Skip to main content

Advertisement

Log in

Seasonal inhomogeneity of soot particles over the central Indo-Gangetic Plains, India: Influence of meteorology

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Black carbon (BC) particles play a unique and important role in earth’s climate system. BC was measured (in-situ) in the central part of the Indo-Gangetic Plains (IGP) at Varanasi, which is a highly populated and polluted region due to its topography and extensive emission sources. The annual mean BC mass concentration was 8.92 ± 7.0 µg m -3, with 34% of samples exceeding the average value. Seasonally, BC was highest during the post-monsoon and winter periods (approximately 18 µg m -3) and lower in the premonsoon/ monsoon seasons (approximately 6 µg m -3). The highest frequency (approximately 46%) observed for BC mass was in the interval from 5 to 10 µg m -3. However, during the post-monsoon season, the most common values (approximately 23%) were between 20 and 25 µg m -3. The nighttime concentrations of BC were approximately twice as much as the daytime values because of lower boundary layer heights at nighttime. The Ångström exponent was significantly positively correlated (0.55) with ground-level BC concentrations, indicating the impact of BC on the columnar aerosol properties. The estimated mean absorption Ångström exponent was 1.02 ± 0.08 µg m -3, indicating that the major source of BC was from fossil fuel combustion. Significant negative correlations between BC mass and meteorological parameters indicate a pronounced effect of atmospheric dynamics on the BC mass in this region. The highest mean BC mass concentration (18.1 ± 6.9 µg m -3) as a function of wind speed was under calm wind conditions (38% of the time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrea, D. A. C., and P. Artaxo, 2001: Wintertime and summertime S˜ao Paulo aerosol source apportionment study. Atmos. Environ., 35, 4889–4902.

    Article  Google Scholar 

  • Aruna, K., T. V. L. Kumar, D. N. Rao, et al., 2013: Black carbon aerosols in a tropical semi-urban coastal environment: Effects of boundary layer dynamics and long range transport. J. Atmos. Solar-Terrest. Phys., 104, 116–125.

    Article  Google Scholar 

  • Arnott, W. P., K. Hamasha, H. Moosmüller, et al., 2005: Towards aerosol light absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Sci. Technol., 39, 17–29.

    Article  Google Scholar 

  • Awasthy, V., M. K. Kumar, and S. K. Satheesh, 2010: Measurements of aerosol black carbon at an urban site in southern India. Aerosol and Clouds: Climate Change Perspectives, IASTA conference, 19, 463–466.

    Google Scholar 

  • Babu, S. S., and K. K. Moorthy, 2002: Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett., 29, 2098, doi: 10.1029/2002GL015662.

    Article  Google Scholar 

  • Bano, T., S. Singh, N. C. Gupta, et al., 2011: Variation in aerosol black carbon concentration and its emission estimates at the mega-city Delhi. Int. J. Remote Sens., 32, 6749–6764.

    Article  Google Scholar 

  • Beegum, S. N., K. K. Moorthy, S. S. Babu, et al., 2009: Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos. Environ., 43, 1071–1078.

    Article  Google Scholar 

  • Bergstrom, R. W., P. Pilewskie, J. Pommier, et al., 2004: Spectral absorption of solar radiation by aerosols during ACE-Asia. J. Geophys. Res., 109, D19S15, doi: 10.1029/2003JD004467.

    Google Scholar 

  • Bisht, D. S., U. C. Dumka, D. G. Kaskaoutis, et al., 2015: Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment, and radiative forcing. Sci. Total Environ., 521–522, 431–445.

    Article  Google Scholar 

  • Bond, T. C., 2001: Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett., 28, 4075–4078.

    Article  Google Scholar 

  • Bond, T. C., and R. W. Bergstrom, 2006: Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Tech., 40, 27–67.

    Article  Google Scholar 

  • Bond, T. C., S. J. Doherty, D. W. Fahey, et al., 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552.

    Google Scholar 

  • Cao, J. J., C. S. Zhu, J. C. Chow, et al., 2009: Black carbon relationships with emissions and meteorology in Xi’an, China. Atmos. Res., 94, 194–202.

    Article  Google Scholar 

  • Chen, L. W. A., B. G. Doddridge, R. R. Dickerson, et al., 2001: Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources. Geophys. Res. Lett., 28, 1711–1714.

