 811 F/g at a current density of 1 A/g. The specific capacitance of PC-NiO (3) is 5.3 times more than that of PC material at 1.0 A/g. Furthermore, the PC-NiO (3) composite material still exhibits a specific capacitance of 780 F/g at 5.0 A/g, high rate capability of 84.55% retention at a high current density of 10.0 A/g and superior cycle stability at 1000 cycles. Based on its high specific capacitance, the NiO-porous carbon nanocomposite is one of the most promising electrode materials for supercapacitors, according to the above results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelhameed RM, Al Kiey SA, Wassel AR, El-Shahat M (2021) Silver chromate doped Ti-based metal organic framework: synthesis, characterization, and electrochemical and selective photocatalytic reduction properties. New J Chem 45:9526–9537

    Article  CAS  Google Scholar 

  • Abioye AM, Noorden ZA, Ani FN (2017) Synthesis and characterizations of electroless oil palm shell based-activated carbon/nickel oxide nanocomposite electrodes for supercapacitor applications. Electrochim Acta 225:493–502

    Article  CAS  Google Scholar 

  • Abou Hammad A, Abd El-Aziz M, Hasanin M, Kamel S (2019) A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydr Polym 216:54–62

    Article  CAS  Google Scholar 

  • Aly AA, Ahmed MK (2021) Nanofibers of cellulose acetate containing ZnO nanoparticles/graphene oxide for wound healing applications. Int J Pharm 598:120325

    Article  CAS  Google Scholar 

  • Bao N, Shen L, Wang YHA, Ma J, Mazumdar D, Gupta A (2009) Controlled growth of monodisperse self-supported superparamagnetic nanostructures of spherical and rod-like CoFe2O4 nanocrystals. J Am Chem Soc 131:12900–12901

    Article  CAS  Google Scholar 

  • Basta AH, Lotfy VF, Hasanin MS, Trens P, El-Saied H (2019) Efficient treatment of rice byproducts for preparing high-performance activated carbons. J Clean Prod 207:284–295

    Article  CAS  Google Scholar 

  • Cao F, Pan G, Xia X, Tang P, Chen H (2014) Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application. J Power Sources 264:161–167

    Article  CAS  Google Scholar 

  • Chen J, Peng X, Song L, Zhang L, Liu X, Luo J (2018) Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors. R Soc Open Sci 5:180842

    Article  CAS  Google Scholar 

  • Conway BE (n.d.) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media

  • Dharmaraj N, Prabu P, Nagarajan S, Kim CH, Park JH, Kim HY (2006) Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Mater Sci Eng B 128:111–114

    Article  CAS  Google Scholar 

  • Du D, Hu Z, Liu Y, Deng Y, Liu J (2014) Preparation and characterization of flower-like microspheres of nano-NiO as electrode material for supercapacitor. J Alloys Compd 589:82–87

    Article  CAS  Google Scholar 

  • El-Kader MFHA, Ahmed MK, Elabbasy MT, Afifi M, Menazea AA (2021) Morphological, ultrasonic mechanical and biological properties of hydroxyapatite layers deposited by pulsed laser deposition on alumina substrates. Surf Coat Technol 409:126861

    Article  CAS  Google Scholar 

  • Ferrero G, Fuertes A, Sevilla M (2015) From soybean residue to advanced supercapacitors. Sci Rep 5:16618

    Article  CAS  Google Scholar 

  • Gawali SR, Dubal DP, Deonikar VG, Patil SS, Patil SD, Gomez-Romero P, Patil DR, Pant J (2016) Asymmetric supercapacitor based on nanostructured Ce-doped NiO (Ce: NiO) as positive and reduced graphene oxide (rGO) as negative electrode. ChemistrySelect 1:3471–3478

    Article  CAS  Google Scholar 

  • Gomes Ferreira de Paula F, Campello-Gómez I, PFR O, Rodríguez-Reinoso F, Martínez-Escandell M, Silvestre-Albero J (2019) Structural flexibility in activated carbon materials prepared under harsh activation conditions. Materials 12:1988

    Article  Google Scholar 

  • Huang K-J, Zhang J-Z, Shi G-W, Liu Y-M (2014) Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim Acta 132:397–403

    Article  CAS  Google Scholar 

  • Karaman C (2021) Orange peel derived-nitrogen and sulfur Co-doped carbon dots: a nano-booster for enhancing ORR electrocatalytic performance of 3D graphene networks. Electroanalysis 33:1356–1369

    Article  CAS  Google Scholar 

  • Karaman C, Bayram E, Karaman O, Aktaş Z (2020) Preparation of high surface area nitrogen doped graphene for the assessment of morphologic properties and nitrogen content impacts on supercapacitors. J Electroanal Chem 868:114197

    Article  CAS  Google Scholar 

  • Karaman C, Karaman O, Atar N, Yola ML (2021) Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochim Acta 380:138262

    Article  CAS  Google Scholar 

  • Kayani ZN, Butt MZ, Riaz S, Naseem S (2018) Synthesis of NiO nanoparticles by sol-gel technique. Mater Sci-Pol 36:547–552

