Skip to main content

Advertisement

Log in

Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Over the past few decades, the rapid development of agriculture and industries has resulted in contamination of the environment by diverse pollutants, including heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals. Their presence in the environment is of great concern due to their toxicity and non-biodegradable nature. Their interaction with each other and coexistence in the environment greatly influence and threaten the ecological environment and human health. Furthermore, the presence of these pollutants affects the soil quality and fertility. Physicochemical techniques are used to remediate such environments, but they are less effective and demand high costs of operation. Bioremediation is an efficient, widespread, cost-effective, and eco-friendly cleanup tool. The use of microorganisms has received significant attention as an efficient biotechnological strategy to decontaminate the environment. Bioremediation through microorganisms appears to be an economically viable and efficient approach because it poses the lowest risk to the environment. This technique utilizes the metabolic potential of microorganisms to clean up contaminated environments. Many microbial genera have been known to be involved in bioremediation, including Alcaligenes, Arthrobacter, Aspergillus, Bacillus, Burkholderia, Mucor, Penicillium, Pseudomonas, Stenotrophomonas, Talaromyces, and Trichoderma. Archaea, including Natrialba and Haloferax, from extreme environments have also been reported as potent bioresources for biological remediation. Thus, utilizing microbes for managing environmental pollution is promising technology, and, in fact, the microbes provide a useful podium that can be used for an enhanced bioremediation model of diverse environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Afzal M, Rehman K, Shabir G, Tahseen R, Ijaz A, Hashmat AJ, Brix H (2019) Large-scale remediation of oil-contaminated water using floating treatment wetlands. Npj Clean Water 2:1–10

    Article  Google Scholar 

  • Afzal M, Shabir G, Hussain I, Khalid ZM (2008) Paper and board mill effluent treatment with the combined biological–coagulation–filtration pilot scale reactor. Bioresour Technol 99:7383–7387

    Article  CAS  Google Scholar 

  • Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12:1365–1377

    Article  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Ahmad M, Sajjad W, Rehman ZU, Hayat M, Khan I (2015) Identification and characterization of intrinsic petrophillic bacteria from oil contaminated soil and water. Int J Curr Microbiol App Sci 4:338–346

    CAS  Google Scholar 

  • Al-Hawash AB, Alkooranee JT, Abbood HA, Zhang J, Sun J, Zhang X, Ma F (2018) Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnol Rep 17:104–109

    Article  Google Scholar 

  • Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2011) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230

    Article  CAS  Google Scholar 

  • Andrés P, Mateos E, Tarrasón D, Cabrera C, Figuerola B (2011) Effects of digested, composted, and thermally dried sewage sludge on soil microbiota and mesofauna. Appl Soil Ecol 48:236–242

    Article  Google Scholar 

  • Athar H, Sirajuddin A (eds) (2019) Advanced Treatment Techniques for Industrial Wastewater. IGI Global Hershey PA USA. https://doi.org/10.4018/978-1-5225-5754-8

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:94

    Article  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180

    Article  Google Scholar 

  • Baez-Smith C (2006) Anaerobic digestion of vinasse for the production of methane in the sugar cane distillery. SPRI Conference on Sugar Processing, Loxahatchee, pp 268–287

    Google Scholar 

  • Bajaj A, Mayilraj S, Mudiam MKR, Patel DK, Manickam N (2014) Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1, 1, 1-trichloro-2, 2-bis (4-chlorophenyl) ethane (DDT). Bioresour Technol 167:398–406

  • Bajpai P, Bajpai PK (1994) Biological color removal of pulp and paper mill wastewaters. J Biotechnol 33:211–220

    Article  CAS  Google Scholar 

  • Balcıoğlu IA, Tarlan E, Kıvılcımdan C, Saçan MT (2007) Merits of ozonation and catalytic ozonation pre-treatment in the algal treatment of pulp and paper mill effluents. J Environ Manag 85:918–926

    Article  Google Scholar 

  • Barapatre A, Jha H (2016) Decolourization and biological treatment of pulp and paper mill effluent by lignin-degrading fungus Aspergillus flavus strain F10. Int J Curr Microbiol App Sci 5:19–32

    Article  CAS  Google Scholar 

  • Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans Royal Soc B: Biol Sci 364:1985–1998

    Article  CAS  Google Scholar 

  • Bécaert V, Deschênes L, Samson R (2000) A simple method to evaluate the concentration of pentachlorophenol degraders in contaminated soils. FEMS Microbiol Lett 184:261–264

    Article  Google Scholar 

  • Belal EB (2013) Biodegradation of aliphatic-aromatic coplyester under thermophilic conditions. Res J Environ Earth Sci 5:677–690

    CAS  Google Scholar 

  • Bhandari G (2018) Environmental nanotechnology: applications of nanoparticles for bioremediation. In: Approaches in bioremediation. Springer, Singapore, pp 301–315

  • Bharadwaj A (2018) Bioremediation of xenobiotics: an eco-friendly cleanup approach. In: Green chemistry in environmental sustainability and chemical education. Springer, Singapore, pp 1–13

  • Binelli A, Provini A (2003) DDT is still a problem in developed countries: the heavy pollution of Lake Maggiore. Chemosphere 52:717–723 Bioremediation. American Society of Microbiology Press, Washington, D.C, pp. 139–236

    Article  CAS  Google Scholar 

  • Bosso L, Cristinzio G (2014) A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev Environ Sci Bio/Technol 13:387–427

