Skip to main content
Log in

Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g−1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request

References

  • Araújo MJ, Rocha RJM, Soares AMVM, Benedé JL, Chisvert A, Monteiro MS (2018) Effects of UV filter 4-methylbenzylidene camphor during early development of Solea senegalensis Kaup, 1858. Sci Total Environ 628–629:1395–1404. https://doi.org/10.1016/j.scitotenv.2018.02.112

    Article  CAS  Google Scholar 

  • Barjhoux J, Baudrimont M, Morin B, Landi L, Gonzalez P, Cachot J (2012) Effects of copper and cadmium spiked-sediments on embryonic development of Japanese medaka (Oryzias latipes). Ecotox Environ Safe 79:272–282. https://doi.org/10.1016/j.ecoenv.2012.01.011

    Article  CAS  Google Scholar 

  • Barone AN, Hayes CE, Kerr JJ, Lee RC, Flaherty DB (2019) Acute toxicity testing of TiO2-based vs. oxybenzone-based sunscreens on clownfish (Amphiprion ocellaris). Environ Sci Pollut Res 26:14513–14520. https://doi.org/10.1007/s11356-019-04769-z

    Article  CAS  Google Scholar 

  • Barrionuevo WR, Burggren W (1999) O2 consumption and heart rate in developing zebrafish (Danio rerio): influence of temperature and ambient O2. Am J Phys 276:505–513

    Google Scholar 

  • Blüthgen N, Meili N, Chew G, Odermatt A, Fent K (2014) Accumulation and effects of the UV-filter octocrylene in adult and embryonic zebrafish (Danio rerio). Sci Total Environ 476–477:207–217. https://doi.org/10.1016/j.scitotenv.2014.01.015

    Article  CAS  Google Scholar 

  • Burggren WW (2005) Developing animals flout prominent assumptions of ecological physiology. Comparat Biochem Physiol, Part A 141:430–439

    Article  Google Scholar 

  • Cannas M, Atzori F, Rupsard F, Bustamante P, Loizeau V, Lefrançois C (2012) PCB contamination does not alter aerobic metabolism and tolerance to hypoxia of juvenile sole (Solea solea). Aquat Toxicol 127:54–60

    Article  Google Scholar 

  • Chen L, Li X, Hong H, Shi D (2018) Multigenerational effects of 4-methylbenzylidene camphor (4-MBC) on the survival, development and reproduction of the marine copepod Tigriopus japonicus. Aquat Toxicol 194:94–102. https://doi.org/10.1016/j.aquatox.2017.11.008

    Article  CAS  Google Scholar 

  • Claireaux G, Lefrançois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Phil Trans R Soc 2031–2041. https://doi.org/10.1098/rstb.2007.2099

  • Claireaux G, Davoodi F (2010) Effect of exposure to petroleum hydrocarbons upon cardio-respiratory function in the common sole (Solea solea). Aquat Toxicol 98(2):113–119. https://doi.org/10.1016/j.aquatox.2010.02.006

    Article  CAS  Google Scholar 

  • Clark TD, Donaldson MR, Pieperhoff S, Drenner SM, Lotto A, Cooke SJ, Hinch SG, Patterson DA, Farrell AP (2012) Physiological benefits of being small in a changing world: responses of Coho salmon (Oncorhynchus kisutch) to an acute thermal challenge and a simulated capture event. PLoS ONE 7:e39079

    Article  CAS  Google Scholar 

  • Coronado M, De Haro H, Deng X, Rempel MA, Lavado R, Schlenk D (2008) Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl- methanone) in fish. Aquat Toxicol 90:182–187. https://doi.org/10.1016/j.aquatox.2008.08.018

    Article  CAS  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Fauth JE, Segal R, Bronstein O, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Kushmaro A, Loya Y (2014) Toxicological effects of the sunscreen UV filter, benzophenone-2, on planulae and in vitro cells of the coral, Stylophora pistillata. Ecotox 23(2):175–191

    Article  CAS  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, Pennington P, Cadenas K, Kushmaro A, Loya Y (2016) Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch Environ Contam Toxicol 70:265–288. https://doi.org/10.1007/s00244-015-0227-7

