Skip to main content

Advertisement

Log in

Protective effects of selenium and zinc against potassium dichromate–induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hexavalent chromium (CrVI) is an environmental pollutant and an endocrine-disrupting metal. Se and Zn are essential trace elements, known to play a crucial role in thyroid homeostasis. However, there is a lack of data reporting thyrotoxicity during gestation. In this study, we investigated the protective effects of selenium and zinc against potassium dichromate–induced thyrotoxicity in pregnant Wistar rats. Thirty pregnant Wistar rats were divided into control and four treated groups receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg, s.c) alone, or in association with Se (0.3 mg/kg, s.c), ZnCl2 (20 mg/kg, s.c), or both of them simultaneously. The hormonal profile, oxidative stress biomarkers, DNA damage, and histological modifications were evaluated. Our main findings showed that K2Cr2O7 promoted hypothyroidism, oxidative stress, genotoxicity, and histological alterations in the thyroid gland. The co-treatment with Se or ZnCl2 has mitigated K2Cr2O7-induced thyrotoxicity in pregnant Wistar rats by exhibiting antioxidant and genoprotective effects. However, the combined co-treatment of both of them was less thyroprotective, and therefore, further investigations on the synergetic interaction of Se and Zn against CrVI toxicity using different doses and exposure routes are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Adjroud O (2009) Effects of potassium dichromate on haematological parameters in female and male Wistar albino rats. Ass Univ Bull Environ Res 12:2

    Google Scholar 

  • Adjroud O (2010) Protective effects of selenium against potassium dichromate-induced hematotoxicity in female and male Wistar albino rats. Ann Toxicol Anal 22:165–172

    Article  CAS  Google Scholar 

  • Adjroud O (2013) The toxic effects of nickel chloride on liver, erythropoiesis, and development in Wistar albino preimplanted rats can be reversed with selenium pretreatment. Environ Toxicol 28(5):290–298. https://doi.org/10.1002/tox.20719

    Article  CAS  Google Scholar 

  • Aktac T, Bakar E (2002) The histopathological changes in the mouse thyroid depending on the aluminium. Cell Mol Biol 1:69–72

    Google Scholar 

  • Atteia HH, Arafa MH, Prabahar K (2018) Selenium nanoparticles prevent lead acetate-induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR-224. Biomed Pharmacother 99:486–491

    Article  CAS  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th edn. Churchill Livingstone, Elsevier, China

    Google Scholar 

  • Barceloux DG (1999) Zinc. J Toxicol Clin Toxicol 37(2):279–292

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Ben Amara I et al (2009) Effect of selenium on hypothyroidism induced by methimazole (MMI) in lactating rats and their pups. Acta Biol Hung 61(2):145–157

    Article  CAS  Google Scholar 

  • Ben Hamida F, Soussia L, Guermazi F, Rebai T, Zeghal N (2001) Effets de deux antithyroïdiens (propyltiouracile et perchlorate) sur la fonction thyroïdienne de la souris en période d’allaitement. Ann Endocrinol 62:446–453

    CAS  Google Scholar 

  • Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349(6308):438–440

    Article  CAS  Google Scholar 

  • Betsy A, Binitha MP, Sarita S (2013) Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichology 5(1):40–42

    Article  Google Scholar 

  • Bjijrkman U, Ekholm R (1995) Hydrogen peroxide degradation and glutathione peroxidase activity in cultures of thyroid cells. Mol Cell Endocrinol 111:99–107

    Article  Google Scholar 

  • Boas M, Feldt-Rasmussen U, Skakkebæk NE, Main KM (2006) Environmental chemicals and thyroid function. Eur J Endocrinol 154:599–611

    Article  CAS  Google Scholar 

  • Bouayed J, Bohn T (2010) Exogenous antioxidants-double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev 3(4):228–237