    Article  CAS  Google Scholar 

  • Bragança I, Lemos PC, Delerue-Matos C, Domingues VF (2019) Pyrethroid pesticide metabolite, 3-PBA, in soils: method development and application to real agricultural soils. Environ Sci Poll Res 26:2987–2997

    Article  Google Scholar 

  • Bright D, Healey N (2003) Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia. Environ Poll 126:39–49

    Article  CAS  Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Microbial degradation of organic compounds. Dekker, New York, pp 89–129

  • Bruschi M, Goulhen F (2007) New bioremediation technologies to remove heavy metals and radionuclides using Fe (III)-, sulfate-and sulfur-reducing bacteria. In: Environmental bioremediation technologies. Springer, Berlin, pp 35–55

  • Bustin S, Benes V, Nolan T, Pfaffl M (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34:597–601

    Article  CAS  Google Scholar 

  • Bustos López ON (2020) Role of modern innovative techniques for assessing and monitoring environmental pollution. In: Hakeem KR, Bhat RA, Qadri H (eds) Bioremediation and biotechnology: sustainable approaches to pollution degradation. Springer, Cham, pp 75–91. https://doi.org/10.1007/978-3-030-35691-0_4

    Chapter  Google Scholar 

  • Chandra R, Raj A, Yadav S, Patel DK (2009) Reduction of pollutants in pulp paper mill effluent treated by PCP-degrading bacterial strains. Environ Monit Assess 155:1

    Article  CAS  Google Scholar 

  • Chandra R, Singh R (2012) Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J 61:49–58

    Article  CAS  Google Scholar 

  • Chirnside AE, Ritter WF, Radosevich M (2007) Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Biochem 39:3056–3065

    Article  CAS  Google Scholar 

  • Chuphal Y, Kumar V, Thakur IS (2005) Biodegradation and decolorization of pulp and paper mill effluent by anaerobic and aerobic microorganisms in a sequential bioreactor. World J Microbiol Biotechnol 21:1439–1445

    Article  CAS  Google Scholar 

  • Cortés D, Barrios-González J, Tomasini A (2002) Pentachlorophenol tolerance and removal by Rhizopus nigricans in solid-state culture. Process Biochem 37:881–884

    Article  Google Scholar 

  • Cristorean C, Micle V, Sur IM (2016) A critical analysis of ex-situ bioremediation technologies of hydrocarbon polluted soils ECOTERRA. J Environ Res Prot 13:17–29

    Google Scholar 

  • Crivelaro SHR, Mariano AP, Furlan LT, Gonçalves RA, Seabra PN, DdFd A (2010) Evaluation of the use of vinasse as a biostimulation agent for the biodegradation of oily sludge in soil. Braz Arch Biol Technol 53:1217–1224

    Article  Google Scholar 

  • Das A, Osborne JW (2018) Bioremediation of Heavy Metals. In: Gothandam KM, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment. Springer, Cham, pp 277–311. https://doi.org/10.1007/978-3-319-70166-0_9

    Chapter  Google Scholar 

  • Daverey A, Dutta K, Sarkar A (2019) An overview of analytical methodologies for environmental monitoring. In: Kaur Brar S, Hegde K, Pachapur VL (eds) Tools, techniques and protocols for monitoring environmental contaminants. Elsevier, Amsterdam, pp 3–17. https://doi.org/10.1016/B978-0-12-814679-8.00001-7

  • Debbarma P, Raghuwanshi S, Singh J, Suyal DC, Zaidi M, Goel R (2017) Comparative in situ biodegradation studies of polyhydroxybutyrate film composites. 3. Biotech 7:178

    Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101:1558–1569

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687

    Article  Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:1–39

    Article  Google Scholar 

  • Elcin E, Öktem HA (2020) Immobilization of fluorescent bacterial bioreporter for arsenic detection. J Environ Health Sci Eng 18:137–148

    Article  CAS  Google Scholar 

  • Eriksson KE, Kolar MC (1985) Microbial degradation of chlorolignins. Environ Sci Technol 19:1086–1089

    Article  CAS  Google Scholar 

  • Fakhech A, Ouahmane L, Hafidi M (2019) Analysis of symbiotic microbial status of Atlantic sand dunes forest and its effects on Acacia gummifera and Retama monosperma (Fabaceae) to be used in reforestation. J For Res 31:1309–1317

    Article  Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184:281–289

    Article  CAS  Google Scholar 

  • Farhan SN, Khadom AA (2015) Biosorption of heavy metals from aqueous solutions by Saccharomyces cerevisiae. Int J Ind Chem 6:119–130

    Article  CAS  Google Scholar 

  • Feng J, Zhong J, Tang X (2019) Selective and sensitive detection of cyanate using 3-amino-2-naphthoic acid-based turn-on fluorescence probe. Anal Bioanal Chem 411:3613–3619

    Article  CAS  Google Scholar 

  • Fernández-Fueyo E, Ruiz-Dueñas FJ, Martínez AT (2014) Engineering a fungal peroxidase that degrades lignin at very acidic pH. Biotechnol Biofuel 7:1–12

    Article  Google Scholar 

  • Ferreira AF, Ferreira A, Dias APS, Gouveia L (2020) Pyrolysis of Scenedesmus obliquus biomass following the treatment of different wastewaters. BioEnergy Res 13:896–906

