Skip to main content
Log in

Multi-year characterization of aerosol black carbon concentrations over a semiarid tropical site Udaipur

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Continuous and multi-year (2008–2012) measurements of black carbon (BC) mass concentrations (MBC), carried out from the semiarid tropical site Udaipur (24.6° N, 74° E, 580 m a.s.l.) near the western Indian desert, are analyzed for their region-specific features. MBC varied over a wide range during the period of study, with the hourly mean values occurring as low as 0.09 to as high as 49.1 μg m−3, with the multi-year average ~ 4.5 ± 2.6 μg m−3. Annual variations showed the highest concentrations during November and December (winter seasonal mean = 7.4 ± 3.3 μg m−3) and the lowest in the monsoon months of July and August (monsoon seasonal mean = 2.5 ± 2.2 μg m−3). MBC showed significant inverse relationship with the planetary boundary layer height (ρ ~ − 0.50) as well as ventilation coefficient (ρ ~ − 0.72). Alike aforesaid atmospheric dynamic parameters, T, WS, and RH also possessed statistically significant negative correlations with monthly MBC. Enhancement in annual as well as diurnal amplitude in MBC during deficient monsoon years relative to excessive monsoon years have given marked indication of BC sink mechanism due to precipitation. Roles of long-range regional air pollutant transport also have been identified. Identical and consistent seasonal variation in percentage contribution of MBC with PM2.5 (varying from 2.6 to 9.1%) and absorption Angstrom exponent (αabs, monthly mean values varying from 0.77 ± 0.04 to 1.16 ± 0.08) gives evidence of substantial amount of enhanced anthropogenic source activities of fossil fuel incomplete combustion in post-monsoon and winter period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data and material are available upon request from Mukunda M Gogoi (dr_mukunda@vssc.gov.in).

References

  • Arif M, Kumar R, Kumar R, Zusman E, Singh RP, Gupta A (2018) Assessment of indoor & outdoor black carbon emissions in rural areas of Indo-Gangetic Plain: seasonal characteristics, source apportionment and radiative forcing. Atmos Environ 191:227–240. https://doi.org/10.1016/j.atmosenv.2018.07.057

    Article  CAS  Google Scholar 

  • Aruna K, Lakshmi Kumar TV, Rao DN, Murthy BVK, Babu SS, Moorthy KK (2013) Black carbon aerosols in a tropical semi-urban coastal environment: effects of boundary layer dynamics and long range transport. J Atmos Sol Terr Phys 104:116–125. https://doi.org/10.1016/j.jastp.2013.08.020

  • Ashrafi K, Shafie-Pour M, Kamalan H (2009) Estimating temporal and seasonal variation of ventilation coefficients. Int J Environ Res Public Health 3:637–644

    Google Scholar 

  • Aswathy V, Mohan Kumar K, Satheesh SK (2010) Measurements of aerosol black carbon at an urban site in southern India. Aerosol and Clouds: Climate Change Perspectives, IASTA Bulletin 19:463–466

    Google Scholar 

  • Babu SS, Moorthy KK (2002) Aerosol black carbon over a tropical coastal station in India. Geophys Res Lett 29(23):2098. https://doi.org/10.1029/2002GL015662

    Article  Google Scholar 

  • Babu SS, Satheesh SK, Moorthy KK (2002) Aerosol radiative forcing due to enhanced black carbon at an urban site in India. Geophys Res Lett 29(18):271–273. https://doi.org/10.1029/2002GL015826

    Article  Google Scholar 

  • Babu SS, Manoj MR, Moorthy KK, Gogoi MM, Nair VS, Kompalli SK, Satheesh SK, Niranjan K, Ramagopal K, Bhuyan PK, Singh D (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J Geophys Res 118:11,794–11,806. https://doi.org/10.1002/2013JD020507

    Article  Google Scholar 

  • Bano T, Singh S, Gupta NC, Soni K, Tanwar RS, Nath S, Arya BC, Gera BS (2011) Variation in aerosol black carbon concentration and its emission estimates at the mega-city Delhi. Int J Remote Sens 32(21):6749–6764. https://doi.org/10.1080/01431161.2010.512943

    Article  Google Scholar 

  • Begam R, Vachaspati V, Ahammed YN, Kumar R, Babu SS, Reddy RR (2016) Measurement and analysis of black carbon aerosols over a tropical semi-arid station Kadapa, India. Atmos Res 171:77–91