    Article  CAS  Google Scholar 

  • Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á (2019) Differential toxicity of the UV- filters BP-3 and BP-4 in Chlamydomonas reinhardtii: A flow cytometric approach. Sci Total Environ 669:412–420. https://doi.org/10.1016/j.scitotenv.2019.03.116

    Article  CAS  Google Scholar 

  • Fagervold SK, Rodrigues AMS, Rohée C, Roe R, Bourrain M, Stien D, Lebaron P (2019) Occurrence and environmental distribution of 5 UV filters during the summer season in different water bodies. Water Air Soil Pollut 230:172–172

    Article  Google Scholar 

  • Fent K, Zenker A, Rapp M (2010) Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland. Environ Pollut 158(5):1817–1824

    Article  CAS  Google Scholar 

  • Gao L, Yuan T, Zhou C, Cheng P, Bai Q, Ao J, Wang W, Zhang H (2013) Effects of four commonly used UV filters on the growth, cell viability and oxidative stress responses of the Tetrahymena thermophila. Chemosphere 93:2507–2513. https://doi.org/10.1016/j.chemosphere.2013.09.041

    Article  CAS  Google Scholar 

  • Giokas DL, Sakkas VA, Albanis TA, Lampropoulou DA (2005) Determination of UV-filter residues in bathing waters by liquid chromatography UV-diode array and gas chromatography–mass spectrometry after micelle mediated extraction-solvent back extraction. J Chromatogr A 1077(1):19–27

    Article  CAS  Google Scholar 

  • He T, Tsui MMP, Tan CJ, Ma CY, Yiu SKF, Wang LH, Chen TH, Fan TY, Lam PKS, Murphy MB (2019) Toxicological effects of two organic ultraviolet filters and a related commercial sunscreen product in adult corals. Environ Pollut 245:462–471. https://doi.org/10.1016/j.envpol.2018.11.029

    Article  CAS  Google Scholar 

  • Hicken CE, Linbo TL, Baldwin DH, Willis ML, Myers MS, Holland L, Incardona JP (2011) Sub-lethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc Acad Sci 108:7086–7090

    Article  CAS  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86(1):6–19

    Article  CAS  Google Scholar 

  • Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196:191–205

    Article  CAS  Google Scholar 

  • Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish de- velopment. Environ Health Perspect 113:1755–1762

    Article  CAS  Google Scholar 

  • Incardona JP, Linbo TL, Scholz NL (2011) Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol Appl Pharmacol 257:242–249

    Article  CAS  Google Scholar 

  • Jourdan-Pineau H, Dupont-Prinet A, Claireaux G, McKenzie DJ (2010) An investigation of metabolic prioritization in the European Sea Bass, Dicentrarchus labrax. Physiol Biochem Zool 83:68–77

    Article  Google Scholar 

  • Kameda Y, Kimura K, Miyazaki M (2011) Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes. Environ Pollut 159(1570):1576–1576. https://doi.org/10.1016/j.envpol.2011.02.055

    Article  CAS  Google Scholar 

  • Kaiser D, Sieratowicz A, Zielke H, Oetken M, Hollert H, Oehlmann J (2012) Ecotoxicological effect characterisation of widely used organic UV filters. Environ Pollut 163(84):90–90. https://doi.org/10.1016/j.envpol.2011.12.014

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of Embryonic Development of the Zebrafish. Dev Dyn 203:253–310

    Article  CAS  Google Scholar 

  • Kinnberg KL, Petersen GI, Albrektsen M, Minghlani M, Awad S, Holbech B, Green J, Bjerregaard P, Holbech H (2015) Endocrine-disrupting effect of the ultraviolet filter benzophenone 3 in zebrafish, Danio rerio. Environ Toxicol Chem 34:2833–2840

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol, Part C 149:196–209

    CAS  Google Scholar 

  • Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287

    Article  CAS  Google Scholar 

  • Lawrence C (2007) The husbandry of zebrafish (Danio rerio): a review. Aquaculture 269:1–20

