Ahmad M, Lee SS, Lee SE, Al-Wabel MI, Tsang DCW, Ok YS (2016) Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J Soils Sediments 17:717–730. https://doi.org/10.1007/s11368-015-1339-4
CAS
Article
Google Scholar
Amen R et al (2020) A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions. Chem Eng J 396:125195. https://doi.org/10.1016/j.cej.2020.125195
CAS
Article
Google Scholar
Artiola JF, Rasmussen C, Freitas R (2012) Effects of a biochar-amended alkaline soil on the growth of romaine lettuce and bermudagrass. Soil Sci 177:561–570. https://doi.org/10.1097/SS.0b013e31826ba908
CAS
Article
Google Scholar
Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171:965–972. https://doi.org/10.1016/j.jhazmat.2009.06.097
CAS
Article
Google Scholar
ATSDR (2011) Substance Priority List. Agency for Toxic Substances and Disease Registry. http://www.atsdrcdc.gov/SPL/index.html
Bakshi S, Banik C, Rathke S, Laird D (2018) Arsenic sorption on zero-valent ironbiochar complexes. Water Res 137:153–163. https://doi.org/10.1016/j.watres.2018.03.021
CAS
Article
Google Scholar
Beaulieu BT, Savage KS (2005) Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils. Environ Sci Technol 39:3571–3579. https://doi.org/10.1021/es048836f
CAS
Article
Google Scholar
Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. https://doi.org/10.1016/j.envpol.2010.02.003
CAS
Article
Google Scholar
Beesley L, Marmiroli M, Pagano L, Pigoni V, Fellet G, Fresno T, Vamerali T, Bandiera M, Marmiroli N (2013) Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci Total Environ 454-455:598–603. https://doi.org/10.1016/j.scitotenv.2013.02.047
CAS
Article
Google Scholar
Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge
Google Scholar
Brennan JK, Bandosz TJ, Thomson KT, Gubbins KE (2001) Water in porous carbons. Colloids Surf A Physicochem Eng Asp 187-188:539–568. https://doi.org/10.1016/S0927-7757(01)00644-6
CAS
Article
Google Scholar
Burton ED, Bush RT, Johnston SG, Watling KM, Hocking RK, Sullivan LA, Parker GK (2009) Sorption of arsenic(V) and arsenic(III) to schwertmannite. Environ Sci Technol 43:9202–9207. https://doi.org/10.1021/es902461x
CAS
Article
Google Scholar
Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA (2016) Arsenic and environmental health: state of the science and future research opportunities. Environ Health Perspect 124:890–899. https://doi.org/10.1289/ehp.1510209
CAS
Article
Google Scholar
Cataldo S, Gianguzza A, Milea D, Muratore N, Pettignano A, Sammartano S (2018) A critical approach to the toxic metal ion removal by hazelnut and almond shells. Environ Sci Pollut Res 25:4238–4253. https://doi.org/10.1007/s11356-017-0779-3
CAS
Article
Google Scholar
Cudennec Y, Lecerf A (2006) The transformation of ferrihydrite into goethite or hematite, revisited. J Solid State Chem 179:716–722. https://doi.org/10.1016/j.jssc.2005.11.030
CAS
Article
Google Scholar
Das S, Jean J-S, Kar S (2013) Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicol Environ Saf 92:252–257. https://doi.org/10.1016/j.ecoenv.2013.02.016
CAS
Article
Google Scholar
Delany JM, Lundeen SR (1990) The LLNL thermochemical database. Lawrence Livermore National Laboratory Report UCRL-21658
Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. https://doi.org/10.1021/es030309t
CAS
Article
Google Scholar
Farquhar ML, Charnock JM, Livens FR, Vaughan DJ (2002) Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an x-ray absorption spectroscopy study. Environ Sci Technol 36:1757–1762. https://doi.org/10.1021/es010216g
CAS
Article
Google Scholar
Forray FL, Smith AML, Navrotsky A, Wright K, Hudson-Edwards KA, Dubbin WE (2014) Synthesis, characterization and thermochemistry of synthetic Pb-As, Pb-Cu and Pb-Zn jarosites. Geochim Cosmochim Acta 127:107–119
