Skip to main content

Advertisement

Log in

Element concentration, daily intake of elements, and health risk indices of wild mushrooms collected from Belgrad Forest and Ilgaz Mountain National Park (Turkey)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the element content of wild edible and inedible mushroom species (Agaricus campestris, Armillaria ostoyae, Boletus reticulatus, Bondarzewia mesenterica, Bovistella utriformis, Cantharellus cibarius, Marasmius oreades, Megacollybia platyphylla, Meripilus giganteus, Neoboletus erythropus, Panellus stipticus, Phaeotremella foliacea, Pleurotus ostreatus, Podoscypha multizonata, Russula aurea, R. chloroides, R. virescens, T. versicolor, Trametes gibbose, and Trichaptum biforme) collected from the Belgrad Forests and the Ilgaz Mountain National Park. Based on the results of elemental analyses, daily metal intake (DMI) and health risk index (HRI) values of edible mushrooms collected from both localities were also calculated. As, Cd, Cr, Se, P, Hg, Cu, Mn, Fe, Zn, Al, Ca, Mg, and K contents of mushrooms were in the ranges of 0.16–3.45, 0.09–2.4, 0.15–2.34, 0.3–8.13, 0.28–11.44, 14.03–37.81, 3.87–108.57, 6.18–149.77, 11.9–776.1, 5.4–317.4, 7.4–355.2, 15.4–3517.3, 266.0–2500.0, and 628.0–24083.0 mg/kg dry weight, respectively. As a result of the DMI and HRI analyses, Cu concentration of B. utriformis (DMI: 46.53 μg/kg body weight/serving, HRI: 1.16) and Cd concentrations of A. campestris (DMI: 0.49 μg/kg body weight/serving, HRI: 1.36), A. ostoyae (DMI: 1.03 μg/kg body weight/serving, HRI: 2.86), B. utriformis (DMI: 0.52 μg/kg body weight/serving, HRI: 1.44), and P. ostreatus (DMI: 0.45 μg/kg body weight/serving, HRI: 1.24) were found to exceed the legal limits determined by authorities. It was concluded that the species collected from the regions in question should be consumed in a controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. Journal of Research in Medical Sciences 19:164–174

    Google Scholar 

  • Aichberger K (1977) Untersuchungen über den Quecksilbergehalt österreichischer Speisepilze und seine Beziehungen zum Rohproteingehalt der Pilze. Z Lebensm Unters Forsch 163:35–38

    Article  CAS  Google Scholar 

  • Al Alawi AM, Majoni SW, Falhammar H (2018) Magnesium and human health: perspectives and research directions. Int J Endocrinol 2018:9041694. https://doi.org/10.1155/2018/9041694

    Article  CAS  Google Scholar 

  • Alonso J, Garcia MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:0180–0188

    Article  CAS  Google Scholar 

  • Barclay MNI, MacPherson A, Dixon J (1995) Selenium content of a range of UK foods. J Food Compos Anal 8:307–318

    Article  CAS  Google Scholar 

  • Blanuša M, Kučak A, Varnai V-M, Sarić MM (2001) Uptake of cadmium, copper, iron, manganese, and zinc in mushrooms (Boletaceae) from Croatian forest soil. J AOAC Int 84:1964–1971

    Article  Google Scholar 

  • Breves G, Schröder B (1991) Comparative aspects of gastrointestinal phosphorus metabolism. Nutr Res Rev 4:125–140

    Article  CAS  Google Scholar 

  • Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  Google Scholar 

  • Bryan GW (1976) Some aspects of heavy metal tolerance in aquatic organisms. Effects of Pollutants on Aquatic Organisms 2:7–34

    CAS  Google Scholar 

  • Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC (2011) The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut Res 18:890–896

    Article  CAS  Google Scholar 

  • Chen L, Jiang Y, Wang M-l, Chen X, L-s Y (2009a) The determination of 7 heavy metals of 3 edible fungi in part area of Sichuan province. Edible Fungi of China 28:39–42

    CAS  Google Scholar 

  • Chen XH, Zhou HB, Qiu GZ (2009b) Analysis of several heavy metals in Wild edible mushrooms from regions of China. Bull Environ Contam Toxicol 83:280–285. https://doi.org/10.1007/s00128-009-9767-8

    Article  CAS  Google Scholar 

  • Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284

    Article  CAS  Google Scholar 

  • Cui Y-J, Zhu Y-G, Zhai R-H, Chen D-Y, Huang Y-Z, Qiu Y, Liang J-Z (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791. https://doi.org/10.1016/j.envint.2004.01.003

    Article  CAS  Google Scholar 

  • Curran JE et al (2005) Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 37:1234–1241. https://doi.org/10.1038/ng1655

    Article  CAS  Google Scholar 

  • Deagen JT, Butler JA, Zachara BA, Whanger PD (1993) Determination of the distribution of selenium between glutathione-peroxidase, selenoprotein-P, and albumin in plasma. Anal Biochem 208:176–181. https://doi.org/10.1006/abio.1993.1025