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7:211–241

    Article  CAS  Google Scholar 

  • Folch A, Vilaplana M, Amado L, Vicent T, Caminal G (2013) Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560

    Article  CAS  Google Scholar 

  • Fountoulakis M, Terzakis S, Georgaki E, Drakopoulou S, Sabathianakis I, Kouzoulakis M, Manios T (2009) Oil refinery sludge and green waste simulated windrow composting. Biodegradation 20:177–189

    Article  CAS  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399

    Article  CAS  Google Scholar 

  • Fukushima M, Tatsumi K (2007) Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra (p-sulfophenyl) porphineiron (III) and hydroxypropyl-β-cyclodextrin. J Hazard Mater 144:222–228

    Article  CAS  Google Scholar 

  • Funar-Timofei S, Ilia G (2020) QSAR modeling of dye ecotoxicity. In: Roy K (ed) Ecotoxicological QSARs. Springer, New York, pp 405–436. https://doi.org/10.1007/978-1-0716-0150-1_18

    Chapter  Google Scholar 

  • Ganapathy B, Yahya A, Ibrahim N (2019) Bioremediation of palm oil mill effluent (POME) using indigenous Meyerozyma guilliermondii. Environ Sci Pollut Res 26:11113–11,125

    Article  CAS  Google Scholar 

  • Gao B, Liu W-B, Jia L-Y, Xu L, Xie J (2011) Isolation and characterization of an Alcaligenes sp. strain DG-5 capable of degrading DDTs under aerobic conditions. J Environ Sci Health-Part B 46:257–263

  • Gimžauskaitė D, Tamošiūnas A, Tučkutė S, Snapkauskienė V, Aikas M, Uscila R (2020) Treatment of diesel-contaminated soil using thermal water vapor arc plasma. Environ Sci Pollut Res 27:43–54

    Article  Google Scholar 

  • Giovanella P, Vieira GA, Otero IVR, Pellizzer EP, de Jesus Fontes B, Sette LD (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. J Hazard Mater 382:121024

    Article  CAS  Google Scholar 

  • Giri J, Srivastva A, Pachauri S, Srivastva P (2014) Effluents from paper and pulp industries and their impact on soil properties and chemical composition of plants in Uttarakhand, India. J Environ. Waste Manag 1:26–32

    Google Scholar 

  • Giri K, Rai J, Pandey S, Mishra G, Kumar R, Suyal DC (2017) Performance evaluation of isoproturon-degrading indigenous bacterial isolates in soil microcosm. Chem Ecol 33:817–825

    Article  CAS  Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109

    Article  CAS  Google Scholar 

  • Gupta K, Biswas R, Sarkar A (2020) Advancement of omics: prospects for bioremediation of contaminated soils. In: Shah MP (ed) Microbial bioremediation & biodegradation. Springer, Singapore, pp 113–142. https://doi.org/10.1007/978-981-15-1812-6_5

    Chapter  Google Scholar 

  • Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–18

    Article  Google Scholar 

  • Gursahani Y, Gupta S (2011) Decolourization of textile effluent by a thermophilic bacteria Anoxybacillus rupiensis. J Pet Environ Biotechnol 2:1–4

    Google Scholar 

  • Hajslova J, Moffat C, Whittle K (1999) Environmental contaminants in food (Sheffield Food Technology, Vol 4). CRC, Boca Raton

    Google Scholar 

  • Harada N, Takagi K, Harazono A, Fujii K, Iwasaki A (2006) Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biol Biochem 38:173–179

    Article  CAS  Google Scholar 

  • Haroni NN, Badehian Z, Zarafshar M, Bazot S (2019) The effect of oil sludge contamination on morphological and physiological characteristics of some tree species. Ecotoxicology 28:507–519

    Article  CAS  Google Scholar 

  • Harvey RG (1996) Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 9:1–23

    Article  CAS  Google Scholar 

  • Hassen W et al (2018) Assessment of genetic diversity and bioremediation potential of pseudomonads isolated from pesticide-contaminated artichoke farm soils. 3 Biotech 8:263

    Article  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol-and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    Article  CAS  Google Scholar 

  • Hillman J, Hill J, Morgan J, Wilkinson J (2003) Recycling of sewage sludge to grassland: a review of the legislation to control of the localization and accumulation of potential toxic metals in grazing systems. Grass Forage Sci 58:101–111

    Article  CAS  Google Scholar 

  • Hobson A, Frederickson J, Dise N (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag 25:345–352

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Ibrahim M, Ijah U, Manga S, Bilbis L, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81:28–34

    Article  CAS  Google Scholar 

  • Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater. A Rev J Toxicol 2018:2568038. https://doi.org/10.1155/2018/2568038

    Article  CAS  Google Scholar 

  • Innemanová P, Cajthaml T (2020) Field study IX: pilot-scale composting of PAH-contaminated materials: two different approaches. In: Filip J, Cajthaml T, Najmanová P, Černík M, Zbořil R (eds) Advanced nano-bio technologies for water and soil treatment. Springer, Cham, pp 527–534. https://doi.org/10.1007/978-3-030-29840-1_25

    Chapter  Google Scholar 

  • Si I, Suzuki S, Tenney A, Norden-Krichmar TM, Nealson KH, Bretschger O (2015) Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach. Sci Rep 5:14840

    Article  Google Scholar 

  • Ite AE, Ibok UJ (2019) Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. Int J Environ Bioremediat Biodegrad 7:1–19