    Article  Google Scholar 

  • Bradford M (1979) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Brandao-Neto J et al (2006) Lack of acute zinc effect on thyrotropin-releasing hormone–stimulated thyroid-stimulating hormone secretion during oral zinc tolerance test in healthy men. Nutr Res 26:493–496

    Article  CAS  Google Scholar 

  • Buha A, Antonijević B, Bulat Z, Jaćević V, Milovanović V, Matović V (2013) The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphenyls on thyroid function in rats. Toxicol Lett 221:83–90

    Article  CAS  Google Scholar 

  • Chandra KA et al (2007) Effect of curcumin on chromium-induced oxidative damage in male reproductive system. Environ Toxicol Pharmacol 24(2):160–166

    Article  CAS  Google Scholar 

  • Chaurasia SS, Gupta P, Kar A, Maiti PK (1996) Free radical mediated membrane perturbation and inhibition of type-I iodothyronine 59-monodeiodinase activity by lead and cadmium in rat liver homogenate. Biochem Mol Biol Int 39:765–770

    CAS  Google Scholar 

  • Ciacci C et al (2012) Effects of sublethal, environmentally relevant concentrations of hexavalent chromium in the gills of Mytilus gallo-provincialis. Aquat Toxicol 120–121:109–118

    Article  CAS  Google Scholar 

  • Clairbone A (1985) Catalase activity. Press Boca Rton FL, Handbook of methods for oxygen radical research. CRC, pp 283–284

    Google Scholar 

  • Cohen M et al (1993) Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol 23:255–281

    Article  CAS  Google Scholar 

  • Collins AR, Dusinská M, Gedik CM, Stĕtina R (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104:465–469

    Article  CAS  Google Scholar 

  • Cruz KJ, de Oliveira AR, Marreiro Ddo N (2015) Antioxidant role of zinc in diabetes mellitus. World J Diabetes 6(2):333–337

    Article  Google Scholar 

  • Danforth E Jr, Burger AG (1989) The impact of nutrition on thyroid hormone physiology and action. Annu Rev Nutr 9:201–227

    Article  CAS  Google Scholar 

  • De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185

    Article  Google Scholar 

  • Dorea JG (2002) Iodine nutrition and breast feeding. J Trace Elem Med Biol 16:207–220

    Article  CAS  Google Scholar 

  • Dorval J, Leblond VS, Hontela A (2003) Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchusmykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquat Toxicol 63:229–241

    Article  CAS  Google Scholar 

  • Dumitrescu AM, Liao XH, Abdullah MSY, Lado-Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S (2005) Mutations in the SBP2 gene produce abnormal thyroid hormone metabolism in man. Nat Genet 37(11):1247–1252

    Article  CAS  Google Scholar 

  • ElBakry RH, Tawfik SM (2014) Histological study of the effect of potassium dichromate on the thyroid follicular cells of adult male albino rat and the possible protective role of ascorbic acid (vitamin C). J Microsc Ultrastruct. Environ Monit 14:2121–2126

    Google Scholar 

  • Elia A, Dörr A, Mastrangelo C, Prearo M, Abete M (2006) Glutathione and antioxidant enzymes in the hepatopancreas of crayfish Procambarus clarkii (Girard, 1852) of Lake Trasimeno (Italy). Bulletin Francais de la Pêche ET de la Protection des Milieux Aquatiques, pp 1351–1361. https://doi.org/10.1051/kmae:2006040

  • Elia A, Dörr A, Prearo M, Taticchi M, Abete M (2007) Detoxification enzymes of freshwater crayfish Procambarusclarkii fed a diet enriched in selenium: preliminary results. Marine Freshwater Physiol Behav 40:195–199

    Article  CAS  Google Scholar 

  • Fang Z, Zhao M, Zhen H, Chen L, Shi P, Huang Z (2014) Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. PLoS One 9(8):e103194

    Article  CAS  Google Scholar 

  • Farooqi L, Mazeto GMFS, Shuhama T, Brandão-Neto J (2000) Effects of a single venous dose of zinc on thyroid status in healthy individuals and patients with Graves’ disease. Metal-Based Drugs 7:151–155

