Skip to main content

Advertisement

Log in

PM2.5-bound trace elements in a critically polluted industrial coal belt of India: seasonal patterns, source identification, and human health risk assessment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The concentration of trace elements like Fe, Mn, Cu, Zn, Ni, Pb, Cd, Cr, Co, and As in atmospheric particulate matter (PM2.5) was estimated to investigate their seasonal variation, potential sources, and health risk at Jharia coalfield, India, during May 2018 to April 2019. Measured PM2.5 (170 ± 45 μg/m3) exceeded the National Ambient Air Quality Standards (2009) by a factor of 4.25, the Clean Air Act, National Ambient Air Quality Standards (40 CFR part 50) by a factor of 11, and Air Quality Guidelines of World Health Organization (2005) by a factor of 16. Mean concentration of the trace elements were observed in the order of Fe > Mn > Cu > Zn > Cr > Pb > Co > Ni > Cd > As, highest being perceived at the monitoring sites affected by coal mine fire. The significantly higher HQ values posed by PM2.5-bound Cd, Cr, Cu, Pb, and As and higher HI values (multi-elemental exposure) indicated potential non-carcinogenic risk to the residents of Dhanbad. Higher ECR values in the coal mining areas of JCF indicated higher carcinogenic risk to the population (adults > children) of Dhanbad due to inhalation of PM2.5-bound Cr. Spontaneous combustion of coal in the mines, active mine fire, associated mining activities, heavy vehicular emission, and re-suspended road dust were recognized as the potential sources of the trace elements from the results of PCA and Pearson correlation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Acciai C, Zhang Z, Wang F, Zhong, Z, & Lonati, G (2017) Characteristics and source analysis of trace elements in PM2. 5 in the urban atmosphere of Wuhan in spring. https://doi.org/10.4209/aaqr.2017.06.0207

  • Agarwal A, Mangal A, Satsangi A, Lakhani A, Maharaj Kumari K (2017) Characterization, sources and health risk analysis of PM 2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos Res 197:121–131. https://doi.org/10.1016/j.atmosres.2017.06.027

    Article  CAS  Google Scholar 

  • Aldabe J, Elustondo D, Santamaría C, Lasheras E, Pandolfi M, Alastuey A, Querol X, Santamaría JM (2011) Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos Res 102:191–205. https://doi.org/10.1016/j.atmosres.2011.07.003

    Article  CAS  Google Scholar 

  • Alessandrini ER, Faustini A, Chiusolo M, Stafoggia M, Gandini M, Demaria M, Antonelli A, Arena P, Biggeri A, Canova C, Casale G, Cernigliaro A, Garrone E, Gherardi B, Gianicolo EA, Giannini S, Iuzzolino C, Lauriola P, Mariottini M, Pasetto P, Randi G, Ranzi A, Santoro M, Selle V, Serinelli M, Stivanello E, Tominz R, Vigotti MA, Zauli-Sajani S, Forastiere F, Cadum E, Gruppo collaborativo EpiAir2 (2013) Air pollution and mortality in twenty-five Italian cities: results of the EpiAir2 Project. Epidemiol Prev 37:220–229

    Google Scholar 

  • Al-Hemoud A, Gasana J, Al-Dabbous A, Alajeel A, Al-Shatti A, Behbehani W, Malak M (2019) Exposure levels of air pollution (PM2. 5) and associated health risk in Kuwait. Environ Res 179:108730. https://doi.org/10.1016/j.envres.2019.108730

    Article  CAS  Google Scholar 

  • Alolayan MA, Brown KW, Evans JS, Bouhamra WS, Koutrakis P (2013) Source apportionment of fine particles in Kuwait City. Sci Total Environ 448:14–25. https://doi.org/10.1016/j.scitotenv.2012.11.090

    Article  CAS  Google Scholar 

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8:166–175. https://doi.org/10.1007/s13181-011-0203-1

    Article  CAS  Google Scholar 

  • Aneja VP, Isherwood A, Morgan P (2012) Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia. Atmos Environ 54:496–501. https://doi.org/10.1016/j.atmosenv.2012.02.063

    Article  CAS  Google Scholar 

  • Avila M, Perez G, Esshaimi M, Mandi L, Ouazzani N, Brianso JL, Valiente M (2012) Heavy metal contamination and mobility at the mine area of Draa Lasfar (Morocco). The Open Environmental Pollution and Toxicology Journal 3(1).