CAS
Article
Google Scholar
Foster AL, Brown GE, Tingle TN, Parks GA (1998) Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. Am Mineral 83:553–568
CAS
Article
Google Scholar
Gao X, Root RA, Farrell J, Ela W, Chorover J (2013) Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: a spectroscopic and batch adsorption approach. Appl Geochem 38:110–120
CAS
Article
Google Scholar
Grossl PR, Eick M, Sparks DL, Goldberg S, Ainsworth CC (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31:321–326. https://doi.org/10.1021/es950654l
CAS
Article
Google Scholar
Hammond CM, Root RA, Maier RM, Chorover J (2018) Mechanisms of arsenic sequestration by Prosopis juliflora during the phytostabilization of metalliferous mine tailings. Environ Sci Technol 52:1156–1164. https://doi.org/10.1021/acs.est.7b04363
CAS
Article
Google Scholar
Hammond CM, Root RA, Maier RM, Chorover J (2020) Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Geochim Cosmochim Acta 286:306–323. https://doi.org/10.1016/j.gca.2020.07.001
CAS
Article
Google Scholar
Hayes SM, Root RA, Perdrial N, Maier RM, Chorover J (2014) Surficial weathering of iron sulfide mine tailings under semi-arid climate. Geochim Cosmochim Acta 141:240–257. https://doi.org/10.1016/j.gca.2014.05.030
CAS
Article
Google Scholar
Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activities coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600 °C. Am J Sci 281:1241–1516
Article
Google Scholar
Hu B, Song Y, Wu S, Zhu Y, Sheng G (2019) Slow released nutrient-immobilized biochar: a novel permeable reactive barrier filler for Cr(VI) removal. J Mol Liq 286:110876. https://doi.org/10.1016/j.molliq.2019.04.153
CAS
Article
Google Scholar
Ibrahim M, Khan S, Hao X, Li G (2016) Biochar effects on metal bioaccumulation and arsenic speciation in alfalfa (Medicago sativa L.) grown in contaminated soil. Int J Environ Sci Technol 13:2467–2474. https://doi.org/10.1007/s13762-016-1081-5
CAS
Article
Google Scholar
ICDD (2005) JCPDS Powder Diffraction File 2 Database. International Centre for Diffraction Data, Newton Square, PA, USA
Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45:324–328. https://doi.org/10.1107/s0021889812004037
CAS
Article
Google Scholar
Jin Q et al (2020) Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water. Environ Res 186:109442. https://doi.org/10.1016/j.envres.2020.109442
CAS
Article
Google Scholar
Jönsson J, Persson P, Sjoberg S, Lovgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191
Article
Google Scholar
Kappler A, Wuestner ML, Ruecker A, Harter J, Halama M, Behrens S (2014) Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 1:339–344. https://doi.org/10.1021/ez5002209
CAS
Article
Google Scholar
Kelly CN, Peltz CD, Stanton M, Rutherford DW, Rostad CE (2014) Biochar application to hardrock mine tailings: soil quality, microbial activity, and toxic element sorption. Appl Geochem 43:35–48. https://doi.org/10.1016/j.apgeochem.2014.02.003
CAS
Article
Google Scholar
Klüpfel L, Keiluweit M, Kleber M, Sander M (2014) Redox properties of plant biomass-derived black carbon (biochar). Environ Sci Technol 48:5601–5611. https://doi.org/10.1021/es500906d
CAS
Article
Google Scholar
Lehmann J, Joseph S (eds) (2009) Biochar for environmental management: science and technology. Earthscan, London & Sterling
Google Scholar
Lehmann J, Liang B, Solomon D, Lerotic M, Luizão F, Kinyangi J, Schäfer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles. Glob Biogeochem Cycles 19. https://doi.org/10.1029/2004gb002435
Lerotic M, Mak R, Wirick S, Meirer F, Jacobsen C (2014) MANTiS: a program for the analysis of X-ray spectromicroscopy data. J Synchrotron Radiat 21:1206–1212. https://doi.org/10.1107/S1600577514013964