    Article  CAS  Google Scholar 

  • Flohe L, Gunzler W (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2(4):191–206

    Article  Google Scholar 

  • Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its reversal by chelation therapy. Indian J Med Res 128:501–523

    CAS  Google Scholar 

  • Fortunato RS, Lima de Souza EC, Hassani RAE, Boufraqech M, Weyemi U, Talbot M, Lagente-Chevallier O, de Carvalho DP, Bidart JM, Schlumberger M, Dupuy C (2010) Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. J Clin Endocrinol Metab 95(12):5403–5411

    Article  CAS  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247(1):1–11

    Article  CAS  Google Scholar 

  • Gaide Chevronnay HP, Janssens V, van der Smissen P, Liao XH, Abid Y, Nevo N, Antignac C, Refetoff S, Cherqui S, Pierreux CE, Courtoy PJ (2015) A mouse model suggests two mechanisms for thyroid alterations in infantile cystinosis: decreased thyroglobulin synthesis due to endoplasmic reticulum stress/unfolded protein response and impaired lysosomal processing. Endocrinology 156(6):2349–2364. https://doi.org/10.1210/en.2014-1672

    Article  CAS  Google Scholar 

  • García-Niño WR et al (2013) Curcumin pretreatment prevents potassium dichromate- induced hepatotoxicity, oxidative Stress, decreased respiratory complex I activity, and membrane permeability transition pore opening. Evid Based Complement Alternat Med 2013:424692

    Article  Google Scholar 

  • Gilbert ME, Rovet J, Chen Z, Koibuchi N (2012) Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicol 33:842–852

    Article  Google Scholar 

  • Goodarzi Z, Karami E, Ahmadizadeh M (2017) Simvastatin attenuates chromium-induced nephrotoxicity in rats. Nephropathol 6(1):5–9

    Article  Google Scholar 

  • Gupta P, Chaurasia S, Maiti P, Kar A (1997) Cadmium induced alterations in extrathyroidal conversion of thyroxine to triiodothyronine by type-I iodothyronine 59-monodeiodinase in male mouse. Horm Metab Res 29:151–152

    Article  CAS  Google Scholar 

  • Hadie SNH, Abdul-Manan H, Abdulla S (2013) Thyroid gland resection in euthanised rat: a practical guide. Intern Med J 20(1):1–4

    Google Scholar 

  • Hala ZE, Ibrahim KR, Hemmat HG (2016) A histological study on the possible protective effect of selenium against chromium-induced thyrotoxicity in adult male albino rats. The Egyptian Journal of Histology 39(1)

  • Hammouda F, Messaoudi I, el Hani J, Baati T, Saïd K, Kerkeni A (2008) Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat. Biol Trace Elem Res 126:194–203

    Article  CAS  Google Scholar 

  • Hartmann M, Hartwig A (1998) Disturbance of DNA damage recognition after UV-irradiation by nickel (II) and cadmium(II) in mammalian cells. Carcinogenesis 19:617–621

    Article  CAS  Google Scholar 

  • Hassanin KM, Abd El-Kawi SH, Hashem KS (2013) The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int J Nanomedicine 8:1713–1720

    Google Scholar 

  • Ho E, Courtemanche C, Ames BN (2003) Zinc deficiency induces oxidative DNA damage and increases P53 expression in human lung fibroblasts. J Nutr 133(8):2543–2548

  • Holland S, Lodwig E, Sideri T, Reader T, Clarke I, Gkargkas K, Hoyle DC, Delneri D, Oliver SG, Avery SV (2007) Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biol 8(12):R268

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1990) Chromium, nickel and weldings. Monographs on the evaluation of carcinogenic risks to humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 49: 1- 648.