  • Basha AM, Yasovardhan N, Satyanarayana SV, Reddy GVS, Kumar AV (2014) Baseline survey of trace metals in ambient PM 10 at Tummalapalle uranium mining site. Atmos Pollut Res 5:591–600. https://doi.org/10.5094/APR.2014.068

    Article  CAS  Google Scholar 

  • BIS (Bureau of Indian Standards) (2000) Methods for measurement of air pollution: guidelines for planning the sampling of atmosphere (2nd revision) IS 5182 (Part 14) (New Delhi).

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8

    Article  CAS  Google Scholar 

  • Central Mine Planning and Design Institute Limited (CMPDIL), Jharkhand (2008). Annual reports and accounts. https://www.cmpdi.co.in/annualrpt.php. Accessed 22.06.2018.

  • Chang X, Wang S, Zhao B, Xing J, Liu X, Wei L, ... Zheng M (2019) Contributions of inter-city and regional transport to PM2. 5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control. Sci Total Environ 660:1191–1200

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158(5):1134–1146. https://doi.org/10.1016/j.envpol.2009.12.028

    Article  CAS  Google Scholar 

  • Cheng X, Huang Y, Zhang SP, Ni SJ, Long ZJ (2018) Characteristics, sources, and health risk assessment of trace elements in PM10 at an urban site in Chengdu, Southwest China. Aerosol Air Qual Res 18(2):357–370

  • CPCB (Central Pollution Control Board) (2009) National ambient air quality standards, 2009th edn. Notification, New Delhi

  • Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X (2015) Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian metropolis. Atmos Pollut Res 6:742–750. https://doi.org/10.5094/APR.2015.083

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759. https://doi.org/10.1056/NEJM199312093292401

    Article  CAS  Google Scholar 

  • Dongarrà G, Manno E, Varrica D, Lombardo M, Vultaggio M (2010) Study on ambient concentrations of PM10, PM10–2.5, PM2. 5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos Environ 44(39):5244–5257. https://doi.org/10.1016/j.atmosenv.2010.08.041

    Article  CAS  Google Scholar 

  • Dubey B, Pal AK, Singh G (2012) Trace metal composition of airborne particulate matter in the coal mining and non–mining areas of Dhanbad Region, Jharkhand, India. Atmos Pollut Res 3:238–246. https://doi.org/10.5094/APR.2012.026

    Article  CAS  Google Scholar 

  • EEA, (2013) Status of black carbon monitoring in ambient air in Europe. EEA Technical report no. 18/2013. 10.2800/10150. Accessed 05 May, 2018.

  • EEA, (2018) Air Quality in Europe-2018 Report, EEA Report No. 12. pp. 88 Copenhagen.

  • EU, (2004) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air(OJL23,26.1.2005,pp.316).http://eurlex.europa.eu/Notice.do?val=393964:cs&lang=en&list=547852:cs,393964:cs,413804:cs,497555:cs,&pos=2&page=1&nbl=4&pgs=10&hwords=DIRECTIVE%202004/107/EC*.Accessed17 February, 2018.