    Article  Google Scholar 

  • Le Bihanic F, Morin B, Cousin X, Le Menach K, Budzinski H, Cachot J (2014a) Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout. Environ Sci Pollut Res Int 21:13720–13731. https://doi.org/10.1007/s11356-014-2804-0

    Article  CAS  Google Scholar 

  • Le Bihanic F, Perrichon P, Landi L, Clérandeau C, Le Menach K, Budzinski H, Cousin X, Cachot J (2014b) Development of a reference artificial sediment for chemical testing adapted to the MELA sediment contact assay. Environ Sci Pollut Res Int 24:13689–13702. https://doi.org/10.1007/s11356-014-2607-3

    Article  CAS  Google Scholar 

  • Lee J, Kim S, Park YJ, Moon HB, Choi K (2018) Thyroid hormone-disrupting potentials of major benzophenones in two cell lines (GH3 and FRTL-5) and embryo-larval zebrafish. Environ Sci Technol 52(15):8858–8865

    Article  CAS  Google Scholar 

  • Lefrançois C, Claireaux G (2003) Influence of ambient oxygenation and temperature on metabolic scope and scope for heart rate in the common sole Solea solea. Mar Ecol Prog Ser 259:273–284

    Article  Google Scholar 

  • Li AJ, Law JCF, Chow CH, Huang Y, Li Leung KSY (2018) Joint effects of multiple UV filters on zebrafish embryo development. Environ Sci Technol 52:9460–9467

    Article  CAS  Google Scholar 

  • Lin CC, Hui MN, Cheng SH (2007) Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol Appl Pharmacol 222(2):159–168

    Article  CAS  Google Scholar 

  • Liu H, Sun P, Liu H, Yang S, Wang L, Wang Z (2015) Hepatic oxidative stress biomarker responses in freshwater fish Carassius auratus exposed to four benzophenone UV filters. Ecotox Envir Safe 119:116–122. https://doi.org/10.1016/j.ecoenv.2015.05.017

    Article  CAS  Google Scholar 

  • Lozano C, Givens J, Stien D, Matallana-Surget S, Lebaron P (2020) Bioaccumulation and toxicological effects of UV-filters on marine species. The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2019_442

    Book  Google Scholar 

  • Lucas J, Schouman A, Lyphout L, Cousin X, Lefrancois C (2014a) Allometric relationship between body mass and aerobic metabolism in zebrafish Danio rerio. J Fish Biol 84(4):1171–1178. https://doi.org/10.1111/jfb.12306

    Article  CAS  Google Scholar 

  • Lucas J, Perrichon P, Nouhaud M, Audras A, Leguen I, Lefrancois C (2014b) Aerobic metabolism and cardiac activity in the descendants of zebrafish exposed to pyrolytic polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 21(24):13888–13897. https://doi.org/10.1007/s11356-014-3116-0

    Article  CAS  Google Scholar 

  • Mao F, He Y, Kushmaro A, Gin KYH (2017) Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Aquat Toxicol 193:1–8. https://doi.org/10.1016/j.aquatox.2017.09.029

    Article  CAS  Google Scholar 

  • Martins D, Monteiro MS, Soares AMVM, Quintaneiro C (2017) Effects of 4-MBC and triclosan in embryos of the frog Pelophylax perezi. Chemosphere 178:325–332

    Article  CAS  Google Scholar 

  • McCormick MI, Nechaev IV (2002) Influence of cortisol on developmental rhythms during embryogenesis in a tropical damselfish. J Exp Zool 293(5):456–466

    Article  CAS  Google Scholar 

  • Molins-Delgado D, Máñez M, Andreu A, Hiraldo F, Eljarrat E, Barceló D, Díaz-Cruz MS (2017) A potential new threat to wild life: presence of UV filters in bird eggs from a preserved area. Environ Sci Technol 51(19):10983–10990

    Article  CAS  Google Scholar 

  • Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W (2017) Occurrence of personal care products as emerging chemicals of concern in water resources: a review. Sci Total Environ 595:601–614

    Article  CAS  Google Scholar 

  • Nesan DM, Vijayan M (2012) Embryo exposure to elevated cortisol level leads to cardiac performance dysfunction in zebrafish. Mol Cell Endocrinol 363:85–91. https://doi.org/10.1016/j.mce.2012.07.010

    Article  CAS  Google Scholar 

  • OCDE (1998), Test No. 212: fish, short-term toxicity test on embryo and sac-fry stages, OECD Guidelines for the Testing of Chemicals, Section 2, Éditions OCDE, Paris, https://doi.org/10.1787/9789264070141-en.