    CAS  Google Scholar 

  • Bond TC, Doherty SJ et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res 118:5386–5552. https://doi.org/10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res Atmos 110:D11102. https://doi.org/10.1029/2004JD005441

    Article  Google Scholar 

  • Das N, Baral SS, Sahoo SK, Mohapatra RK, Ramulu TS, Das SN, Roy Chaudhury G (2009) Aerosol physical characteristics at Bhubaneswar, east coast of India. Atmos Res 93:897–901

    CAS  Google Scholar 

  • Draxler RR, Rolph GD (2003) HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY website. NOAA Air Resources Laboratory, Silver Spring, MD. http://www.arl.noaa.gov/ready/hysplit4.html. Accessed 8 Jan 2020

  • Dumka UC, Moorthy KK, Kumar R, Hegde P, Sagar S, Pant P, Singh N, Babu SS (2010) Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos Res 96(4):510–521. https://doi.org/10.1016/j.atmosres.2009.12.010

    Article  CAS  Google Scholar 

  • Dumka UC, Manchanda RK, Sinha PR, Sreenivasan S, Moorthy KK, Babu SS (2013) Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad. J Atmos Sol Terr Phys 105:81–90

    Google Scholar 

  • Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res Atmos 112:D11202. https://doi.org/10.1029/2006JD008003

    Article  CAS  Google Scholar 

  • Ganguly D, Jayaraman A, Gadhavi H (2006) Physical and optical properties of aerosols over an urban location in western India: seasonal variability. J Geophys Res 111:D24206. https://doi.org/10.1029/2006JD007392

    Article  CAS  Google Scholar 

  • Gogoi MM, Babu SS, Moorthy KK, Manoj MR, Chaubey JP (2013) Absorption characteristics of aerosols over the northwestern region of India: distinct seasonal signature of biomass burning aerosols and mineral dust. Atmos Environ 73:92–102

  • Gogoi MM, Babu SS, Moorthy KK, Bhuyan PK, Pathak B, Subba T, Chutia L, Kundu SS, Bharali C, Borgohain A, Guha A, De BK, Singh B, Chin (2017) Radiative effects of absorbing aerosols over Northeastern India: observations and model simulations. J Geophys Res 122. https://doi.org/10.1002/2016JD025592

  • Jacobson MZ (2001) Strong radiative heating due to mixing state of black carbon on atmospheric aerosols. Nature 409:695–697

    CAS  Google Scholar 

  • Jacobson MZ (2010) Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res Atmos 115:D14209. https://doi.org/10.1029/2009JD013795

  • Jose S, Gharai B, Rao PVN (2017) Cross-sectional view of atmospheric aerosols over an urban location in Central India. Aerosol Air Qual Res 17:761–775

    CAS  Google Scholar 

  • Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res 109:D21208. https://doi.org/10.1029/2004JD004999

    Article  CAS  Google Scholar 

  • Koch D, Del Genio A (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10(16):7685–7696

    CAS  Google Scholar 

  • Kompalli SK, Babu SS, Moorthy KK, Manoj MK, Kiran Kumar NVP, Shaeb HB, Joshi AK (2014) Aerosols black carbon characteristics over Central India: temporal variation and its dependence on mixed layer height. Atmos Res 147:27–37

    Google Scholar 

  • Kumar M, Parmar KS, Kumar DB, Mhawish A, Broday DM, Mall RK, Banerjee T (2018) Long-term aerosol climatology over Indo-Gangetic Plain: trend, prediction and potential source fields. Atmos Environ 180:37–50. https://doi.org/10.1016/j.atmosenv.2018.02.027

    Article  CAS  Google Scholar 

  • Laing JR, Jaffe DA, Sedlacek AJ III (2020) Comparison of filter-based absorption measurements of biomass burning aerosol and background aerosol at the Mt. Bachelor Observatory. Aerosol Air Qual Res 20:663–678. https://doi.org/10.4209/aaqr.2019.06.0298

  • Lau WKM, Kim MK, Kim KM (2006) Asian monsoon anomalies induced by aerosol direct effects. Clim Dyn 26:855–864. https://doi.org/10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Liu Y, Tang G, Zhou L, Hu B, Liu B, Li Y, Liu S, Wang Y (2019) Mixing layer transport flux of particulate matter in Beijing, China. Atmos Chem Phys 19:9531–9540. https://doi.org/10.5194/acp-2019-141

    Article  CAS  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253

    CAS  Google Scholar 

  • Ming Y, Ramaswamy V, Persad V (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37:L13701. https://doi.org/10.1029/2010GL042895