  • Ferreira-Baptista L, De Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026

    Article  CAS  Google Scholar 

  • Gao Y, Ji H (2018) Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: one-year measurement in a densely populated area of urban Beijing. Atmos Res 212:213–226. https://doi.org/10.1016/j.atmosres.2018.04.027

    Article  CAS  Google Scholar 

  • Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20:5615–5629. https://doi.org/10.1007/s11356-013-1580-6

    Article  CAS  Google Scholar 

  • Hoek G, Boogaard H, Knol A, de Hartog J, Slottje P, Ayres JG, Borm P, Brunekreef B, Donaldson K, Forastiere F, Holgate S, Kreyling WG, Nemery B, Pekkanen J, Stone V, Wichmann HE, van der Sluijs J (2010) Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: results of a European expert panel elicitation. Environ Sci Technol 44:476–482. https://doi.org/10.1021/es9021393

    Article  CAS  Google Scholar 

  • Hsu C-Y, Chiang H-C, Chen M-J, Chuang CY, Tsen CM, Fang GC, Tsai YI, Chen NT, Lin TY, Lin SL, Chen YC (2017) Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci Total Environ 590–591:204–214. https://doi.org/10.1016/j.scitotenv.2017.02.212

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 57:146–152. https://doi.org/10.1016/j.atmosenv.2012.04.056

    Article  CAS  Google Scholar 

  • IARC, (2013) Outdoor air pollution a leading environmental cause of cancer deaths. IRIS (Integrated Risk Assessment System), 1995. United States Environmental Protection Agency. www.epa.gov/IRIS/. Accessed 28 July, 2018.

  • Izhar S, Goel A, Chakraborty A, Gupta T (2016) Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere 146:582–590. https://doi.org/10.1016/j.chemosphere.2015.12.039

    Article  CAS  Google Scholar 

  • Javed W, Wexler AS, Murtaza G et al (2015) Spatial, temporal and size distribution of particulate matter and its chemical constituents in Faisalabad, Pakistan. Atm 28:99–116. https://doi.org/10.20937/ATM.2015.28.02.03

    Article  Google Scholar 

  • Jena S, Singh G (2017) Human health risk assessment of airborne trace elements in Dhanbad, India. Atmos Pollut Res 8:490–502. https://doi.org/10.1016/j.apr.2016.12.003

    Article  Google Scholar 

  • Jena S, Perwez A, Singh G (2019) Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environ Geochem Health 41:2731–2747. https://doi.org/10.1007/s10653-019-00329-z

    Article  CAS  Google Scholar 

  • Jin Y, Andersson H, Zhang S (2016) Air pollution control policies in China: a retrospective and prospects. Int J Environ Res Public Health 13(12):1219. https://doi.org/10.3390/ijerph13121219

    Article  CAS  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407:6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int 50:47–55. https://doi.org/10.1016/j.envint.2012.09.011

    Article  CAS  Google Scholar 

  • Landrigan PJ (2017) Air pollution and health. Lancet Public Health 2:e4–e5. https://doi.org/10.1016/S2468-2667(16)30023-8

    Article  Google Scholar 

  • Li C, Li JC, Zhao M, Jiang Q (2010) Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. J Alloys Compd 504:S515–S518

    Article  Google Scholar 

  • Liu X, Zhai Y, Zhu Y, Liu Y, Chen H, Li P, Peng C, Xu B, Li C, Zeng G (2015) Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Sci Total Environ 517:215–221. https://doi.org/10.1016/j.scitotenv.2015.02.066

    Article  CAS  Google Scholar 

  • Liu S, Wu Q, Cao X, Wang J, Zhang L, Cai D, Zhou LY, Liu N (2016) Pollution assessment and spatial distribution characteristics of heavy metals in soils of coal mining area in Longkou city. Huan Jing Ke Xue= Huanjing Kexue 37(1):270–279

    Google Scholar 

  • Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2. 5) in Karachi. Sci Total Environ 425:176–183

    Article  CAS  Google Scholar 

  • Mohalik NK, Panigrahi DC, Singh VK (2009) Application of thermal analysis techniques to assess proneness of coal to spontaneous heating: an overview. J Therm Anal Calorim 98:507–519. https://doi.org/10.1007/s10973-009-0305-z