    CAS  Google Scholar 

  • Jadeja NB, Purohit HJ, Kapley A (2019) Decoding microbial community intelligence through metagenomics for efficient wastewater treatment. Funct Integr Genomic 19:839–851

    Article  CAS  Google Scholar 

  • Jalilzadeh YR, Sekhavatjou M, Maktabi P, Arbab SN, Khadivi S, Pourjafarian V (2014) The biodegradation of crude oil by Bacillus subtilis isolated from contaminated soil in hot weather areas. Int J Environ Res 8:509–514

    Google Scholar 

  • Jasmine J, Mukherji S (2019) Impact of bioremediation strategies on slurry phase treatment of aged oily sludge from a refinery. J Environ Manag 246:625–635

    Article  CAS  Google Scholar 

  • Jin KS, Fallgren PH, Santiago NA, Ren ZJ, Li Y, Jin S (2020) Monitoring in situ microbial activities in wet or clayey soils by a novel microbial-electrochemical technology. Environ Technol Innov 18:1–6

    Article  CAS  Google Scholar 

  • Johnson OA, Affam AC, Johnson OA, Affam AC (2018) Petroleum sludge treatment and disposal: A review. Environ Eng Res 24:191–201

    Article  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Kang W, Zheng J, Bao J, Wang Z, Zheng Y, He J-Z, Hu H-W (2020) Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge. Environ Sci Pollut Res 27:7922–7933

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187

  • Kasanke CP, Collins RE, Leigh MB (2019) Identification and characterization of a dominant sulfolane-degrading Rhodoferax sp. via stable isotope probing combined with metagenomics. Sci Rep 9:1–9

    Article  CAS  Google Scholar 

  • Kebria DY, Khodadadi A, Ganjidoust H, Badkoubi A, Amoozegar M (2009) Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. Int J Environ Sci Technol 6:435–442

    Article  CAS  Google Scholar 

  • Khardenavis AA, Kapley A, Purohit HJ (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol 77:403–409

    Article  CAS  Google Scholar 

  • Kim S, Krajmalnik-Brown R, Kim J-O, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    Article  Google Scholar 

  • Ko S-R, Srivastava A, Lee N, Jin L, Oh H-M, Ahn C-Y (2019) Bioremediation of eutrophic water and control of cyanobacterial bloom by attached periphyton. Int J Environ Sci Technol 16:4173–4180

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Kumar R, Yadav N, Rastegari AA, Yadav AN et al (2019a) Gene manipulation and regulation of catabolic genes for biodegradation of biphenyl compounds. In: Singh HB, Gupta VK, Jogaiah S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–23. https://doi.org/10.1016/B978-0-444-63503-7.00001-2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL (2018) Diversity and niche of Archaea in bioremediation. Archaea 3:194108. https://doi.org/10.1155/2018/3194108

  • Kulshreshtha S, Mathur N, Bhatnagar P (2013) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin, pp 77–116. https://doi.org/10.1007/978-3-642-33,811-3_4

    Chapter  Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fert Soil 47:219–225

    Article  CAS  Google Scholar 

  • Kumar A, Bhoot N, Soni I, John P (2014) Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech 4:467–475

    Article  CAS  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019) Fungal phytoremediation of heavy metal-contaminated resources: Current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 3: perspective for sustainable environments. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar A, Devi S, Singh D (2018) Significance and approaches of microbial bioremediation in sustainable development. In: Singh J, Sharma D, Kumar G, Sharma NR (eds) Microbial bioprospecting for sustainable development. Springer, Singapore, pp 93–114. https://doi.org/10.1007/978-981-13-0053-0_5

    Chapter  Google Scholar 

  • Kumar M, Yadav AN, Saxena R, Paul D, Tomar RS (2021) Biodiversity of pesticides degrading microbial communities and their environmental impact. Biocatal Agric Biotechnol 31:101883. https://doi.org/10.1016/j.bcab.2020.101883

    Article  Google Scholar 

  • Kumar PS (2019) Soil Bioremediation Techniques. In: Advanced Treatment Techniques for Industrial Wastewater. IGI Global, pp. 35–50, https://doi.org/10.4018/978-1-5225-5754-8.ch003

  • Kuppusamy S, Maddela NR, Megharaj M, Venkateswarlu K (2020) Methodologies for analysis and identification of total petroleum hydrocarbons. In: Total petroleum hydrocarbons: environmental fate, toxicity, and remediation. Springer, Cham, pp 29–55. https://doi.org/10.1007/978-3-030-24,035-6_2

    Chapter  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Mol Biol Rev. 54:305–315

    CAS  Google Scholar 

  • Lee W-C, Lee KH (2004) Applications of affinity chromatography in proteomics. Anal Biochem 324:1–10

  • Liu H, Gao H, Wu M, Ma C, Wu J, Ye X (2020) Distribution characteristics of bacterial communities and hydrocarbon degradation dynamics during the remediation of petroleum-contaminated soil by enhancing moisture content. Microb Ecol 80:202–211

    Article  CAS  Google Scholar 

  • Lombi E, Gerzabek MH (1998) Determination of mobile heavy metal fraction in soil: results of a pot experiment with sewage sludge. Commun Soil Sci Plant Anal 29:2545–2556

    Article  CAS  Google Scholar 

  • Lors C, Damidot D, Ponge J-F, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17

