Skip to main content
Log in

A comprehensive systematic review of photocatalytic degradation of pesticides using nano TiO2

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study has systematically reviewed all of the research articles about the photocatalytic degradation of pesticides using titanium dioxide (TiO2) nanoparticles (NPs) and ultraviolet (UV) irradiation. Online databases were searched for peer-reviewed research articles and conference proceedings published during 2009–2019, and ultimately 112 eligible articles were included in the review. Fifty-three active ingredients of pesticides and one mixture had been investigated, most of them were organophosphorus (22%), followed by triazine derivatives (11%), chloropyridines (9%), and organochlorines (9%). Sixteen types of TiO2 with an average photodegradation efficiency of 71% were determined. Based on the type of pesticide and experimental conditions such as irradiation time, the complete photodegradation had been observed. The removal of each group of pesticides has been sufficiently discussed in the article. Effect of experimental conditions on photocatalytic activity has been investigated using linear and polynomial regressions. The strategies to reduce the required energy for this process, doping TiO2 with metal and non-metal agents, innovative reactor designs, etc., were also discussed. In conclusion, TiO2 NPs have been successful for degradation of pesticides. Future direction for research incorporates developing and application of heterogeneous doped and immobilized titania having optimized characteristics such as surface area, reactive centers, recombination rate, and phase, and capable to photo-degrade low levels of pesticides residues under solar light in an efficient full-scale size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdennouri M, Baâlala M, Galadi A, El Makhfouk M, Bensitel M, Nohair K, Sadiq M, Boussaoud A, Barka N (2016) Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arab J Chem 9:S313–S318

    Article  CAS  Google Scholar 

  • Abu Bakar S, Ribeiro C (2016) Low temperature synthesis of N-doped TiO2 with rice-like morphology through peroxo assisted hydrothermal route: materials characterization and photocatalytic properties. Appl Surf Sci 377:121–133

    Article  Google Scholar 

  • Achilleos A, Hapeshi E, Xekoukoulotakis NP, Mantzavinos D, Fatta-Kassinos D (2010) Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 161:53–59

    Article  CAS  Google Scholar 

  • Ahmari H, Heris SZ, Khayyat MH (2018) The effect of titanium dioxide nanoparticles and UV irradiation on photocatalytic degradation of Imidaclopride. Environmental Technology (United Kingdom) 39:536–547

    CAS  Google Scholar 

  • Alireza K, Ali MG (2011): Nanostructured titanium dioxide materials: properties, preparation and applications. World scientific

    Google Scholar 

  • Amalraj A, Pius A (2015) Photocatalytic degradation of monocrotophos and chlorpyrifos in aqueous solution using TiO2 under UV radiation. Journal of Water Process Engineering 7:94–101

    Article  Google Scholar 

  • Amalraj A, Suryaprabha T, Rajeswari A, Pius A (2016) Photocatalytic degradation of quinalphos and profenofos pesticides using UV irradiated TiO2 nanoparticles-a kinetic study. Materials Focus 5:377–384

    Article  Google Scholar 

  • Ananpattarachai J, Kajitvichyanukul P (2015): Photocatalytic degradation of p,p '-DDT under UV and visible light using interstitial N-doped TiO2. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes 50, 247–260

  • Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009

    Article  CAS  Google Scholar 

  • Baharvand A, Ali R, Yusof AM, Ibrahim AN, Chandren S, Nur H (2014) Preparation of anatase hollow TiO2 spheres and their photocatalytic activity in the photodegradation of chlorpyrifos. J Chin Chem Soc 61:1211–1216

    Article  CAS  Google Scholar 

  • Baneshi MM, Rezaei S, Sadat A, Mousavizadeh A, Barafrashtehpour M, Hekmatmanesh H (2017) Investigation of photocatalytic degradation of diazinon using titanium dioxide (TiO2) nanoparticles doped with iron in the presence of ultraviolet rays from the aqueous solution. Bioscience Biotechnology Research Communications 10:60–67