    Article  CAS  Google Scholar 

  • Mondal S, & Singh G (2021) Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ Geochem Health 1-23. https://doi.org/10.1007/s10653-020-00785-y

  • Mondal S, Singh G, Jain MK (2020) Spatio-temporal variation of air pollutants around the coal mining areas of Jharia Coalfield, India. Environ Monit Assess 192:405. https://doi.org/10.1007/s10661-020-08324-z

    Article  CAS  Google Scholar 

  • National Remote Sensing Agency (NRSA), Hyderabad (2006) Report on coal mine fire delineation and surface features mapping using satellite data in Jharia coal field, Dhanbad

  • National Ambient Air Quality Standards (NAAQS), India (2009) Central pollution control board notification in the Gazette of India, extraordinary, New Delhi. http://www.arthapedia.in/index.php?title¼Ambient_Air_Quality_Standards_in_India

  • Nazzal Y, Rosen MA, Al-Rawabdeh AM (2013) Assessment of metal pollution in urban road dusts from selected highways of the Greater Toronto Area in Canada. Environ Monit Asses 185(2):1847–1858. https://doi.org/10.1007/s10661-012-2672-3

    Article  CAS  Google Scholar 

  • Nie D, Wu Y, Chen M, Liu H, Zhang K, Ge P, Yuan Y, Ge X (2018) Bioaccessibility and health risk of trace elements in fine particulate matter in different simulated body fluids. Atmos Environ 186:1–8. https://doi.org/10.1016/j.atmosenv.2018.05.024

    Article  CAS  Google Scholar 

  • Padoan E, Romè C, Ajmone-Marsan F (2017) Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci Total Environ 601–602:89–98

    Article  Google Scholar 

  • Pandey J, Kumar D, Singh VK, Mohalik NK (2016) Environmental and socio-economic impacts of fire in Jharia coalfield, Jharkhand, India: an Appraisal. Curr Sci 110:1639. https://doi.org/10.18520/cs/v110/i9/1639-1650

    Article  Google Scholar 

  • Pang WP, Qin FX, Lyu YC, Li YJ, Li G, Li XL (2016) Chemical speciations of heavy metals and their risk assessment in agricultural soils in a coal mining area from Xingren County, Guizhou Province, China. Ying Yong Sheng Tai Xue Bao = The Journal of Applied Ecology 27(5):1468–1478

    CAS  Google Scholar 

  • Park S-S, Jung S-A, Gong B-J, Cho SY, Lee SJ (2013) Characteristics of PM2.5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring supersite in Korea. Aerosol Air Qual Res 13:957–976. https://doi.org/10.4209/aaqr.2012.07.0184

    Article  CAS  Google Scholar 

  • Peled R (2011) Air pollution exposure: Who is at high risk? Atmos Environ 45:1781–1785. https://doi.org/10.1016/j.atmosenv.2011.01.001

    Article  CAS  Google Scholar 

  • Pope CA III (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132. https://doi.org/10.1001/jama.287.9.1132

    Article  CAS  Google Scholar 

  • Ranjan O, Menon JS, Nagendra SS (2016) Assessment of air quality impacts on human health and vegetation at an industrial area. J Hazardous, Toxic Radioact Waste 20(4):A4016002. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000316

    Article  Google Scholar 

  • Rönkkö TJ, Jalava PI, Happo MS, Kasurinen S, Sippula O, Leskinen A, Koponen H, Kuuspalo K, Ruusunen J, Väisänen O, Hao L, Ruuskanen A, Orasche J, Fang D, Zhang L, Lehtinen KEJ, Zhao Y, Gu C, Wang Q', Jokiniemi J, Komppula M, Hirvonen MR (2018) Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. Sci Total Environ 639:1290–1310