    Article  Google Scholar 

  • Collaud, C. M., E. Weingartner, A. Apituley, et al., 2010: Minimizing light absorption measurement artifacts of the Aethalometer: Evaluation of five correction algorithms. Atmos. Meas. Tech. 3, 457–474.

    Google Scholar 

  • Corrigan, C. E., V. Ramanathan, and J. J. Schauer, 2006: Impact of monsoon transitions on the physical and optical properties of aerosols. J. Geophys. Res., 111, D18208, doi: 10.1029/2005JD006370.

    Article  Google Scholar 

  • Dumka, U. C., P. R. Sinha, R. K. Manchanda, et al., 2010a: Seasonal and diurnal variation of black carbon aerosols over tropical urban site Hyderabad India. Aerosol and Clouds: Climate Change Perspectives, IASTA Conference, 19(1&2), 440–441.

    Google Scholar 

  • Dumka, U. C., K. K. Moorthy, R. Kumar, et al., 2010b: Characteristics of aerosol black carbon mass concentration over a high altitude location in the Central Himalayas from multi-year measurements. Atmos. Res., 96, 510–521.

    Article  Google Scholar 

  • Dumka, U. C., R. K. Manchanda, P. R. Sinha, et al., 2013: Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad. J. Atmos. Solar-Terrestr. Phys., 105–106, 81–90.

    Article  Google Scholar 

  • Ganguly, D., A. Jayaraman, H. Gadhavi, et al., 2005: Features in wavelength dependence of aerosol absorption observed over central India. Geophys. Res. Lett., 32, L13821, doi: 10.1029/2005GL023023.

    Article  Google Scholar 

  • Horvath, H., 1995: Estimation of the average visibility in central Europe. Atmos. Environ., 29, 241–246.

    Article  Google Scholar 

  • Huang, X. F., T. L. Sun, L. W. Zeng, et al., 2012: Black carbon aerosol characterization in a coastal city in South China using a single particle soot photometer. Atmos. Environ., 51, 21–28, doi: 10.1016/j.atmosenv.2012.01.056.

    Article  Google Scholar 

  • Husain, L., V. A. Dutkiewics, A. J. Khan, et al., 2007: Characterization of carbonaceous aerosols in urban air. Atmos. Environ., 41, 6872–6883.

    Article  Google Scholar 

  • Hyvärinen, A. P., H. Lihavainen, M. Komppula, et al., 2009: Continuous measurements of optical properties of atmospheric aerosols in Mukteshwar, northern India. J. Geophys. Res., 114, D08207, doi: 10.1029/2008JD011489.

    Google Scholar 

  • Hyvärinen, A. P., H. Lihavainen, M. Komppula, et al., 2010: Aerosol measurements at the Gual Pahari EUCAARI station: Preliminary results from in-situ measurements. Atmos. Chem. Phys., 10, 7241–7252.

    Article  Google Scholar 

  • Hyvärinen, A. P., P. Kolmonen, V.-M. Kerminen, et al., 2011: Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmos. Environ., 45, 4042–4050.

    Article  Google Scholar 

  • Invernizzi, G., A. Ruprecht, R. Mazza, et al., 2011: Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmos. Environ., 45, 3522–3527.

    Article  Google Scholar 

  • IPCC, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, et al., Eds., Cambridge University Press, Cambridge, UK and New York, NY, USA, 996 pp.

  • Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  Google Scholar 

  • Jacobson, M. Z., 2002: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res., 107, 4410. doi: 10.1029/2001JD001376.

    Article  Google Scholar 

  • Kaufman, Y. J., D. Tanré, and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215–223.

    Article  Google Scholar 

  • Kirchstetter, T. W., T. Novakov, and P. V. Hobbs, 2004: Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 109, D21208, doi: 10.1029/2004JD004999.

    Article  Google Scholar 

  • Kumar, M., S. Tiwari, V. Murari, et al., 2015: Wintertime characteristics of aerosols at middle Indo- Gangetic Plain: Impacts of regional meteorology and long range transport. Atmos. Environ., 104, 162–175.

    Article  Google Scholar 

  • Kuniyal, J. C., 2010: Aerosols climatology over the northwestern Indian Himalayan region. ARFI & ICARB Scientific Progress Report ISRO-GBP, India, 93–99.

    Google Scholar 

  • Lau, K. M., and K. M. Kim, 2006: Observational relationship between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett., 33, L21810, doi: 10.1029/2006GL027546.

    Article  Google Scholar 

  • Liao Hong and Shang Jingjing, 2015: Regional warming by black carbon and tropospheric ozone: A review of progress and research challenges in China. J. Meteor. Res., 29, 525–545.