    Google Scholar 

  • Banic N, Abramovic B, Krstic J, Sojic D, Loncarevic D, Cherkezova-Zheleva Z, Guzsvany V (2011) Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst. Applied Catalysis B-Environmental 107:363–371

    Article  CAS  Google Scholar 

  • Bouhadoun S, Guillard C, Dapozze F, Singh S, Amans D, Boucle J, Herlin-Boime N (2015) One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Applied Catalysis B-Environmental 174:367–375

    Article  Google Scholar 

  • Chen H, Shen M, Chen RW, Dai K, Peng TY (2011) Photocatalytic degradation of commercial methyl parathion in aqueous suspension containing La-doped TiO2 nanoparticles. Environ Technol 32:1515–1522

    Article  CAS  Google Scholar 

  • Chen J, Loeb S, Kim JH (2017) LED revolution: fundamentals and prospects for UV disinfection applications. Environmental Science: Water Research and Technology 3:188–202

    CAS  Google Scholar 

  • Conceição DS, Graça CAL, Ferreira DP, Ferraria AM, Fonseca IM, Botelho do Rego AM, ACSC T, Vieira Ferreira LF (2017) Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous Mesoporous Mater 253:203–214

    Article  Google Scholar 

  • Connelly K, Wahab AK, Idriss H (2012) Photoreaction of Au/TiO2 for hydrogen production from renewables: a review on the synergistic effect between anatase and rutile phases of TiO2. Materials for Renewable and Sustainable Energy 1:3

    Article  Google Scholar 

  • Cortés J, Alarcón-Herrera M, Villicaña-Méndez M, González-Hernández J, Pérez-Robles J (2011) Impact of the kind of ultraviolet light on the photocatalytic degradation kinetics of the TiO2/UV process. Environ Prog Sustain Energy 30:318–325

    Article  Google Scholar 

  • Dai K, Peng TY, Chen H, Liu J, Zan L (2009) Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension. Environmental Science & Technology 43:1540–1545

    Article  CAS  Google Scholar 

  • Daneshvar N, Salari D, Niaei A, Khataee AR (2006) Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide: comparison and modeling of reaction kinetics. J Environ Sci Health B 41:1273–1290

    Article  CAS  Google Scholar 

  • Dehghani MH, Karamitabar Y, Changani F, Heidarinejad Z (2019) High performance degradation of phenol from aqueous media using ozonation process and zinc oxide nanoparticles as a semiconductor photo catalyst in the presence of ultraviolet radiation. Desalination & Water Treatment 166:105–114

    Article  CAS  Google Scholar 

  • Dominguez S, Rivero MJ, Gomez P, Ibañez R, Ortiz I (2016) Kinetic modeling and energy evaluation of sodium dodecylbenzenesulfonate photocatalytic degradation in a new LED reactor. J Ind Eng Chem 37:237–242

    Article  CAS  Google Scholar 

  • Eleburuike NA, Abu Bakar WAW, Ali R, Omar MF (2016) Photocatalytic degradation of paraquat dichloride over CeO2-modified TiO2 nanotubes and the optimization of parameters by response surface methodology. RSC Adv 6:104082–104093

    Article  CAS  Google Scholar 

  • Eskandarian MR, Choi H, Fazli M, Rasoulifard MH (2016a) Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chem Eng J 300:414–422

    Article  CAS  Google Scholar 

  • Eskandarian MR, Fazli M, Rasoulifard MH, Choi H (2016b) Decomposition of organic chemicals by zeolite-TiO2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation. Appl Catal B Environ 183:407–416

    Article  CAS  Google Scholar 

  • Eskandarian MR, Rasoulifard MH, Fazli M, Ghalamchi L, Choi H (2019) Synergistic decomposition of imidacloprid by TiO2-Fe3O4 nanocomposite conjugated with persulfate in a photovoltaic-powered UV-LED photoreactor. Korean J Chem Eng 36:965–974