    Article  Google Scholar 

  • Roy D, Seo YC, Sinha S, Bhattacharya A, Singh G, Biswas PK (2017) Human health risk exposure with respect to particulate-bound polycyclic aromatic hydrocarbons at mine fire-affected coal mining complex. Environ Sci Pollut Control Ser 26:19119–19135. https://doi.org/10.1007/s11356-017-9202-3

    Article  CAS  Google Scholar 

  • Roy D, Singh G, Seo YC (2019) Carcinogenic and non-carcinogenic risks from PM10-and PM2. 5-Bound metals in a critically polluted coal mining area. Atmos Pollut Res 10(6):1964–1975. https://doi.org/10.1016/j.apr.2019.09.002

    Article  CAS  Google Scholar 

  • Roy D, Seo Y-C, Sinha S, Bhattacharya A, Singh G, Biswas PK (2019a) Human health risk exposure with respect to particulate-bound polycyclic aromatic hydrocarbons at mine fire-affected coal mining complex. Environ Sci Pollut Res 26:19119–19135. https://doi.org/10.1007/s11356-017-9202-3

    Article  CAS  Google Scholar 

  • Roy D, Singh G, Seo Y-C (2019b) Coal mine fire effects on carcinogenicity and non-carcinogenicity human health risks. Environ Pollut 254:113091. https://doi.org/10.1016/j.envpol.2019.113091

    Article  CAS  Google Scholar 

  • Shaltout AA, Boman J, Al-Malawi DR, Shehadeh ZF (2013) Elemental composition of PM2.5 particles sampled in industrial and residential areas of Taif, Saudi Arabia. Aerosol Air Qual Res 13:1356–1364. https://doi.org/10.4209/aaqr.2012.11.0320

    Article  CAS  Google Scholar 

  • Singh G, Roy D, Sinha S (2014) Ambient air quality assessment with particular reference to particulates in Jharia coalfield, Eastern India. J Environ Sci Eng 56:19–30

    CAS  Google Scholar 

  • Song Z, Zhu H, Jia G, He C (2014) Comprehensive evaluation on self-ignition risks of coal stockpiles using fuzzy AHP approaches. J Loss Prev Process Ind 32:78–94. https://doi.org/10.1016/j.jlp.2014.08.002

    Article  Google Scholar 

  • State of Global air, (2019) A special report on global exposure to air pollution and its disease burden. https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf, Accessed 5th October, 2019.

  • Szigeti T, Mihucz VG, Óvári M, Baysal A, Atılgan S, Akman S, Záray G (2013) Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchem J 107:86–94. https://doi.org/10.1016/j.microc.2012.05.029

    Article  CAS  Google Scholar 

  • Tian HZ, Wang Y, Xue ZG et al (2010) Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmos Chem Phys Discuss 10:20729–20768. https://doi.org/10.5194/acpd-10-20729-2010

    Article  Google Scholar 

  • Tolis EI, Saraga DE, Filiou KF, Tziavos NI, Tsiaousis CP, Dinas A, Bartzis JG (2015) One-year intensive characterization on PM2.5 nearby port area of Thessaloniki, Greece. Environ Sci Pollut Res 22:6812–6826. https://doi.org/10.1007/s11356-014-3883-7

    Article  CAS  Google Scholar 

  • Torres P, Ferreira J, Monteiro A, Costa S, Pereira MC, Madureira J, Mendes A, Teixeira JP (2018) Air pollution: a public health approach for Portugal. Sci Total Environ 643:1041–1053. https://doi.org/10.1016/j.scitotenv.2018.06.281

    Article  CAS  Google Scholar 

  • US EPA (U.S. Environmental Protection Agency), (1989) Risk Assessment Guidance for Superfund VolumeI:Human Health Evaluation Manual (Part a). http://www.epa.gov/oswer/riskassessment/ragsa/. Accessed 14th August, 2019.