  • OCDE (2013) Test No. 236: fish embryo acute toxicity (FET) test, OECD Guidelines for the Testing of Chemicals, Section 2, Éditions OCDE, Paris, https://doi.org/10.1787/9789264203709-en.

  • Perrichon P, Le Bihanic F, Bustamante P (2014) Influence of sediment composition on PAH toxicity using zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) embryo-larval assays. Environ Sci Pollut Res 21:13703–13719. https://doi.org/10.1007/s11356-014-3502-7

    Article  CAS  Google Scholar 

  • Perrichon P, Le Menach K, Akcha F, Cachot J, Budzinski H, Bustamante P (2016) Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach. Sci Total Environ 568:952–966. https://doi.org/10.1016/j.scitotenv.2016.04.186

    Article  CAS  Google Scholar 

  • Pirotta G (2016) The encyclopedia of allowed sunfilters in the world. Skin Care—Househ. Pers Care Today 11:19–21

    Google Scholar 

  • Quintaneiro C, Teixeira B, Benedé JL, Chisvert A, Soares AMVM, Monteiro MS (2019) Toxicity effects of the organic UV-filter 4-methylbenzylidene camphor in zebrafish embryos. Chemosphere 218:273–281. https://doi.org/10.1016/j.chemosphere.2018.11.096

    Article  CAS  Google Scholar 

  • Ramos S, Homem V, Alves A, Santos L (2015) Advances in analytical methods and occurrence of organic UV-filters in the environment — a review. Sci Total Environ 526:278–311

    Article  CAS  Google Scholar 

  • Ramos S, Homem V, Alves A, Santos L (2016) A review of organic UV-filters in wastewater treatment plants. Environ Int 86:24–44

    Article  CAS  Google Scholar 

  • Sánchez-Quiles D, Tovar-Sánchez A (2015) Are sunscreens a new environmental risk associated with coastal tourism? Environ Int 83:158–170. https://doi.org/10.1016/j.envint.2015.06.007

    Article  Google Scholar 

  • Schreurs R, Lanser P, Seinen W, Van der Burg B (2002) Estrogenic activity of UV filters determined by an in vitro reporter gene assay and an in vivo transgenic zebrafish assay. Arch Toxicol 76:257–261

    Article  CAS  Google Scholar 

  • Schurmann H, Steffensen JF (1997) Effects of temperature, hypoxia and activity on the metabolism of juvenile Atlantic cod. J Fish Biol 50:1166–1180

    Google Scholar 

  • Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J (2011) Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna. J Environ Sci Health Part A 46:1311–1319. https://doi.org/10.1080/10934529.2011.602936

    Article  CAS  Google Scholar 

  • Schlenk D, Sapozhnikova Y, Irwin MA, Xie L, Hwang W, Reddy S, Brownawell BJ, Armstrong J, Kelly M, Montagne DE, Kolodziej EP, Sedlak D, Snyder S (2005) In vivo bioassay-guided fractionation of marine sediment extracts from the Southern California Bight, USA, for estrogenic activity. Environ Toxicol Chem 24:2820–2826. https://doi.org/10.1897/05-116R.1

    Article  CAS  Google Scholar 

  • Spitsbergen JM, Kent ML (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research: advantages and current limitations. Toxicol Pathol 31:62–87. https://doi.org/10.1080/01926230390174959

    Article  CAS  Google Scholar 

  • Steffensen JF, Bushnell PG, Schurmann H (1994) Oxygen consumption in four species of teleosts from Greenland: no evidence of metabolic cold adaptation. Polar Biol 14:49–54