    Article  CAS  Google Scholar 

  • Eydivand S, Nikazar M (2015) Degradation of 1,2-dichloroethane in simulated wastewater solution: a comprehensive study by photocatalysis using TiO2 and ZnO nanoparticles. Chem Eng Commun 202:102–111

    Article  CAS  Google Scholar 

  • Fadaei A, Kargar M (2013) Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresenius Environ Bull 22:2442–2447

    CAS  Google Scholar 

  • Faraji M, Mohaghegh N, Abedini A (2018): Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity. Journal of Photochemistry and Photobiology B: Biology 178, 124–132

  • Fischer K, Gawel A, Rosen D, Krause M, Abdul Latif A, Griebel J, Prager A, Schulze AJC (2017): Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. 7, 209

  • Fouad DM, Mohamed MB (2011) Studies on the photo-catalytic activity of semiconductor nanostructures and their gold core-shell on the photodegradation of malathion. Nanotechnology 22:455705

    Article  Google Scholar 

  • Fouad DM, Mohamed MB (2012) Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion. J Nanomater 2012:1–8

    Article  Google Scholar 

  • Goswami P, Ganguli JN (2013) Tuning the band gap of mesoporous Zr-doped TiO2 for effective degradation of pesticide quinalphos. Dalton Trans 42:14480–14490

    Article  CAS  Google Scholar 

  • Grover IS, Singh S, Pal B (2013) The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO 2 nanostructures of different shapes. Appl Surf Sci 280:366–372

    Article  CAS  Google Scholar 

  • Grover IS, Singh S, Pal B (2014a) Photodegradation of imidacloprid insecticide by ag-deposited titanate nanotubes: a study of intermediates and their reaction pathways. J Agric Food Chem 62:12497–12503

    Article  CAS  Google Scholar 

  • Grover IS, Singh S, Pal B (2014b) Influence of thermal treatment and Au-loading on the growth of versatile crystal phase composition and photocatalytic activity of sodium titanate nanotubes. RSC Adv 4:51342–51348

    Article  CAS  Google Scholar 

  • Grover IS, Prajapat RC, Singh S, Pal B (2017) Highly photoactive Au-TiO2 nanowires for improved photo-degradation of propiconazole fungicide under UV/sunlight irradiation. Sol Energy 144:612–618

    Article  CAS  Google Scholar 

  • Guozheng J, Guoxiang W, Yong Z, Linsheng Z (2010): Effects of light intensity and H2O2 on photocatalytic degradation of phenol in wastewater using TiO2/ACF, 2010 International Conference on Digital Manufacturing & Automation. IEEE, pp. 623-626

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657

    Article  CAS  Google Scholar 

  • Hassan AF, Elhadidy H, Abdel-Mohsen AM (2017) Adsorption and photocatalytic detoxification of diazinon using iron and nanotitania modified activated carbons. J Taiwan Inst Chem Eng 75:299–306

    Article  CAS  Google Scholar 

  • Heydari G, Hollman J, Achari G, Langford CH (2019): Comparative study of four TiO2-based photocatalysts to degrade 2,4-D in a semi-passive system. Water (Switzerland) 11

  • Holm A, Hamandi M, Sahel K, Dappozze F, Guillard C (2020) Impact of H2O2 on the lactic and formic acid degradation in presence of TiO2 rutile and anatase phases under UV and visible light. Catalysts 10:1131

    Article  CAS  Google Scholar 

  • Hossaini H, Moussavi G, Farrokhi M (2014) The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Res 59:130–144

    Article  CAS  Google Scholar 

  • Jafari SJ, Moussavi G, Hossaini H (2016) Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process. Desalin Water Treat 57:3782–3790