    Article  Google Scholar 

  • Lodhi, N. K., S. N. Beegum, S. Singh, et al., 2013: Aerosol climatology at Delhi in the western Indo-Gangetic Plain: Microphysics, long-term trends and source strengths. J. Geophys. Res., 118, doi: 10.1002/jgrd.50165.

    Google Scholar 

  • Lyamani, H., F. J. Olmo, I. Foyo, et al., 2011: Black carbon aerosols over an urban area in southeastern Spain: Changes detected after the 2008 economic crisis. Atmos. Environ., 45, 6423–6432.

    Article  Google Scholar 

  • Menon, S., J. Hansen, L. Nazarenko, et al., 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253.

    Article  Google Scholar 

  • Mishra, A. K., T. Shibata, 2012: Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB). Atoms. Environ., 57, 205–218.

    Article  Google Scholar 

  • Mohan, M., and S. Bhati, 2009: Why is megacity Delhi prone to high atmospheric pollution potential? TFMM-TF HTAP Joint Workshop, Paris, June 2009.

    Google Scholar 

  • Moorthy, K. K., and S. K. Satheesh, 2011: Black carbon aerosols over India. Black Carbon e-Bulletin, ENEP, 3.

    Google Scholar 

  • Moosmüller, H., R. K. Chakrabarty, and W. P. Arnott, 2009: Aerosol light absorption and its measurement: A review. J. Quant. Spectrosc. Rad. Trans., 110, 844–878.

    Article  Google Scholar 

  • Pandithurai, G., S. Dipu, K. K. Dani, et al., 2008: Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res., 113, D13209, doi: 10.1029/2008JD009804.

    Article  Google Scholar 

  • Pant, P., P. Hegde, U. C. Dumka, et al., 2006: Aerosol characteristics at a high-altitude location during ISRO-GBP land campaign-II. Curr. Sci., 91, 1053–1061.

    Google Scholar 

  • Pani, S. K., and S. Verma, 2010: Black carbon and its contribution to aerosol optical depth over Kolkata on the eastern IGP. IASTA Conference Bulletin, 19, 458–460.

    Google Scholar 

  • Pereira, S. N., F. Wagner, and A. M. Silva, 2012: Long term black carbon measurements in the southwestern Iberia Peninsula. Atmos. Environ., 57, 63–71.

    Article  Google Scholar 

  • Prasad, A. K., R. P. Singh, M. Kafatos, et al., 2005: Proceedings of symposium S6 held during the Seventh IAHS Scientific Assembly at Foz do Igua¸cu, Brazil, April 2005. IAHS Publ., 296.

    Google Scholar 

  • Praveen, P. S., T. Ahmed, A. Kar, et al., 2012: Link between local scale BC emissions in the indo-gangetic plains and large scale atmospheric solar absorption. Atmos. Chem. Phys., 12, 1173–1187, doi: 10.5194/acp-12-1173-2012.

    Article  Google Scholar 

  • Raju, M. P., P. D. Safai, P. S. P. Rao, et al., 2011: Seasonal characteristics of black carbon aerosols over a high altitude station in Southwest India. Atmos. Res., 100, 103–110.

    Article  Google Scholar 

  • Ramachandran, S., 2004: Spectral aerosol optical characteristics during the northeast monsoon over the Arabian Sea and the tropical Indian Ocean. 2: Ångström parameters and anthropogenic influence. J. Geophys. Res., 109, D19208, doi: 10.1029/2003JD004483.

    Article  Google Scholar 

  • Ramachandran, S., and T. A. Rajesh, 2007: Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: Comparison with urban sites in Asia, Europe, Canada, and the United States. J. Geophys. Res., 112, D06211.

    Google Scholar 

  • Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature Geosci., 1, 221–227.

    Article  Google Scholar 

  • Ramachandran, S., and S. Kedia, 2010: Black carbon aerosols over an urban region: Radiative forcing and climate impact. J. Geophys. Res., 115, D10202, doi: 10.1029/2009JD013560.

    Article  Google Scholar 

  • Raysoni, A. U., J. A. Sarnat, S. E. Sarnat, et al., 2011: Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juarez, Chihuahua (México). Environ. Pollut., 159, 2476–2486.

    Article  Google Scholar 

  • Reddy, M. S., and C. Venkataraman, 2002: Inventory of aerosol and sulphur dioxide emissions from India. Part II: Biomass combustion. Atmos. Environ., 36, 699–712.