    Article  CAS  Google Scholar 

  • Ma H et al (2018) Compared the physiological response of two petroleum-tolerant contrasting plants to petroleum stress. Int J Phytoremediation 20:1043–1048

    Article  CAS  Google Scholar 

  • Malaviya P, Rathore V (2007) Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Bioresour Technol 98:3647–3651

    Article  CAS  Google Scholar 

  • Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microrganisms in Kwazulu-Natal. South Africa. Afr J Biotechnol 6:23–27

    CAS  Google Scholar 

  • Mangas E, Vaquero M, Comellas L, Broto-Puig F (1998) Analysis and fate of aliphatic hydrocarbons, linear alkylbenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in sewage sludge-amended soils. Chemosphere 36:61–72

    Article  CAS  Google Scholar 

  • Manobala T, Shukla SK, Rao TS, Kumar MD (2019) A new uranium bioremediation approach using radio-tolerant Deinococcus radiodurans biofilm. J Biosci 44:1–24

    Article  CAS  Google Scholar 

  • McGowin AE, Adom KK, Obubuafo AK (2001) Screening of compost for PAHs and pesticides using static subcritical water extraction. Chemosphere 45:857–864

    Article  CAS  Google Scholar 

  • McGrath KC, Thomas-Hall SR, Cheng CT, Leo L, Alexa A, Schmidt S, Schenk PM (2008) Isolation and analysis of mRNA from environmental microbial communities. J Microbiol Method 75:172–176

    Article  CAS  Google Scholar 

  • Milne B, Baheri H, Hill G (1998) Composting of a heavy oil refinery sludge. Environmental Progress 17:24–27

    Article  CAS  Google Scholar 

  • Min J, Chen W, Wang J, Hu X (2017) Genetic and biochemical characterization of 2-chloro-5-nitrophenol degradation in a newly isolated bacterium, Cupriavidus sp. strain CNP-8. Front Microbiol 8:1778

    Article  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Mol Biol Rev 56:482–507

    CAS  Google Scholar 

  • Moreda J, Arranz A, De Betoño SF, Cid A, Arranz J (1998) Chromatographic determination of aliphatic hydrocarbons and polyaromatic hydrocarbons (PAHs) in a sewage sludge. Sci Total Environ 220:33–43

    Article  CAS  Google Scholar 

  • Navrátilová J, Tvrzová L, Durnová E, Spröer C, Sedláček I, Neča J, Němec M (2005) Characterization of Rhodococcus wratislaviensis strain J3 that degrades 4-nitrocatechol and other nitroaromatic compounds. Antonie Van Leeuwenhoek 87:149–153

    Article  Google Scholar 

  • Neilson A, Allard A, Hynning P, Remberger M, Viktor T (1990) The environmental fate of chlorophenolic constituents of bleachery effluents. Tappi, J 73:239–247

    CAS  Google Scholar 

  • Nikhil T, Deepa V, Rohan G, Satish B (2013) Isolation, characterization and identification of diesel engine oil degrading bacteria from garage soil and comparison of their bioremediation potential. Int. Res J Environ Sci 2:48–52

    Google Scholar 

  • Nolte TM, Chen G, van Schayk CS, Pinto-Gil K, Hendriks AJ, Peijnenburg WJ, Ragas AM (2020) Disentanglement of the chemical, physical, and biological processes aids the development of quantitative structure-biodegradation relationships for aerobic wastewater treatment. Sci Total Environ 708:133863

    Article  CAS  Google Scholar 

  • Nzila A, Razzak SA, Zhu J (2016) Bioaugmentation: an emerging strategy of industrial wastewater treatment for reuse and discharge. Int J Environ Res Public Health 13:1–20

    Article  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci 20:121–129

    Article  CAS  Google Scholar 

  • Palmer-Brown W, de Melo Souza PL, Murphy CD (2019) Cyhalothrin biodegradation in Cunninghamella elegans. Environ Sci Pollut Res 26:1414–1421

    Article  CAS  Google Scholar 

  • Pan X et al (2016) Biodegradation of DDT by Stenotrophomonas sp. DDT-1: characterization and genome functional analysis. Sci Rep 6:21332

    Article  CAS  Google Scholar 

  • Pan X, Xu T, Xu H, Fang H, Yu Y (2017) Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Sci Total Environ 592:593–599

    Article  CAS  Google Scholar 

  • Pandey A, Tripathi PH, Tripathi AH, Pandey SC, Gangola S (2019) Omics technology to study bioremediation and respective enzymes. In: Bhatt P (ed) Smart Bioremediation Technologies. Academic Press, Cambridge, pp 23–43. https://doi.org/10.1016/B978-0-12-818307-6.00002-0

  • Park C, Lee M, Lee B, Kim S-W, Chase HA, Lee J, Kim S (2007) Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem Eng J 36:59–65

    Article  CAS  Google Scholar 

  • Pedroza AM, Mosqueda R, Alonso-Vante N, Rodriguez-Vazquez R (eds) (2007) Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 67:793–801

  • Philp J, Atlas R (2005) Bioremediation of contaminated soil and aquifers. In: Atlas RM, Jim CP (eds) Bioremediation: applied microbial solution for real-world environmental clean up. ASM Press, Washington, DC, p 139

  • Pino V, Ayala JH, Afonso AM, González V (2000) Determination of polycyclic aromatic hydrocarbons in marine sediments by high-performance liquid chromatography after microwave-assisted extraction with micellar media. J Chromatogr A 869:515–522