    Article  CAS  Google Scholar 

  • Joice JAI, Kalaivani S, Divya R, Kannan ER, Sivakumar T (2011) Synthesis, characterization and catalytic activities of titania based nanocatalysts for the degradation of carcinogenic Imidacloprid. Transactions of the Indian Ceramic Society 70:109–114

    Article  CAS  Google Scholar 

  • Joice JAI, Aishwarya S, Sivakumar T (2019) Nano structured Ni and Ru impregnated TiO2 photocatalysts: synthesis, characterization and photocatalytic degradation of neonicotinoid insecticides. J Nanosci Nanotechnol 19:2575–2589

    Article  CAS  Google Scholar 

  • Jonidi-Jafari A, Shirzad-Siboni M, Yang JK, Naimi-Joubani M, Farrokhi M (2015) Photocatalytic degradation of diazinon with illuminated ZnO-TiO2 composite. J Taiwan Inst Chem Eng 50:100–107

    Article  CAS  Google Scholar 

  • Kalantary RR, Shahamat YD, Farzadkia M, Esrafili A, Asgharnia HJEJEB (2014): heterogeneous photocatalytic degradation of diazinon in water using nano-TiO2: Modeling and intermediates. 4, 186–194

  • Kalantary RR, Shahamat YD, Farzadkia M, Esrafili A, Asgharnia H (2015) Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO2(Degussa, P25): kinetic and statistical analysis. Desalin Water Treat 55:555–563

    Article  CAS  Google Scholar 

  • Kanan S, Moyet MA, Arthur RB, Patterson HH (2019): Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Cat. Rev. - Sci. Eng., 1-65

  • Kattiparambil Manoharan R, Sankaran S (2018) Photocatalytic degradation of organic pollutant aldicarb by non-metal-doped nanotitania: synthesis and characterization. Environ Sci Pollut Res 25:20510–20517

    Article  CAS  Google Scholar 

  • Kaur P, Bansal P, Sud D (2013) Heterostructured nanophotocatalysts for degradation of organophosphate pesticides from aqueous streams. J Korean Chem Soc 57:382–388

    Article  CAS  Google Scholar 

  • Kaur T, Toor AP, Wanchoo RK (2015) Parametric study on degradation of fungicide carbendazim in dilute aqueous solutions using nano TiO2. Desalin Water Treat 54:122–131

    Article  CAS  Google Scholar 

  • Khan NA, Khan SU, Ahmed S, Farooqi IH, Dhingra A, Hussain A, Changani F (2019) Applications of nanotechnology in water and wastewater treatment: a review. Asian Journal of Water, Environment and Pollution 16:81–86

    Article  Google Scholar 

  • Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F (2020) Recent trends in disposal and treatment technologies of emerging-pollutants—a critical review. TrAC Trends Anal Chem 122:115744

    Article  CAS  Google Scholar 

  • Kralova M, Levchuk I, Kasparek V, Sillanpaa M, Cihlar J (2015) Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor. Chin J Catal 36:1679–1685

    Article  CAS  Google Scholar 

  • Ku Y, Shiu SJ, Wu HC (2017) Decomposition of dimethyl phthalate in aqueous solution by UV–LED/TiO2 process under periodic illumination. J Photochem Photobiol A Chem 332:299–305

    Article  CAS  Google Scholar 

  • Kunduru KR, Nazarkovsky M, Farah S, Pawar RP, Basu A, Domb AJ (2017) Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment, water purification. Elsevier, pp:33–74

  • Liang H-c, X-z L, Yang Y-h, K-h S (2008) Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere 73:805–812

    Article  CAS  Google Scholar 

  • Lopes OF, Paris EC, Ribeiro C (2014) Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: a mechanistic study. Appl Catal B Environ 144:800–808

    Article  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao HJAiMS, Engineering (2016): an overview of nanomaterials for water and wastewater treatment 2016