    Article  CAS  Google Scholar 

  • Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  • Kumar A, Dixit CK (2017) Methods for characterization of nanoparticles, Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier, pp:43–58

  • Lamiel C, Kumar DR, Shim J-J (2017) Microwave-assisted binder-free synthesis of 3D Ni-Co-Mn oxide nanoflakes@ Ni foam electrode for supercapacitor applications. Chem Eng J 316:1091–1102

    Article  CAS  Google Scholar 

  • Lashkenari MS, Ghorbani M, Silakhori N, Karimi-Maleh H (2021) Enhanced electrochemical performance and stability of Pt/Ni electrocatalyst supported on SiO2-PANI nanocomposite: a combined experimental and theoretical study. Mater Chem Phys 262:124290

    Article  CAS  Google Scholar 

  • Lee JW, Hall AS, Kim J-D, Mallouk TE (2012a) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164

    Article  CAS  Google Scholar 

  • Lee JW, Ko JM, Kim J-D (2012b) Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim Acta 85:459–466

    Article  CAS  Google Scholar 

  • Lota K, Sierczynska A, Lota G (2011) Supercapacitors based on nickel oxide/carbon materials composites. International Journal of Electrochemistry 2011:1–6

    Article  Google Scholar 

  • Lu Q, Lattanzi MW, Chen Y, Kou X, Li W, Fan X, Unruh KM, Chen JG, Xiao JQ (2011) Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew Chem Int Ed 50:6847–6850

    Article  CAS  Google Scholar 

  • Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science Magazine 321:651–652

    CAS  Google Scholar 

  • Mopoung S, Moonsri P, Palas W (2015) Khumpai S (2015): Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. Sci World J 2015:1–9

    Article  Google Scholar 

  • Moradlou O, Ansarinejad H, Hosseinzadeh M, Kazemi H (2018) High-performance solid state asymmetric supercapacitor based on electrochemically decorated 3D network-like Co3O4 architecture on NiO nanoworms. J Alloys Compd 755:231–241

    Article  CAS  Google Scholar 

  • Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    CAS  Google Scholar 

  • Saidur R, Abdelaziz E, Demirbas A, Hossain M, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289

    Article  CAS  Google Scholar 

  • Service RF (2006) New‘supercapacitor’promises to pack more electrical punch. American Association for the Advancement of Science

  • Shalan AE, Sharmoukh W, Elshazly AN, Elnagar MM, Al Kiey SA, Rashad MM, Allam NK (2020) Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells. Sustain Mater Technol 26:e00226

    CAS  Google Scholar 

  • Sharmoukh W, Al Kiey SA, Ali BA, Menon L, Allam NK (2020) Recent progress in the development of hole-transport materials to boost the power conversion efficiency of perovskite solar cells. Sustainable Materials and Technologies, e00210

  • Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors, Nanoscience and technology: a collection of reviews from Nature journals. World Scientific, pp:320–329

  • Subramanian V, Luo C, Stephan AM, Nahm K, Thomas S, Wei B (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  • Thomas P, Lai CW, Johan MRB (2019) Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. J Anal Appl Pyrolysis 140:54–85

    Article  CAS  Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  • Wang H, Zhong Y, Li Q, Yang J, Dai Q (2008) Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. J Phys Chem Solids 69:2420–2425

    Article  CAS  Google Scholar 

  • Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  • Wang C, Xu J, Yuen MF, Zhang J, Li Y, Chen X, Zhang W (2014) Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv Funct Mater 24:6372–6380

    Article  CAS  Google Scholar 

  • Wang Y, Guo J, Wang T, Shao J, Wang D, Yang Y-W (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5:1667–1689

    Article  CAS  Google Scholar 

  • Warren R, Sammoura F, Tounsi F, Sanghadasa M, Lin L (2015) Highly active ruthenium oxide coating via ALD and electrochemical activation in supercapacitor applications. J Mater Chem A 3:15568–15575

    Article  CAS  Google Scholar 

  • Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1:552–565

    Article  CAS  Google Scholar 

  • Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  • Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602

    Article  CAS  Google Scholar 

  • Zeng Y, Yu M, Meng Y, Fang P, Lu X, Tong Y (2016) Iron-based supercapacitor electrodes: advances and challenges. Adv Energy Mater 6:1601053

    Article  Google Scholar 

  • Zhao S, Wang C-Y, Chen M-M, Wang J, Shi Z-Q (2009) Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor. J Phys Chem Solids 70:1256–1260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Centre (NRC) for the technical support.

Availability of data and materials

All data and materials are available.

Funding

The authors thank the National Research Centre (NRC) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.A. Al Kiey and M.S. Hassenin: Conceptualization, formal analysis, writing — review and editing, project administration, funding acquisition, supervision

Corresponding author

Correspondence to Sherief A. Al Kiey.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

The authors are consent to participate the article.

Consent to publish

The authors are consent to publish the article.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Weiming Zhang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Kiey, S.A., Hasanin, M.S. Green and facile synthesis of nickel oxide-porous carbon composite as improved electrochemical electrodes for supercapacitor application from banana peel waste. Environ Sci Pollut Res 28, 66888–66900 (2021). https://doi.org/10.1007/s11356-021-15276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15276-5

Keywords

Navigation