    Article  Google Scholar 

  • Nair VS, Moorthy KK, Alappattu DP et al (2007) Winter-time aerosol characteristics over the Indo-Gangetic Plain (IGP): impacts of the local boundary layer processes and long-range transport. J Geophys Res 112:D13205. https://doi.org/10.1029/2006JD008099

    Article  CAS  Google Scholar 

  • Nair VS, Babu SS, Moorthy KK, Sharma AK, Marinoni A, Ajai (2013) Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B 65:19738

    Google Scholar 

  • Pathak B, Kalita G, Bhuyan K, Bhuyan PK, Moorthy KK (2010) Aerosols temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India. J Geophys Res 115:D19204. https://doi.org/10.1029/009JD013462

    Article  Google Scholar 

  • Payra S, Soni M, Kumar A, Prakash D, Verma S (2015) Inter-comparison of aerosol optical thickness derived from MODIS and in situ ground datasets over Jaipur, a semi-arid zone in India. Environ Sci Technol 49(15):9237–9246. https://doi.org/10.1021/acs.est.5b02225

    Article  CAS  Google Scholar 

  • Prasad P, Roja Raman M, Venkat Ratnam M, Wei-Nai C, Bhaskara RSV, Gogoi MM, KompalliS K, Kumar KS, Babu SS (2018) Characterization of atmospheric black carbon over a semi-urban site of Southeast India: local sources and long-range transport. Atmos Res 213:411–421

    CAS  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2010) Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya. Atmos Chem Phys 10(23):11791. https://doi.org/10.5194/acp-10-11791-2010

    Article  CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    CAS  Google Scholar 

  • Reddy BSK, Kumar KR, Balakrishnaiah G, Gopal KR, Reddy RR, Reddy LSS, Ahmmed YN, Narasimhulu K, Moorthy KK (2012) Potential source regions contributing to seasonal variation of black carbon aerosols over Anantapur in Southeast India. Aerosol Air Qual Res 12:344–358

    CAS  Google Scholar 

  • Rolph G, Stein A, Barbara S (2017) Real-time Environmental Applications and Display sYstem: READY. Env Modelling Software 95:210–224. https://doi.org/10.1016/j.envsoft.2017.06.025

    Article  Google Scholar 

  • Safai PD, Raju MP, Budhavant KB, Rao PSP, Devara PCS (2013) Long term studies on characteristics of black carbon aerosols over a tropical urban station Pune, India. Atmos Res 132-133:173–184

    CAS  Google Scholar 

  • Sand M, Iversen T, Bohlinger P, Kirkevåg A, Seierstad I, Seland Ø, Sorteberg A (2015) A standardized global climate model study showing unique properties for the climate response to black carbon aerosols. J Clim 28(6):2512–2526

    Google Scholar 

  • Satheesh SK, Vinoj V, Moorthy KK (2011) Weekly periodicities of aerosols properties observed at an urban location. Atmos Res 101:307–313

    CAS  Google Scholar 

  • Sharma D, Srivastava AK, Ram K, Singh A, Singh D (2017) Temporal variability in aerosol characteristics and its radiative properties over Patiala, northwestern part of India: impact of agricultural biomass burning emissions. Environ Pollut 231:1030–1041

    CAS  Google Scholar 

  • Singh BP, Tiwari S, Hopke PK, Singh RS, Bisht DS, Srivastava AK, Singh RK, Dumka UC, Singh AK, Rai BN, Srivastava MK (2015) Seasonal inhomogeneity of soot particles over the central indo-Gangetic Plains, India: influence of meteorology. J Meteor Res 29(6):935–949. https://doi.org/10.1007/s13351-015-5041-7

    Article  Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381(6584):681–683

    CAS  Google Scholar 

  • Soni K, Singh S, Bano T, Tanwar RS, Nath S, Arya BC (2010) Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmos Environ 44:4355–4363

    CAS  Google Scholar 

  • Soni A, Decesari S, Shridhar V, Prabhu V, Panwar P, Marinoni A (2019) Investigation of potential source regions of atmospheric Black Carbon in the data deficit region of the western Himalayas and its foothills. Atmos Pollution Res 10:1832–1842. https://doi.org/10.1016/j.apr.2019.07.015

    Article  CAS  Google Scholar 

  • Srivastava S, Kumar M, Singh RS, Rai BN, Mall RK, Banerjee T (2019) Long-term observation of black carbon aerosols at an urban location over the central Indo-Gangetic Plain, South Asia. Atmósfera 32(2):95–113. https://doi.org/10.20937/ATM.2019.32.02.02