  • Macias-Tamez R, Villanueva-Rodriguez M, Ramos-Delgado NA, Maya-Trevino L, Hernandez-Ramirez A (2017) Comparative study of the photocatalytic degradation of the herbicide 2,4-D using WO3/TiO2 and Fe2O3/TiO2 as catalysts. Water Air and Soil Pollution 228

  • Malakootian M, Yaseri M, Faraji M (2019) Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Environ Sci Pollut Res 26:8444–8458

    Article  CAS  Google Scholar 

  • Matafonova G, Batoev V (2018) Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: a review. Water Res 132:177–189

    Article  CAS  Google Scholar 

  • Miguel N, Ormad MP, Mosteo R, Ovelleiro JL (2012) Photocatalytic degradation of pesticides in natural water: effect of hydrogen peroxide. International Journal of Photoenergy 2012:371714

    Article  Google Scholar 

  • Mohamed MM, Khairou KS (2011) Preparation and characterization of nano-silver/mesoporous titania photocatalysts for herbicide degradation. Microporous Mesoporous Mater 142:130–138

    Article  CAS  Google Scholar 

  • Mohamed RM, Ismail AA, Kadi MW, Bahnemann DW (2018) A comparative study on mesoporous and commercial TiO2 photocatalysts for photodegradation of organic pollutants. J Photochem Photobiol A Chem 367:66–73

    Article  CAS  Google Scholar 

  • Mourão HAJL, Malagutti AR, Ribeiro C (2010) Synthesis of TiO2-coated CoFe2O4 photocatalysts applied to the photodegradation of atrazine and rhodamine B in water. Appl Catal A Gen 382:284–292

    Article  Google Scholar 

  • Murakami N, T-a K, Tsubota T, Ohno T (2009) Novel hydrothermal preparation of pure brookite-type titanium (IV) oxide nanocrystal under strong acidic conditions. Catal Commun 10:963–966

    Article  CAS  Google Scholar 

  • Pap Z, Danciu V, Cegled Z, Kukovecz A, Oszko A, Dombi A, Mogyorosi K (2011) The influence of rapid heat treatment in still air on the photocatalytic activity of titania photocatalysts for phenol and monuron degradation. Applied Catalysis B-Environmental 101:461–470

    Article  CAS  Google Scholar 

  • Parangi T, Mishra MK (2019) Titania nanoparticles as modified photocatalysts: a review on design and development. Comments on Inorganic Chemistry 39:90–126

    Article  CAS  Google Scholar 

  • Police AKR, Pulagurla VLR, Vutukuri MS, Basavaraju S, Valluri Durga K, Machiraju SJJoWR (2010): Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2. Journal of Water Resource and Protection 2, 235–244

  • Purkait P, Bhattacharyya A, Roy S, Maitra S, Das G, Ghosh Chaudhuri M (2020) Green synthesis of TiO2 nanoparticle : its characterization and potential application in Zoxamide photodegradation. Journal of Water and Environmental Nanotechnology 5:191–203

    CAS  Google Scholar 

  • Ray S, Lalman JA (2016) Fabrication and characterization of an immobilized titanium dioxide (TiO2) nanofiber photocatalyst. Materials Today: Proceedings 3:1582–1591

    Google Scholar 

  • Reza KM, Kurny ASW, Gulshan F (2017) Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Appl Water Sci 7:1569–1578

    Article  CAS  Google Scholar 

  • Rincón GJ, La Motta EJ (2019) A fluidized-bed reactor for the photocatalytic mineralization of phenol on TiO2-coated silica gel. Heliyon 5:e01966

    Article  Google Scholar 

  • Rózsa G, Náfrádi M, Alapi T, Schrantz K, Szabó L, Wojnárovits L, Takács E, Tungler A (2019) Photocatalytic, photolytic and radiolytic elimination of imidacloprid from aqueous solution: reaction mechanism, efficiency and economic considerations. Appl Catal B Environ 250:429–439