    Article  Google Scholar 

  • Ruellan, S., and H. Cachier, 2001: Characterisation of fresh particulate vehicular exhausts near a paris high flow road. Atmos. Environ., 35, 453–468.

    Article  Google Scholar 

  • Russell, P. B., R. W. Bergstrom, Y. Shinozuka, et al., 2010: Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys., 10, 1155–1169.

    Article  Google Scholar 

  • Safai, P. D., S. Kewat, G. Pandithurai, et al., 2008: Aerosol characteristics during winter fog at Agra, North India. J. Atmos. Chem., 61, 101–118.

    Article  Google Scholar 

  • Safai, P. D., S. Kewat, P. S. Praveen, et al., 2007: Seasonal variation of black carbon aerosols over tropical urban city of Pune, India. Atmos. Environ., 41, 2699–2709.

    Article  Google Scholar 

  • Safai, P. D., M. P. Raju, K. B. Budhavant, et al., 2013: Long term studies on characteristics of black carbon aerosols over a tropical urban station Pune, India. Atmos. Res., 132–133, 173–184.

    Article  Google Scholar 

  • Sandradewi, J., A. S. Prévot, S. Szidat, et al., 2008a: Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol., 42, 3316–3323.

    Article  Google Scholar 

  • Sandradewi, J., A. S. Prévot, E. Weingartner, et al., 2008b: A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmos. Environ., 42, 101–112.

    Article  Google Scholar 

  • Satheesh, S. K., and V. Ramanathan, 2000: Large differences in tropical aerosol forcing at the top of the atmosphere and earth’s surface. Nature, 405, 60–63, doi: 10.1038/35011039.

    Article  Google Scholar 

  • Sharma, S., J. R. Brook, H. Cachier, et al., 2002: Light absorption and thermal measurements of black carbon in different regions of Canada. J. Geophys. Res., 107, 4771, doi: 10.1029/2002JD002496.

    Article  Google Scholar 

  • Sharma, A. R., S. K. Kharol, K. V. S. Badarinath, et al., 2010: Impact of agriculture crop residue burning on atmospheric aerosol loading-a study over Punjab State, India. Ann. Geophys., 28, 367–379.

    Article  Google Scholar 

  • Sheridan, P. J., W. P. Arnott, J. Ogren, et al., 2005: The Reno aerosol optics study: An evaluation of aerosol absorption measurement methods. Aerosol Sci. Technol., 39, 1–16.

    Article  Google Scholar 

  • Simpson, A. J., and O. S. McGee, 1996: Analysis of the fumigation effect on pollutants over Pietermaritzburg. South African Geograph. J., 78, 41–46.

    Article  Google Scholar 

  • Singh, S., S. Nath, R. Kohli, et al., 2005: Aerosols over Delhi during pre-monsoon months: Characteristics and effects on surface radiation forcing. Geophys. Res. Lett., 32, L13808, doi: 10.1029/2005GL023062.

    Article  Google Scholar 

  • Singh, B. P., A. K. Srivastava, S. Tiwari, et al., 2014: Radiative impact of fireworks at a tropical Indian location: A case study. Adv. Meteor., 2014, Article ID 197072, 8.

  • Singh, S., S. Tiwari, D. P. Gond, et al., 2015: Intraseasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmos. Res., 161–162, 25–35.

    Article  Google Scholar 

  • Sloane, C. S., and W. H. White, 1986: Visibility: An evolving issue. Environ. Sci. Technol., 20, 760–766.

    Article  Google Scholar 

  • Soni, K., S. Singh, T. Bano, et al., 2010: Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmos. Environ., 44, 4355–4363.

    Article  Google Scholar 

  • Sreekanth, V., K. Niranjan, and B. L. Madhavan, 2007: Radiative forcing of black carbon over eastern India. Geophys. Res. Lett., 34, L17818, doi: 10.1029/2007GL030377.

    Article  Google Scholar 

  • Srivastava, A. K., K. Ram, P. Pant, et al., 2012a: Black carbon aerosols over Manora Peak in the Indian Himalayan foothills: Implications for climate forcing. Environ. Res. Lett., 7, 014002, doi: 10.1088/1748-9326/7/1/014002.