    Article  CAS  Google Scholar 

  • Pino-Herrera DO, Pechaud Y, Huguenot D, Esposito G, Van Hullebusch ED, Oturan MA (2017) Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: An overview. J Hazard Mater 339:427–449

    Article  CAS  Google Scholar 

  • Prasad R (2017) Mycoremediation and environmental sustainability. Springer, Cham

  • Prusty JS, Rath BP, Thatoi H (2019) Production optimization and application of extracellular chromate reductase from Bacillus sp. for bioremediation of hexavalent chromium. In: Kundu R, Narula R, Paul R, Mukherjee S (eds) Environmental biotechnology for soil and wastewater implications on ecosystems. Springer, Singapore, pp 103–108. https://doi.org/10.1007/978-981-13-6846-2_13

    Chapter  Google Scholar 

  • Qiu X, Wu P, Zhang H, Li M, Yan Z (2009) Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Bioresour Technol 100:5243–5248

    Article  CAS  Google Scholar 

  • Qureshi A, Verma V, Kapley A, Purohit HJ (2007) Degradation of 4-nitroaniline by Stenotrophomonas strain HPC 135. Int Biodeterior Biodegrad 60:215–218

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63,504-4.00002-5

    Chapter  Google Scholar 

  • Ravikumar S, Baylon MG, Park SJ, Choi J-i (2017) Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 16:1–10

    Article  Google Scholar 

  • Rawat M, Rangarajan S (2019) Chapter 11 - Omics approaches for elucidating molecular mechanisms of microbial bioremediation. In: Bhatt P (ed) Smart bioremediation technologies. Academic, Cambridge, pp 191–203. https://doi.org/10.1016/B978-0-12-818,307-6.00011-1

  • Rayu S, Nielsen UN, Nazaries L, Singh BK (2017) Isolation and molecular characterization of novel chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 8:1–16

    Article  Google Scholar 

  • Reddy DO, Milliken CE, Foreman K, Fox J, Simpson W, Brigmon RL (2020) Bioremediation of hexanoic acid and phenanthrene in oil sands tailings by the microbial consortium BioTiger™. Bull Environ Contam Toxicol 104:253–258

    Article  CAS  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiol 146:405–413

    Article  CAS  Google Scholar 

  • Ren L et al (2020) Hydrothermal synthesis of chemically stable cross-linked poly-Schiff base for efficient Cr (VI) removal. J Mat Sci 55:3259–3278

    Article  CAS  Google Scholar 

  • Rogers HR (1996) Sources, behavior and fate of organic contaminants during sewage treatment and in sewage sludges. Sci Total Environ 185:3–26

    Article  CAS  Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  Google Scholar 

  • Saglam N, Yesilada O, Saglam S, Apohan E, Sam M, Ilk S et al (2018) Bioremediation applications with fungi. In: Prasad R (ed) Mycoremediation and environmental sustainability: vol 2. Springer, Cham, pp 1–37. https://doi.org/10.1007/978-3-319-77386-5_1

    Chapter  Google Scholar 

  • Sakai M, Ezaki S, Suzuki N, Kurane R (2005) Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101. Appl Microbiol Biotechnol 68:111–116

    Article  CAS  Google Scholar 

  • Salmonová H, Bunešová V (2017) Methods of studying diversity of bacterial comunities: a review. Sci Agric Bohemica 48:154–165

    Google Scholar 

  • Sarkar J et al (2016) Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Front Microbiol 7:1–20

    Article  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M et al (2016) Microbial diversity of extreme regions: An unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Shankar S, Shikha RA, Singh S, Rawat S (2020) Environmental contamination, toxicity profile, and bioremediation approaches for detoxification of paper mill wastewater. In: Saxena G, Bharagava RN (eds) Bioremediation of industrial waste for environmental safety, vol i: industrial waste and its management. Springer, Singapore, pp 181–206. https://doi.org/10.1007/978-981-13-1891-7_9

    Chapter  Google Scholar 

  • Sharaff MS, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of root-microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 61–84. https://doi.org/10.1016/B978-0-12-820,526-6.00005-1

    Chapter  Google Scholar 

  • Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA (2018) Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res 25:16355–16,375

    Article  CAS  Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030-10480-1_3

  • Shekhar SK, Godheja J, Modi DR (2020) Molecular technologies for assessment of bioremediation and characterization of microbial communities at pollutant-contaminated sites. In: Bharagava RN, Saxena G (eds) Bioremediation of industrial waste for environmental safety, vol ii: biological agents and methods for industrial waste management. Springer, Singapore, pp 437–474. https://doi.org/10.1007/978-981-13-3426-9_18

    Chapter  Google Scholar 

  • Sher S, Hussain SZ, Rehman A (2020) Phenotypic and genomic analysis of multiple heavy metal–resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation. Appl Microbiol Biotechnol 104:2243–2254

    Article  CAS  Google Scholar 

  • Shin HJ (2011) Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 89:867–877

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103

    Article  Google Scholar 

  • Shrivastava SK, Banerjee DK (2004) Speciation of metals in sewage sludge and sludge-amended soils. Water Air Soil Pollut 152:219–232

    Article  CAS  Google Scholar 

  • Shu YY, Lao RC, Chiu CH, Turle R (2000) Analysis of polycyclic aromatic hydrocarbons in sediment reference materials by microwave-assisted extraction. Chemosphere 41:1709–1716