    Article  Google Scholar 

  • Sanches S, Penetra A, Rodrigues A, Cardoso VV, Ferreira E, Benoliel MJ, Barreto Crespo MT, Crespo JG, Pereira VJ (2013) Removal of pesticides from water combining low pressure UV photolysis with nanofiltration. Sep Purif Technol 115:73–82

    Article  CAS  Google Scholar 

  • Sandeep S, Nagashree KL, Maiyalagan T, Keerthiga G (2018) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid—a comparative study in hydrothermal TiO2 and commercial TiO2. Appl Surf Sci 449:371–379

    Article  CAS  Google Scholar 

  • Santacruz-Chavez JA, Oros-Ruiz S, Prado B, Zanella R (2015) Photocatalytic degradation of atrazine using TiO2 superficially modified with metallic nanoparticles. Journal of Environmental Chemical Engineering 3:3055–3061

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Santiago-Morales J, Gómez MJ, Herrera-López S, Fernández-Alba AR, García-Calvo E, Rosal R (2013) Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation, visible light photocatalysis and ozonation of a wastewater effluent. Water Res 47:5546–5556

    Article  CAS  Google Scholar 

  • Saquib M, Abu Tariq M, Haque MM, Muneer M (2008) Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J Environ Manag 88:300–306

    Article  CAS  Google Scholar 

  • Sethy NK, Arif Z, Mishra PK, Kumar P (2020): Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater %J Green Processing and Synthesis. 9, 171–181

  • Sharma AK, Tiwari RK, Gaur MS (2011) Design of photoreactor and study of modeling parameters for removal of pesticides in water: a case study of malathion. Sensors and Transducers 125:131–141

    CAS  Google Scholar 

  • Sharotri N, Sharma D, Sud D (2019) Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. Journal of Materials Research and Technology 8:3995–4009

    Article  CAS  Google Scholar 

  • Simon G, Gyulavári T, Hernádi K, Molnár M, Pap Z, Veréb G, Schrantz K, Náfrádi M, Alapi T (2018) Photocatalytic ozonation of monuron over suspended and immobilized TiO2–study of transformation, mineralization and economic feasibility. J Photochem Photobiol A Chem 356:512–520

    Article  CAS  Google Scholar 

  • Šojić D, Despotović V, Abramović B, Todorova N, Giannakopoulou T, Trapalis C (2010) Photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2. Molecules 15:2994–3009

    Article  Google Scholar 

  • Soltan S, Jafari H, Afshar S, Zabihi O (2016) Enhancement of photocatalytic degradation of furfural and acetophenone in water media using nano-TiO2-SiO2 deposited on cementitious materials. Water Sci Technol 74:1689–1697

    Article  CAS  Google Scholar 

  • Sorolla MG, Dalida ML, Khemthong P, Grisdanurak N (2012) Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. J Environ Sci (China) 24:1125–1132

    Article  CAS  Google Scholar 

  • Suhaimy SHM, Lai CW, Tajuddin HA, Samsudin EM, Johan MR (2018) Impact of TiO2 nanotubes' morphology on the photocatalytic degradation of simazine pollutant. Materials 11

  • Surenjan A, Pradeep T, Philip L (2019) Application and performance evaluation of a cost-effective vis- LED based fluidized bed reactor for the treatment of emerging contaminants. Chemosphere 228:629–639

    Article  CAS  Google Scholar 

  • Tabasideh S, Maleki A, Shahmoradi B, Ghahremani E, McKay G (2017) Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Sep Purif Technol 189:186–192

    Article  CAS  Google Scholar 

  • Tran HTT, Kosslick H, Ibad MF, Fischer C, Bentrup U, Vuong TH, Nguyen LQ, Schulz A (2017) Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Appl Catal B Environ 200:647–658

    Article  CAS  Google Scholar 

  • Tseng D-H, Juang L-C, Huang H-H (2012) Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in TiO2 aqueous suspension. International Journal of Photoenergy 2012:328526