CAS
Article
Google Scholar
Li F, Li Z, Mao P, Li Y, Li Y, McBride MB, Wu J, Zhuang P (2018) Heavy metal availability, bioaccessibility, and leachability in contaminated soil: effects of pig manure and earthworms. Environ Sci Pollut Res Int 26:20030–20039. https://doi.org/10.1007/s11356-018-2080-5
CAS
Article
Google Scholar
Li X, Zhang X, Wang X, Cui Z (2019) Phytoremediation of multi-metal contaminated mine tailings with Solanum nigrum L. and biochar/attapulgite amendments. Ecotoxicol Environ Saf 180:517–525. https://doi.org/10.1016/j.ecoenv.2019.05.033
CAS
Article
Google Scholar
Liang C, Gascó G, Fu S, Méndez A, Paz-Ferreiro J (2016) Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil Tillage Res 164:3–10. https://doi.org/10.1016/j.still.2015.10.002
Article
Google Scholar
Liu X et al (2019) Impact of biochar amendment on the abundance and structure of diazotrophic community in an alkaline soil. Sci Total Environ 688:944–951. https://doi.org/10.1016/j.scitotenv.2019.06.293
CAS
Article
Google Scholar
Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan G, Chen X, Zhang X, Liu D, Song Z, Liu X, Wang H (2016) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186:285–292. https://doi.org/10.1016/j.jenvman.2016.05.068
CAS
Article
Google Scholar
Maillot F, Morin G, Juillot F, Bruneel O, Casiot C, Ona-Nguema G, Wang Y, Lebrun S, Aubry E, Vlaic G, Brown GE Jr (2013) Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoule`s acid mine drainage, France: comparison with biotic and abiotic model compounds and implications for As remediation. Geochim Cosmochim Acta 104:310–329
CAS
Article
Google Scholar
Majzlan J, Navrotsky A, McCleskey RB, Alpers CN (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. Eur J Mineral 18:175–186. https://doi.org/10.1127/0935-1221/2006/0018-0175
CAS
Article
Google Scholar
Manning BA, Fendorf SE, Bostick BC, Susarez D (2002) Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36(5):976–981
CAS
Article
Google Scholar
Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology. Environ Health Perspect 116:278–283
CAS
Article
Google Scholar
Meng J, Tao M, Wang L, Liu X, Xu J (2018) Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Sci Total Environ 633:300–307. https://doi.org/10.1016/j.scitotenv.2018.03.199
CAS
Article
Google Scholar
Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39:9147–9155. https://doi.org/10.1021/es050889p
CAS
Article
Google Scholar
Paktunc D, Dutrizac JE (2003) Characterization of arsenate-for-sulfate substitution in synthetic jarosite using X-ray diffraction and X-ray absorption spectroscopy. Can Mineral 41:905–919. https://doi.org/10.2113/gscanmin.41.4.905
CAS
Article
Google Scholar
Puga AP, Melo LCA, de Abreu CA, Coscione AR, Paz-Ferreiro J (2016) Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res 164:25–33. https://doi.org/10.1016/j.still.2016.01.008
Article
Google Scholar
Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541
CAS
Article
Google Scholar
Rehr JJ (1993) Recent developments in multiple-scattering calculations of XAFS and XANES Japan. J Appl Phys 32:8–12
CAS
Article
Google Scholar
Root RA, Dixit S, Campbell KM, Jew AD, Hering JG, O'Day PA (2007) Arsenic sequestration by sorption processes in high-iron sediments. Geochim Cosmochim Acta 71:5782–5803
CAS
Article
Google Scholar
Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J (2015) Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Appl Geochem 62:131–149. https://doi.org/10.1016/j.apgeochem.2015.01.005
CAS
Article
Google Scholar
Savage KS, Tingle TN, O'Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl Geochem 15:1219–1244