  • US EPA (U.S. Environmental Protection Agency) (2004a) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Office of Superfund Remediation and Technology Innovation, Washington http://www.epa.gov/oswer/riskassessment/ragse/index.htm. Accessed on September 13, 2019

    Google Scholar 

  • US EPA (U.S. Environmental Protection Agency), (2004b) Region 9, Preliminary Remediation Goals, Air Water Calculations. www.epa.gov/region09/waste/sfund/prg/intro.htm.Accessed October 28, 2019.

  • US EPA (U.S. Environmental Protection Agency), (2006) National ambient air quality standards for particulate matter; Final rule. Federal Register/Vol. 71, No. 200/Tuesday, October 17, 2006/Rules and Regulations. https://www3.epa.gov/ttnamti1/files/ambient/pm25/pt5006.pdf. Accessed June 04, 2016.

  • US EPA (U.S. Environmental Protection Agency), (2009) Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual. Part F: Supplemental Guidance for Inhalation Risk Assessment. http://www.epa.gov/oswer/ riskassessment/ragsf/index.htm. Accessed on 30th April, 2019.

  • US EPA (U.S. Environmental Protection Agency), (2011) Risk assessment guidance for superfund. Part, A. In: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment, I. Accessed on 18th August 2019.

  • USEPA (U.S. Environmental Protection Agency), (2016) Regional Screening Level Equations. https://www.epa.gov/risk/regional-screening-levels-rsls-equationsmay- 2016. Last Updated May 2016. Accessed on 17th April, 2019.

  • WHO (2005) WHO air quality guidelines global update 2005—Particulate matter, ozone, nitrogen dioxide and sulphur dioxide. World Health Organization, Regional Office for Europe, Copenhagen, http://www.euro.who.int/Document/E90038.pdf. Accessed 05 Jul 2017

  • World Health Organization, (2016). Ambient air pollution: a global assessment of exposure and burden of disease. http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf?ua¼1. Accessed 09 November, 2018.

  • Yadav M, Sahu SP, Singh NK (2019) Multivariate statistical assessment of ambient air pollution in two coalfields having different coal transportation strategy: a comparative study in Eastern India. J Clean Prod 207:97–110. https://doi.org/10.1016/j.jclepro.2018.09.254

    Article  CAS  Google Scholar 

  • Zhang J, Zhou X, Wang Z, Yang L, Wang J, Wang W (2018) Trace elements in PM2.5 in Shandong Province: source identification and health risk assessment. Sci Total Environ 621:558–577

    Article  CAS  Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci Total Environ 408:726–733. https://doi.org/10.1016/j.scitotenv.2009.10.075

    Article  CAS  Google Scholar 

  • Zheng L, Ou J, Liu M, Chen Y, Tang Q, Hu Y (2019) Seasonal and spatial variations of PM10-bounded PAHs in a coal mining city, China: Distributions, sources, and health risks. Ecotoxicol Environ Saf 169:470–478. https://doi.org/10.1016/j.ecoenv.2018.11.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Indian Institute Technology (Indian School of Mines) Dhanbad for providing all the necessary laboratory facilities during the research work.

Author information

Authors and Affiliations

Authors

Contributions

G.S. supervised the work. S.M. performed the analysis and calculations. S.M. wrote the manuscript in consultation with G.S.

Corresponding author

Correspondence to Gurdeep Singh.

Ethics declarations

Ethics approval

This article does not contain any studies involving human participants performed by any of the authors.

Consent to participate

Not applicable

Consent to publish

Not applicable

Conflict of interest

The authors declare no competing interests.

Code availability

Not applicable.

Additional information

Responsible Editor: Gerhard Lammel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Singh, G. PM2.5-bound trace elements in a critically polluted industrial coal belt of India: seasonal patterns, source identification, and human health risk assessment. Environ Sci Pollut Res 28, 32634–32647 (2021). https://doi.org/10.1007/s11356-021-12876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12876-z

Keywords

Navigation