    Article  Google Scholar 

  • Varma KS, Tayade RJ, Shah KJ, Joshi PA, Shukla AD, Gandhi VG (2020) Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: a review. Water-Energy Nexus 3:46–61

    Article  Google Scholar 

  • Vega AA, Imoberdorf GE, Mohseni M (2011) Photocatalytic degradation of 2,4-dichlorophenoxyacetic acid in a fluidized bed photoreactor with composite template-free TiO2 photocatalyst. Appl Catal A Gen 405:120–128

    Article  CAS  Google Scholar 

  • Vela N, Fenoll J, Garrido I, Navarro G, Gambin M, Navarro S (2015) Photocatalytic mitigation of triazinone herbicide residues using titanium dioxide in slurry photoreactor. Catal Today 252:70–77

    Article  CAS  Google Scholar 

  • Vela N, Pérez-Lucas G, Fenoll J, Navarro S (2017) Recent overview on the abatement of pesticide residues in water by photocatalytic treatment using TiO 2. Application of Titanium Dioxide 147

  • Visan A, van Ommen JR, Kreutzer MT, Lammertink RGH (2019) Photocatalytic reactor design: guidelines for kinetic investigation. Ind Eng Chem Res 58:5349–5357

    Article  CAS  Google Scholar 

  • Vranjes M, Saponjic ZV, Zivkovic LS, Despotovic VN, Sojic DV, Abramovic BF, Comor MI (2014) Elongated titania nanostructures as efficient photocatalysts for degradation of selected herbicides. Applied Catalysis B-Environmental 160:589–596

    Article  Google Scholar 

  • Wang X, Pehkonen SO, Rämö J, Väänänen M, Highfield JG, Laasonen K (2012) Experimental and computational studies of nitrogen doped Degussa P25 TiO 2: application to visible-light driven photo-oxidation of As (iii). Catalysis Science Technology 2:784–793

    Article  CAS  Google Scholar 

  • Wodka D, Bielaníska E, Socha RP, Elzbieciak-Wodka M, Gurgul J, Nowak P, Warszyníski P, Kumakiri I (2010) Photocatalytic activity of titanium dioxide modified by silver nanoparticles. ACS Appl Mater Interfaces 2:1945–1953

    Article  CAS  Google Scholar 

  • Wodka D, Socha RP, Bielanska E, Elzbieciak-Wodka M, Nowak P, Warszynski P (2014) Photocatalytic activity of titanium dioxide modified byFe2O3nanoparticles. Appl Surf Sci 319:173–180

    Article  CAS  Google Scholar 

  • Wongcharoen S, Panomsuwan G (2018) Easy synthesis of TiO2 hollow fibers using kapok as a biotemplate for photocatalytic degradation of the herbicide paraquat. Mater Lett 228:482–485

    Article  CAS  Google Scholar 

  • Wunderlich W, Oekermann T, Miao L, Hue N, Tanemura S, Tanemura MJJoCP, Research (2004): electronic properties of nano-porous TiO2- znd ZnO thin films- comparison of simulations and experiments. 5, 343–354

  • Xie J, Bian L, Yao L, Hao Y, Wei Y (2013) Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater Lett 91:213–216

    Article  CAS  Google Scholar 

  • Xiong Z, Zhao XS (2013) Titanate@TiO2 core-shell nanobelts with an enhanced photocatalytic activity. J Mater Chem A 1:7738–7744

    Article  CAS  Google Scholar 

  • Ye M, Chen Z, Wang W, Shen J, Ma J (2010) Hydrothermal synthesis of TiO2 hollow microspheres for the photocatalytic degradation of 4-chloronitrobenzene. J Hazard Mater 184:612–619

    Article  CAS  Google Scholar 

  • Yu B, Zeng J, Gong L, Zhang M, Zhang L, Chen X (2007) Investigation of the photocatalytic degradation of organochlorine pesticides on a nano-TiO2 coated film. Talanta 72:1667–1674