CAS
Article
Google Scholar
Sherman D, Randal SR (2003) Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67:4223–4230
CAS
Article
Google Scholar
Solis-Dominguez FA, White SA, Hutter TB, Amistadi MK, Root RA, Chorover J, Maier RM (2012) Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species. Environ Sci Technol 46:1019–1027. https://doi.org/10.1021/es202846n
CAS
Article
Google Scholar
Solomon D et al (2012) Micro- and nano-environments of carbon sequestration: multi-element STXM–NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chem Geol 329:53–73. https://doi.org/10.1016/j.chemgeo.2012.02.002
CAS
Article
Google Scholar
Stookey L (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42(7):779–781. https://doi.org/10.1021/ac60289a016
Uchimiya M, Bannon DI, Wartelle LH (2012) Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J Agric Food Chem 60:1798–1809. https://doi.org/10.1021/jf2047898
CAS
Article
Google Scholar
Valentin-Vargas A, Chorover J, Maier RM (2013) A new standard-based polynomial interpolation (SBPIn) method to address gel-to-gel variability for the comparison of multiple denaturing gradient gel electrophoresis profile matrices. J Microbiol Methods 92:173–177. https://doi.org/10.1016/j.mimet.2012.12.001
CAS
Article
Google Scholar
Voegelin A, Weber F-A, Kretzschmar R (2007) Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: micro-XRF element mapping and EXAFS spectroscopy. Geochim Cosmochim Acta 71:5804–5820
CAS
Article
Google Scholar
Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395. https://doi.org/10.1016/j.biortech.2014.10.104
CAS
Article
Google Scholar
Webb SM (2006) SixPACK: a graphical user interface for XAS analysis using IFEFFIT. Phys Scr T115:1011–1014
Google Scholar
WHO (2017) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva ISBN 978-92-4-154995-0
Google Scholar
Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A Physicochem Eng Asp 107:97–110. https://doi.org/10.1016/0927-7757(95)03368-8
CAS
Article
Google Scholar
Wu C, Cui M, Xue S, Li W, Huang L, Jiang X, Qian Z (2018) Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Environ Sci Pollut Res Int 25:20792–20801. https://doi.org/10.1007/s11356-018-2268-8
CAS
Article
Google Scholar
Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047. https://doi.org/10.1021/acs.est.7b06487
CAS
Article
Google Scholar
Yee N, Shaw S, Benning L, Nguyen TH (2006) The rate of ferrihydrite transformation to goethite via the Fe(II) pathway. Am Mineral 91:92–96. https://doi.org/10.2138/am.2006.1860
CAS
Article
Google Scholar
Yoon K, Cho D-W, Tsang DCW, Bolan N, Rinklebe J, Song H (2017) Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresour Technol 246:69–75. https://doi.org/10.1016/j.biortech.2017.07.020
CAS
Article
Google Scholar
Yu L, Yuang Y, Tang J, Wang Y, Zhou S (2015) Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep 5:16221–16221. https://doi.org/10.1038/srep16221
CAS
Article
Google Scholar
Yuan J-H, Xu R-K, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102:3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018
CAS
Article
Google Scholar
Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130(1):457–462. https://doi.org/10.1016/j.biortech.2012.11.132
CAS
Article
Google Scholar
Zhao B, Xu H, Ma F, Zhang T, Nan X (2019a) Effects of dairy manure biochar on adsorption of sulfate onto light sierozem and its mechanisms. RSC Adv 9:5218–5223. https://doi.org/10.1039/C8RA08916G
CAS
Article
Google Scholar
Zhao J, Shen X-J, Domene X, Alcañiz J-M, Liao X, Palet C (2019b) Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci Rep 9:9869. https://doi.org/10.1038/s41598-019-46234-4
CAS
Article
Google Scholar