    Article  CAS  Google Scholar 

  • Dowlati M, Sobhi HR, Esrafili A, FarzadKia M, Yeganeh M (2021) Heavy metals content in edible mushrooms: a systematic review, meta-analysis and health risk assessment. Trends Food Sci Technol 109:527–535. https://doi.org/10.1016/j.tifs.2021.01.064

    Article  CAS  Google Scholar 

  • EFSA (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in food. EFSA J 980:1–139. https://doi.org/10.2903/j.efsa.2009.980

    Article  Google Scholar 

  • Falandysz J, Gucia M, Brzostowski A, Kawano M, Bielawski L, Frankowska A, Wyrzykowska B (2003) Content and bioconcentration of mercury in mushrooms from northern. Poland Food Additives & Contaminants 20:247–253

    Article  CAS  Google Scholar 

  • García MÁ, Alonso J, Melgar MJ (2009) Lead in edible mushrooms: levels and bioaccumulation factors. J Hazard Mater 167:777–783

    Article  Google Scholar 

  • Gebrelibanos M, Megersa N, Taddesse AM (2016) Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. International Journal of Food Contamination 3:1–12. https://doi.org/10.1186/s40550-016-0025-7

    Article  Google Scholar 

  • Huang C, Chen Q, Zhao Y, Zhang J (2010) Investigation on heavy metals of main wild edible mushrooms in Yunnan province. Sci Agric Sin 43:1198–1203

    CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16. https://doi.org/10.1016/s0378-4274(02)00084-x

    Article  CAS  Google Scholar 

  • JECFA (1993) Joint FAO/WHO expert Committee on Food Additives. Evaluation of certain food additives and contaminants: 41st report of the Joint FAO/WHO expert Committee on Food Additives. World Health Organization, Technical Reports Series No. 837, Geneva

  • Kalač P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35

    Article  Google Scholar 

  • Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    Article  Google Scholar 

  • Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  Google Scholar 

  • Kawahara M, Konoha K, Nagata T, Sadakane Y (2007) Aluminum and human health: its intake, bioavailability and neurotoxicity. Biomed Res Trace Elem 18:211–220

    CAS  Google Scholar 

  • Kim KH, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385. https://doi.org/10.1016/j.jhazmat.2015.11.031

    Article  CAS  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443. https://doi.org/10.1126/science.1083516

    Article  CAS  Google Scholar 

  • Li LM, Yang XB (2018) The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxidative Med Cell Longev 2018:7580707. https://doi.org/10.1155/2018/7580707

    Article  CAS  Google Scholar 

  • Liu B, Huang Q, Cai H, Guo X, Wang T, Gui M (2015) Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chem 188:294–300. https://doi.org/10.1016/j.foodchem.2015.05.010

    Article  CAS  Google Scholar 

  • Llanos RM, Mercer JFB (2002) The molecular basis of copper homeostasis and copper-related disorders. DNA Cell Biol 21:259–270. https://doi.org/10.1089/104454902753759681

    Article  CAS  Google Scholar 

  • Ndimele CC, Ndimele PE, Chukwuka KS (2017a) Accumulation of heavy metals by wild mushrooms in Ibadan, Nigeria. Journal of Health and Pollution 7:26–30. https://doi.org/10.5696/2156-9614-7.16.26

    Article  Google Scholar 

  • Ndimele PE, Pedro MO, Agboola JI, Chukwuka KS, Ekwu AO (2017b) Heavy metal accumulation in organs of Oreochromis niloticus (Linnaeus, 1758) from industrial effluent-polluted aquatic ecosystem in Lagos, Nigeria. Environ Monit Assess 189:255. https://doi.org/10.1007/s10661-017-5944-0

    Article  CAS  Google Scholar 

  • Nemcsok JG, Hughes GM (1988) The effect of copper-sulfate on some biochemical parameters of rainbow-trout. Environ Pollut 49:77–85. https://doi.org/10.1016/0269-7491(88)90015-2

    Article  CAS  Google Scholar 

  • Nikkarinen M, Mertanen E (2004) Impact of geological origin on trace element composition of edible mushrooms. J Food Compos Anal 17:301–310

    Article  CAS  Google Scholar 

  • Nomura N, Shoda W, Uchida S (2019) Clinical importance of potassium intake and molecular mechanism of potassium regulation. Clin Exp Nephrol 23:1175–1180. https://doi.org/10.1007/s10157-019-01766-x

    Article  Google Scholar 

  • Ouzouni PK, Petridis D, Koller WD, Riganakos KA (2009) Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem 115:1575–1580. https://doi.org/10.1016/j.foodchem.2009.02.014

    Article  CAS  Google Scholar 

  • Patra R, Rautray AK, Swarup D (2011) Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Med Int 2011:457327

    Article  CAS  Google Scholar 

  • Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40:1183–1197. https://doi.org/10.1002/jat.3965

    Article  CAS  Google Scholar 

  • Pokorny B, Al Sayegh-Petkovšek S, Ribarič-Lasnik C, Vrtačnik J, Doganoc DZ, Adamič M (2004) Fungi ingestion as an important factor influencing heavy metal intake in roe deer: evidence from faeces. Sci Total Environ 324:223–234