    Article  CAS  Google Scholar 

  • Yu J, Wang B (2010) Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl Catal B Environ 94:295–302

    Article  CAS  Google Scholar 

  • Yuliati L, Roslan NA, Siah WR, Lintang HO (2017) Cobalt oxide-modified titanium dioxide nanoparticle photocatalyst for degradation of 2,4-dichlorophenoxyacetic acid. Indonesian Journal of Chemistry 17:284–290

    Article  CAS  Google Scholar 

  • Zhang J, Zhou P, Liu J, Yu JJPCCP (2014): New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. 16, 20382–20386

  • Zhang L, Yan F, Su MM, Han GX, Kang PL (2009) A study on the degradation of methamidophos in the presence of nano-TiO2 catalyst doped with re. Russ J Inorg Chem 54:1210–1216

    Article  Google Scholar 

  • Zhang Q, Jing YH, Shiue A, Chang CT, Ouyang T, Lin CF, Chang YM (2013) Photocatalytic degradation of malathion by TiO2 and Pt-TiO2 nanotube photocatalyst and kinetic study. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes 48:686–692

    CAS  Google Scholar 

  • Zhang Y, Han C, Nadagouda MN, Dionysiou DD (2015a) The fabrication of innovative single crystal N,F-codoped titanium dioxide nanowires with enhanced photocatalytic activity for degradation of atrazine. Appl Catal B Environ 168-169:550–558

    Article  CAS  Google Scholar 

  • Zhang Y, Han C, Zhang G, Dionysiou DD, Nadagouda MN (2015b) PEG-assisted synthesis of crystal TiO2 nanowires with high specific surface area for enhanced photocatalytic degradation of atrazine. Chem Eng J 268:170–179

    Article  CAS  Google Scholar 

  • Zhao JH (2012): Research on UV/TiO2 photocatalytic oxidation of organic matter in drinking water and its influencing factors. In: Ma M (editor), 2011 International Conference of Environmental Science and Engineering, Vol 12, Pt A. Procedia Environmental sciences, pp. 445–452

  • Zheng LL, Pi FW, Wang YF, Xu H, Zhang YZ, Sun XL (2016a) Photocatalytic degradation of Acephate, Omethoate, and methyl parathion by Fe3O4@SiO2@mTiO(2) nanomicrospheres. J Hazard Mater 315:11–22

    Article  CAS  Google Scholar 

  • Zheng LL, Xu H, Pi FW, Zhang YZ, Sun XL (2016b) Synthesis of Fe3O4@mTiO(2) nanocomposites for the photocatalytic degradation of Monocrotophos under UV illumination. RSC Adv 6:87273–87281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Tehran University of Medical Sciences for their support. This study was also financially supported by the Iran National Science Foundation (INSF) (grant number: 98017354). This study was conducted as part of the Ph.D. student thesis of Mostafa Hadei.

Funding

This study was funded by Tehran University of Medical Sciences. This study was also financially supported by the Iran National Science Foundation (INSF) (grant number: 98017354).

Author information

Authors and Affiliations

Authors

Contributions

MH designed the study, participated in all stages of the systematic review, analyzed the data, interpreted the results, and drafted the manuscript. AM, RN, AHM, SR, and KN designed the study, defined the systematic review’s search strategy, interpreted the results, and participated in drafting the manuscript.

Corresponding author

Correspondence to Kazem Naddafi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical approval

This study was ethically approved by Tehran University of Medical Sciences (Approval ID: IR.TUMS.SPH.REC.1398.092).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible Editor: Sami Rtimi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadei, M., Mesdaghinia, A., Nabizadeh, R. et al. A comprehensive systematic review of photocatalytic degradation of pesticides using nano TiO2. Environ Sci Pollut Res 28, 13055–13071 (2021). https://doi.org/10.1007/s11356-021-12576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12576-8

Keywords

Navigation