    Article  Google Scholar 

  • Srivastava, A. K., S. Tiwari, P. C. S. Devara, et al., 2011b: Pre-monsoon aerosol characteristics over the Indo- Gangetic Basin: Implications to climatic impact. Annal. Geophys., 29, 789–804, doi: 10.5194/angeo-29-789-2011.

    Article  Google Scholar 

  • Srivastava, A. K., S. Sachchidanand, P. Pant, et al., 2012b: Characteristics of black carbon over Delhi and Manora Peak-a comparative study. Atmos. Sci. Lett., 13, 223–230.

    Article  Google Scholar 

  • Srivastava, A. K., D. S. Bisht, K. Ram, et al., 2014: Characterization of carbonaceous aerosols over Delhi in Ganga basin: Seasonal variability and possible sources. Environ. Sci. Pollut. Res., 21, 8610–8619.

    Article  Google Scholar 

  • Srivastava, M. K., S. K. Srivastava, A. Saha, et al., 2011a: Aerosol optical properties over Delhi and Manora Peak during a rare dust event in early April 2005. Internat. J. Remote Sens., 32, 7939–7954, doi: 10.1080/01431161.2010.523732.

    Article  Google Scholar 

  • Stocker, T. F., D. Qin, G.-K. Plattner, et al., 2014: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge University Press, New York, N.Y. 115 pp.

    Google Scholar 

  • Stone, E. A., J. J. Schauer, B. B. Pradhan, et al., 2010: Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J. Geophys. Res., 115, D06301, doi: 10.1029/2009JD011881.

    Google Scholar 

  • Tripathi, S. N., S. Dey, V. Tare, et al., 2005: Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys. Res. Lett., 32, L08802.

    Google Scholar 

  • Tiwari, S., A. K. Srivastava, D. S. Bisht, et al., 2009: Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J. Atmos. Chem., 62, 193–209.

    Article  Google Scholar 

  • Tiwari, S., A. K. Srivastava, D. S. Bisht, et al., 2013: Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res., 125–126, 50–62, doi: 10.1016/ j.atmosres.2013.01.011.

    Article  Google Scholar 

  • Tiwari, S., U. C. Dumka, D. G. Kaskaoutis, et al., 2015a: Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain. Atmos. Environ., (in press), http://dx.doi.org/10.1016/j.atmosenv.2015.07.031.

    Google Scholar 

  • Tiwari, S., A. K. Srivastava, A. K. Singh, et al., 2015b: Identification of aerosol types over Indo-Gangetic Basin: Implications to optical properties and associated radiative forcing. Environ. Sci. Pollut. Res., 22, 12246–12260, doi: 10.1007/s11356-015-4495-6.

    Article  Google Scholar 

  • Virkkula, A., T. Mäkelä, R. Hillamo, et al., 2007: A simple procedure for correcting loading effects of aethalometer data. J. Air Waste Manage. Assoc., 57, 1214–1222.

    Article  Google Scholar 

  • Vyas, B. M., 2010: Studies of regional features of atmospheric aerosol, total carbonaceous aerosols and their role in the atmospheric radiative forcing effect over the tropical semi-arid location, i.e., Udaipur, western region part of India. ARFI & ICARB Scientific Progress Report ISRO-GBP, India, 67–70.

    Google Scholar 

  • Wang, C., 2004: A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, D03106, doi: 10.1029/2003JD004084.

    Google Scholar 

  • Wang Xin, Xu Baiqing, and Ming Jing, 2014: An overview of the studies on black carbon and mineral dust deposition in snow and ice cores in East Asia. J. Meteor. Res., 28, 354–370.

    Article  Google Scholar 

  • Weingartner, E., H. Saathoff, M. Schnaiter, et al., 2003: Absorption of light by soot particles: Determination of the absorption coefficient by means of AETHALOMETERS. J. Aero. Sci., 34, 1445–1463.

    Article  Google Scholar 

  • Xu, J. W., J. Tao, R. J. Zhang, et al., 2012: Measurements of surface aerosol optical properties in winter of Shanghai. Atmos. Res., 109–110, 25–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Srivastava.

Additional information

Supported by the Indian Space Research Organization (ISRO)“Aerosol Radiative Forcing over India” Program at Bananas Hindu University (P32/15 and P32/14).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B.P., Tiwari, S., Hopke, P.K. et al. Seasonal inhomogeneity of soot particles over the central Indo-Gangetic Plains, India: Influence of meteorology. J Meteorol Res 29, 935–949 (2015). https://doi.org/10.1007/s13351-015-5041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-015-5041-7

Keywords

Navigation