    Article  CAS  Google Scholar 

  • Pravina P, Sayaji D, Avinash M (2013) Calcium and its role in human body. Int J Res Pharmaceut Biomed Sci 4:659–668

    CAS  Google Scholar 

  • Rayman MP, Infante HG, Sargent M (2008) Food-chain selenium and human health: spotlight on speciation. Br J Nutr 100:238–253. https://doi.org/10.1017/s0007114508922522

    Article  CAS  Google Scholar 

  • Rodrı́guez-Delgado M-Á, González-Hernández G, Conde-González J-E, Pérez-Trujillo J-P (2002) Principal component analysis of the polyphenol content in young red wines. Food Chem 78:523–532. https://doi.org/10.1016/S0308-8146(02)00206-6

    Article  Google Scholar 

  • Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. Journal of Research in Medical Sciences 18:144–157

    Google Scholar 

  • Seeger R (1976) Quecksilbergehalt der Pilze. Z Lebensm Unters Forsch 160:303–312

    Article  CAS  Google Scholar 

  • Semreen MH, Aboul-Enein HY (2011) Determination of heavy metal content in wild-edible mushroom from Jordan. Anal Lett 44:932–941. https://doi.org/10.1080/00032711003790072

    Article  CAS  Google Scholar 

  • Shrimali RK, Irons RD, Carlson BA, Sano Y, Gladyshev VN, Park JM, Hatfield DL (2008) Selenoproteins mediate T cell immunity through an antioxidant mechanism. J Biol Chem 283:20181–20185. https://doi.org/10.1074/jbc.M802559200

    Article  CAS  Google Scholar 

  • Širić I, Kos I, Bedeković D, Kaić A, Kasap A (2014) Heavy metals in edible mushroom Boletus reticulatus Schaeff. Collected from Zrin mountain, Croatia. Period Biol 116:319–322

    Google Scholar 

  • Stern BR et al (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health, Pt B Crit Rev 10:157–222. https://doi.org/10.1080/10937400600755911

    Article  CAS  Google Scholar 

  • Svoboda L, Kalac P (2003) Contamination of two edible Agaricus spp. mushrooms growing in a town with cadmium, lead, and mercury. Bull Environ Contam Toxicol 71:123–130. https://doi.org/10.1007/s00128-003-0138-6

    Article  CAS  Google Scholar 

  • Szynkowska M, Pawlaczyk A, Albińska J, Paryjczak T (2008) Comparison of accumulation ability of toxicologically important metals in caps and stalks in chosen mushrooms. Pol J Chem 82:313–319

    CAS  Google Scholar 

  • Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606

    Article  Google Scholar 

  • USEPA (2002) A review of the reference dose and reference concentration processes.

  • Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. Journal of Medicinal Plants Research 4:2598–2604

    Article  Google Scholar 

  • Yang G-Q, Xia Y-M (1995) Studies on human dietary requirements and safe range of dietary intakes of selenium in China and their application in the prevention of related endemic diseases. Biomed Environ Sci 8:187–201

    CAS  Google Scholar 

  • Zhang YY, Chen H (2012) Assessment of heavy metal pollution of vegetables in Chongqing Market. Environment and Ecology in the Three Gorges 34:47–51

    CAS  Google Scholar 

  • Zhang D et al (2010) Metals of King Bolete (Boletus edulis) Bull.: Fr. collected at the same site over two years. Afr J Agric Res 5:3050–3055

    Google Scholar 

  • Zhang Y, Cao YR, Xu H (2012) Evaluation of heavy metal contents in some wild edible mushrooms from Panzhihua. Journal of Sichuan University 49:246–252

    CAS  Google Scholar 

  • Zhu FK, Qu L, Fan WX, Qiao MY, Hao HL, Wang XJ (2011) Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China. Environ Monit Assess 179:191–199. https://doi.org/10.1007/s10661-010-1728-5

    Article  CAS  Google Scholar 

Download references

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Funding

Not applicable (this study was not carried out with the financial contribution of any institution or organization).

Author information

Authors and Affiliations

Authors

Contributions

CS carried out the conceptualization and research, formal analysis, and writing of the original draft. FK and IA conducted the literature research, conceptualization, visualization, and data analysis. BT contributed to the conceptualization, and writing-reviewing and editing processes.

Corresponding author

Correspondence to Feyyaz Keskin.

Ethics declarations

Ethics approval and consent to participate

Not applicable (This paper does not contain studies involving human participants, human data or human tissue).

Consent for publication

Not applicable (This paper does not contain any individual person’s data in any form).

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, F., Sarikurkcu, C., Akata, I. et al. Element concentration, daily intake of elements, and health risk indices of wild mushrooms collected from Belgrad Forest and Ilgaz Mountain National Park (Turkey). Environ Sci Pollut Res 28, 51544–51555 (2021). https://doi.org/10.1007/s11356-021-14376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-14376-6

Keywords

Navigation