    Article  CAS  Google Scholar 

  • Streets DG, Gupta S, Waldhoff ST, Wang MQ, Bond TC, Yiyun B (2001) Black carbon emissions in China. Atmos Environ 35(25):4281–4296

    CAS  Google Scholar 

  • Sujatha P, Mahalakshmi DV, Ramiz A, Rao PVN, Naidu CV (2016) Ventilation coefficient and boundary layer height impact on urban air quality. Cogent Environ Sci 2:1125284. https://doi.org/10.1080/23311843.2015.1125284

    Article  CAS  Google Scholar 

  • Tiwari S, Srivastava AK, Bisht DS, Safai PD, Parmita P (2013) Assessment of carbonaceous aerosol over Delhi in the Indo-Gangetic Basin: characterization, sources and temporal variability. Nat Hazards 65:1745–1764. https://doi.org/10.1007/s11069-012-0449-1

    Article  Google Scholar 

  • Vaishya A, Singh P, Rastogi S, Babu SS (2017) Aerosol black carbon quantification in the central Indo-Gangetic Plain: seasonal heterogeneity and source apportionment. Atmos Res 185:13–21. https://doi.org/10.1016/j.atmosres.2016.10.001

    Article  CAS  Google Scholar 

  • Vivone G, D’Amico G, Summa D, Lolli S, Amodeo A, Bortoli D, Pappalardo G (2020) Atmospheric boundary layer height estimation from aerosol lidar: a new approach based on morphological image processing techniques. Atmos Chem Phys Discuss. https://doi.org/10.5194/acp-2020-857 (in review)

  • Wang C (2007) Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys Res Lett 34:L05709. https://doi.org/10.1029/2006GL028416

    Article  Google Scholar 

  • Wang C (2013) Impact of anthropogenic absorbing aerosols on clouds and precipitation: a review of recent progresses. Atmos Res 122:237–249

    CAS  Google Scholar 

  • Wang L, Li W, Sun Y, Tao M, Xin J, Song T, Li X, Zhang N, Ying K, Wang Y (2018) PM2.5 Characteristics and regional transport contribution in five cities in southern North China Plain, during 2013–2015. Atmosphere 9:157. https://doi.org/10.3390/atmos9040157

    Article  CAS  Google Scholar 

  • Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U (2003) Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J Aerosol Sci 34:1445–1463. https://doi.org/10.1016/S0021-8502(03)00359-8

    Article  CAS  Google Scholar 

  • Yamaguchi M, Izuta T (2017) Effects of black carbon and ammonium sulfate particles on plants. In: Air pollution impacts on plants in East Asia. Springer, Tokyo, pp 295–308

    Google Scholar 

Download references

Acknowledgments

The authors are highly indebted to Indian Space Research Organization (ISRO), for providing full financial support for carrying out the present research work under Aerosol Radiative Forcing over India (ARFI) project of Geosphere Biosphere Program (ISRO-GBP). BMV is very much thankful to Dr. K Krishna Moorthy and Dr. S. Suresh Babu for their support in maintaining an aerosol observatory at Udaipur. Authors also acknowledge NOAA aerosol resource laboratory for providing Air mass backward wind trajectory data (http://www.arl.noaa.gov/ready/hysplit4.html), meteorological data (http://ready.arl.noaa.gov/READYamet.php), and daily total accumulated rainfall values data from the Department of Water Resource, Government of Rajasthan (http://waterresources.rajasthan.gov.in/DailyRainfallData/Rainfall_Index.htm).

Funding

This work was carried out at part of the Aerosol Radiative Forcing over India project of ISRO-Geosphere Biosphere Program.

Author information

Authors and Affiliations

Authors

Contributions

BMV carried out the scientific analysis of the experimental data and drafted the manuscript with contributions from SJ. MMG carried out the review and editing of the manuscript.

Corresponding author

Correspondence to Mukunda M Gogoi.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The author transfers to Environmental Science and Pollution Research the non-exclusive publication rights and warrants that this contribution is original. The author accepts responsibility for releasing this material on behalf of any and all co-authors.

Additional information

Responsible Editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 769 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, B.M., Gogoi, M.M. & Jose, S. Multi-year characterization of aerosol black carbon concentrations over a semiarid tropical site Udaipur. Environ Sci Pollut Res 28, 22864–22877 (2021). https://doi.org/10.1007/s11356-020-12300-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12300-y

Keywords

Navigation