    Article  CAS  Google Scholar 

  • Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J Appl Biol Biotechnol 4:30–37

  • Singer ME, Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Atlas RM (ed) Microbial metabolism of straight-chain and branched alkanes. Macmillan, New York, pp 1–60

    Google Scholar 

  • Singh A, Mullin B, Ward O (2001) Reactor-based process for the biological treatment of petroleum wastes. In: Proceedings of the Middle East Petrotech 2001 Conference. Petrotech, Bahrain, pp 1–13

    Google Scholar 

  • Singh BK, Nazaries L, Munro S, Anderson IC, Campbell CD (2006) Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl Environ Microbiol 72:7278–7285

    Article  CAS  Google Scholar 

  • Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC, Boca Raton

    Book  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Singh J, Singh AV (2017) Microbial strategies for enhanced phytoremediation of heavy metal-contaminated soils. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC, Boca Raton,pp 257–272

    Google Scholar 

  • Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Singh P, Singh A (2004) Physico-chemical characteristics of distillery effluent and its chemical treatment Nature. Environ Pollut Technol 3:205–208

    CAS  Google Scholar 

  • Singh R, Agrawal M (2008) Potential benefits and risks of land application of sewage sludge. Waste Manag 28:347–358

    Article  CAS  Google Scholar 

  • Singh R, Ahirwar NK, Tiwari J, Pathak J (2018) Review on sources and effect of heavy metal in soil: Its bioremediation. Int J Res Appl Nat Soc Sci 2018:1–22

  • Singhal A, Thakur IS (2009) Decolourization and detoxification of pulp and paper mill effluent by Cryptococcus sp. Biochem Eng J 46:21–27

    Article  CAS  Google Scholar 

  • Sinha S, Chattopadhyay P, Pan L, Chatterjee S, Chanda P, Bandyopadhyay D et al (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8:6016–6027

    Article  CAS  Google Scholar 

  • Sorkhoh N, Ghannoum M, Ibrahim A, Stretton R, Radwan S (1990) Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut 65:1–17

    Article  CAS  Google Scholar 

  • Srivastava N, Gupta B, Gupta S, Danquah MK, Sarethy IP (2019) Analyzing functional microbial diversity: an overview of techniques. In: Das S, Dash HR (eds) Microbial diversity in the genomic era. Academic, Cambridge, pp 79–102. https://doi.org/10.1016/B978-0-12-814849-5.00006-X

  • Sutherland T, Horne I, Harcourt R, Russell R, Oakeshott J (2002) Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol 93:380–389

    Article  CAS  Google Scholar 

  • Tang L, Zeng G, Liu J, Xu Z, Zhang Y, Shen G et al (2008) Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391:679–685

  • Taniguchi N (1974) On the basic concept of nanotechnology. Proceeding of the ICPE, Tokyo

  • Teresa Pena M, Pensado L, Carmen Casais M (2007) Sample preparation of sewage sludge and soil samples for the determination of polycyclic aromatic hydrocarbons based on one-pot microwave-assisted saponification and extraction. Anal Bioanal Chem 387:2559

    Article  Google Scholar 

  • Thakur I (1996) Use of monoclonal antibodies against dibenzo-p-dioxin degrading Sphingomonas sp. strain RW1. Lett Appl Microbiol 22:141–144

    Article  CAS  Google Scholar 

  • Thakur IS (2004) Screening and identification of microbial strains for removal of color and adsorbable organic halogens in pulp and paper mill effluent. Process Biochem 39:1693–1699

    Article  CAS  Google Scholar 

  • Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J Biotechnol 126:431–439

    Article  CAS  Google Scholar 

  • Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW (2001) Degradation of substituted Phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA. Appl Environ Microbiol 67:2270–2275

    Article  CAS  Google Scholar 

  • Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence. and risks Environmental health perspectives 110:125–128

    Article  CAS  Google Scholar 

  • Ubani O, Atagana H, Thantsha MS (2013) Biological degradation of oil sludge: a review of the current state of development. Afr J Biotechnol 12:6544–6567

    Article  Google Scholar 

  • Ururahy A (2002) Oily sludge biotreatment. In: Proceedings of the 9th Annual International Petroleum Environmental Conference. 22–25 October 2002, Albuquerque

  • Verma P, Verma P, Sagar R (2013) Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India. Forest Ecol Manag 297:15–26

    Article  Google Scholar 

  • Viesser JA, Sugai-Guerios MH, Malucelli LC, Pincerati MR, Karp SG, Maranho LT (2020) petroleum-tolerant rhizospheric bacteria: isolation, characterization and bioremediation potential. Sci Rep 10:1–11

    Article  Google Scholar 

  • Villar P, Callejon M, Alonso E, Jiménez J, Guiraum A (2006) Temporal evolution of polycyclic aromatic hydrocarbons (PAHs) in sludge from wastewater treatment plants: Comparison between PAHs and heavy metals. Chemosphere 64:535–541

    Article  CAS  Google Scholar 

  • Wang H, Zhao H-P, Zhu L (2020) Structures of nitroaromatic compounds induce Shewanella oneidensis MR-1 to adopt different electron transport pathways to reduce the contaminants. J Hazard Mater 384:121495

    Article  CAS  Google Scholar 

  • Wang W, Jiang F, Wu F, Li J, Ge R, Li J et al (2019) Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell. Appl Microbiol Biotechnol 103:6797–6807