    Article  Google Scholar 

  • Stien D, Clergeaud F, Rodrigues AMS, Lebaron K, Pillot R, Romans P, Fagervold S, Lebaron P (2019) Metabolomics reveal that octocrylene accumulates in Pocillopora damicornis tissues as fatty acid conjugates and triggers coral cell mitochondrial dysfunction. Anal Chem 91:990–995. https://doi.org/10.1021/acs.analchem.8b04187

    Article  CAS  Google Scholar 

  • Thorel E, Clergeaud F, Jaugeon L, Rodirgues A, Lucas J, Stien D, Lebaron P (2020) Effect of 10 UV Filters on the Brine Shrimp Artemia salina and the Marine Microalga Tetraselmis sp. Toxics 8:29. https://doi.org/10.3390/toxics8020029

    Article  CAS  Google Scholar 

  • Torres T, Cunha I, Martins R, Santos MM (2016) Screening the toxicity of selected personal care products using embryo bioassays: 4-MBC, propylparaben and triclocarban. Int J Mol Sci 17:1762. https://doi.org/10.3390/ijms17101762

    Article  CAS  Google Scholar 

  • Tovar-Sanchez A, Sanchez-Quiles D, Basterretxea G, Benede JL, Chisvert A, Salvador A et al (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS One 8(6):e65451

    Article  CAS  Google Scholar 

  • Tsui MMP, Leung HW, Wai TC, Yamashita N, Taniyasu S, Liu W, Lam PKS, Murphy MB (2014a) Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries. Water Res 67:55–65. https://doi.org/10.1016/j.watres.2014.09.013

    Article  CAS  Google Scholar 

  • Tsui MMP, Leung HW, Lam PKS, Murphy MB (2014b) Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants. Water Res 53:58–67

    Article  CAS  Google Scholar 

  • Tsui MMP, Leung HW, Kwan BKY, Ng KY, Yamashita N, Taniyasu S, Lam PKS, Murphy MB (2015) Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in marine sediments in Hong Kong and Japan. J Hazard Mater 292:180–187

    Article  CAS  Google Scholar 

  • Vicquelin L, Leray-Forget J, Peluhet L, LeMenach K, Deflandre B, Anschutz P, Etcheber H, Morin B, Budzinski H, Cachot J (2011) A new spiked sediment assay using embryos of the Japanese medaka specifically designed for a reliable toxicity assessment of hydrophobic chemicals. Aquat Tox 105(3–4):235–245. https://doi.org/10.1016/j.aquatox.2011.06.011

    Article  CAS  Google Scholar 

  • Waldman RA, Grant-Kels JM (2019) The role of sunscreen in the prevention of cutaneous melanoma and nonmelanoma skin cancer. J Am Acad Dermat 80(2):574–576. https://doi.org/10.1016/j.jaad.2018.06.069

    Article  Google Scholar 

  • Zucchi S, Oggier DM, Fent K (2011) Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio). Environ Pollut 159:3086–3096. https://doi.org/10.1016/j.envpol.2011.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All experiments were carried out at USR 3579 SU-CNRS Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France. We thank the BIO2MAR and BIOPIC platforms for providing technical support and access to instrumentation. We also thank LIENSs laboratories and especially Dr. Christel Lefrancois for providing a part of respirometry material. This study was conducted under the agreement of the Animal Care Committee No. A66-01-601.

Funding

The work reported in this article was financed in the context of the Pierre Fabre Laboratories’ Conscious Care Approach and the Skin Protect Ocean Respect commitment of the brand Eau Thermale Avène. It was neither supervised nor audited by Pierre Fabre Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lucas. Logeux was responsible of fish rearing. Rodrigues and Stien helped in chemical protocols and anamysis. Lebaron supervised the project. The first draft of the manuscript was written by Lucas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript

Corresponding author

Correspondence to Julie Lucas.

Ethics declarations

Ethics approval

This study was conducted under the agreement of the Animal Care Committee No. A66-01-601.

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Disclaimer

The interpretation and views expressed in this manuscript are not those of the company.

Additional information

Responsible Editor: Bruno Nunes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucas, J., Logeux, V., Rodrigues, A.M.S. et al. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. Environ Sci Pollut Res 28, 29412–29420 (2021). https://doi.org/10.1007/s11356-021-12582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12582-w

Keywords

Navigation