    Article  CAS  Google Scholar 

  • Whelan M, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  Google Scholar 

  • Wlodarczyk-Makula M (2005) The loads of PAHs in wastewater and sewage sludge of municipal treatment plant. Polycycl Aromat Compd 25:183–194

    Article  CAS  Google Scholar 

  • Wu SPY, Huang Z, Huang Z, Xu L, Ivan G et al (2015) Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos. J Basic Microbiol 55:389–397

    Article  CAS  Google Scholar 

  • Xie B, Yang J, Yang Q (2010) Isolation and characterization of an efficient nitro-reducing bacterium, Streptomyces mirabils DUT001, from soil. World J Microbiol Biotechnol 26:855–862

    Article  CAS  Google Scholar 

  • Xie H, Zhu L, Xu Q, Wang J, Liu W, Jiang J, Meng Y (2011) Isolation and degradation ability of the DDT-degrading bacterial strain KK. Environ Earth Sci 62:93–99

    Article  CAS  Google Scholar 

  • Xu P, Xiao E, Zeng L, He F, Wu Z (2019) Enhanced degradation of pyrene and phenanthrene in sediments through synergistic interactions between microbial fuel cells and submerged macrophyte Vallisneria spiralis. J Soils Sediments 19:2634–2649

    Article  CAS  Google Scholar 

  • Xun L et al (2010) S-Glutathionyl-(chloro) hydroquinone reductases: a novel class of glutathione transferases. Biochem J 428:419–427

    Article  CAS  Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN (2021a) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9:1–4. https://doi.org/10.7324/JABB.2021.91ed

    Article  Google Scholar 

  • Yadav AN (2021b) Soil microbiomes for sustainable agriculture- functional annotation. Springer, Cham

    Book  Google Scholar 

  • Yadav AN (2021c) Microbial biotechnology for bio-prospecting of microbial bioactive compounds and secondary metabolites. J Appl Biol Biotechnol 9:1-6 doi:10.7324/JABB.2021.92ed

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019a) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Rastegari AA, Gupta VK, Yadav N (2020a) Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Springer, Singapore

    Book  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020b) Microbiomes of Extreme Environments, Volume 1: Biodiversity and Biotechnological Applications. CRC, Boca Raton

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019) Recent advancement in white biotechnology through fungi. Volume 3: perspective for sustainable environments. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Article  Google Scholar 

  • Yadav N, Yadav AN (2019) Biodegradation of biphenyl compounds by soil microbiomes. Biodivers Int J 3:37–40

    Article  Google Scholar 

  • Yan F, Reible D (2015) Electro-bioremediation of contaminated sediment by electrode enhanced capping. J Environ Manag 155:154–161

    Article  CAS  Google Scholar 

  • Yang L, Y-h Z, B-x Z, Yang C-H, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    Article  CAS  Google Scholar 

  • Yuan S-Y, Huang I-C, Chang B-V (2010) Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. J Hazard Mater 184:826–831

    Article  CAS  Google Scholar 

  • Yun Q, Lin Z, Ojekunle ZO, Xin T (2007) Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J Environ Sci 19:332–337

    Article  Google Scholar 

  • Zhang H, Lin Z, Liu B, Wang G, Weng L, Zhou J et al (2020) Bioremediation of di-(2-ethylhexyl) phthalate contaminated red soil by Gordonia terrae RL-JC02: characterization, metabolic pathway and kinetics. Sci Total Environ 73:1–13

    CAS  Google Scholar 

  • Zhang Z, Gai L, Hou Z, Yang C, Ma C, Wang Z et al (2010) Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresour Technol 101:8452–8456

    Article  CAS  Google Scholar 

  • Zhu J, Zhao Y, Qiu J (2010) Isolation and application of a chlorpyrifos-degrading Bacillus licheniformis ZHU-1. Afr J Microbiol Res 4:2716–2719

    Google Scholar 

  • Ziglio MF, de Melo Azevedo É, Dweck J (2019) Study of treatments to remove water from petroleum sludge and evaluation of kinetic parameters by thermal analysis using isoconversional methods. J Therm Anal Calorim 138:3603–3618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib and Department of Environment, Science & Technology (DEST), Shimla, HP funded project “Development of microbial consortium as bio-inoculants for drought and low temperature growing crops for organic farming in Himachal Pradesh” for providing the facilities and financial support to undertake the investigations.

Funding

Department of Environment, Science & Technology (DEST), Shimla, HP funded project “Development of microbial consortium as bio-inoculants for drought and low temperature growing crops for organic farming in Himachal Pradesh.”

Author information

Authors and Affiliations

Authors

Contributions

Divjot Kour, Tanvir Kaur, Rubee Devi, Ashok Yadav, Manali Singh, Divya Joshi, Jyoti Singh, Deep Chandra Suyal helped in compiling the manuscript and Ajay Kumar, Vishnu D. Rajput, Ajar Nath Yadav, Karan Singh, Joginder Singh, Riyaz Z. Sayyed, Naveen Kumar Arora, Anil Kumar Saxena helped in reviewing the manuscript.

Corresponding author

Correspondence to Ajar Nath Yadav.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, D., Kaur, T., Devi, R. et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28, 24917–24939 (2021). https://doi.org/10.1007/s11356-021-13252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13252-7

Keywords

Navigation