  • Jacquillet G et al (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Ren Physiol 290:127–137

    Article  CAS  Google Scholar 

  • Jahnabi S, Choudhuri S, Choudhuri D (2017) Effect of subchronic exposure to chromium on hematological and biochemical parameters of male albino rat. Asian J Pharm Clin Res 10(5):345–348

    Article  CAS  Google Scholar 

  • Jihen H et al (2010) Cadmium retention increase: a probable key mechanism of the protective effect of zinc on cadmium-induced toxicity in the kidney. Toxicol Lett 196(2):104–109

    Article  CAS  Google Scholar 

  • Jin Y, Liu Z, Liu F, Ye Y, Peng T, Fu Z (2015) Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio). Neurotoxicol Teratol 48:9–17

    Article  CAS  Google Scholar 

  • Käkelä R, Käkelä A, Hyvärinen H (1999) Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123:27–37

    Article  Google Scholar 

  • Karbownik-Lewińska M et al (2012) High level of oxidized nucleosides in thyroid mitochondrial DNA; damaging effects of Fenton reaction substrates. Thyroid Res 5:24

    Article  CAS  Google Scholar 

  • Karbownik-Lewińska M, Kokoszko-Bilska A (2012) Oxidative damage to macromolecules in the thyroid - experimental evidence. Thyroid Res 5:25

    Article  CAS  Google Scholar 

  • Kesheri M, Kanchan S, Sinha RP (2014) Isolation and in silico analysis of Fe-superoxide dismutase in the cyanobacterium Nostoc commune. Gene 553(2):117–125

    Article  CAS  Google Scholar 

  • Khorsandi K, Rabbani-Chadegani A (2013) Studies on the genotoxic effect of chromium oxide (Cr VI): Interaction with deoxyribonucleic acid in solution. Mutat Res 750(1-2):105–110

    Article  CAS  Google Scholar 

  • Kim JH, Kang JC (2016) Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium(Cr6+) exposure. Ecotox Environ Safe 125:78–84

    Article  CAS  Google Scholar 

  • Knight JA (1997) Reactive oxygen species and the neuro-degenerative disorders. Ann Clin Lab Sci 27:11–25

    CAS  Google Scholar 

  • Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  Google Scholar 

  • Kubrak OI et al (2010) Chromium effects on free radical processes in gold fish tissues: comparison of Cr (III) and Cr (VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp Biochem Phys C 152(3):360–370

    Google Scholar 

  • Kumari K, Khare A, Dange S (2014) The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. Biomed Res Int 2014:782493

    Article  CAS  Google Scholar 

  • Levis AG Bianchi V (1982) Mutagenic and cytogenetic effects of chromium compounds, in S.Langard (Ed.), Biological and environmental aspects of chromium, Amsterdam 171-208.

  • Li ZH, Chen L, Wu YH, Li P, Li YF, Ni ZH (2014) Effects of waterborne cadmium on thyroid hormone levels and related gene expression in Chinese rare minnow larvae. Comp Biochem Physiol Part C Toxicol Pharmacol 161:53–57

    Article  CAS  Google Scholar 

  • Lima VBS, Sampaio FA (2011) Parameters of glycemic control and their relationship with zinc concentrations in blood and with superoxide dismutase enzyme activity in type 2 diabetes patients. Arq Bras Endocrinol Metabol 55:701–707

    Article  Google Scholar 

  • Mahmood T, Qureshi IZ, Iqba MJ (2010) Histopathological and biochemical changes in rat thyroid following acute exposure to hexavalent chromium. Histol Histopathol 25(11):1355–1370

    Google Scholar 

  • Mary Momo CM, Ferdinand N, Omer Bebe N, Alexane Marquise M, Augustave K, Bertin Narcisse V, Herve T, Joseph T (2019) Oxidative effects of potassium dichromate on biochemical, hematological characteristics, and hormonal levels in rabbit doe (Oryctolagus cuniculus). Vet Sci 6(1):30

    Article  Google Scholar 

  • Mercier Y, Gatellier P, Renerre M (2004) Lipid and protein oxidation in vivo, and antioxidant potential in meat from Charolais cows finished on pasture or mixed die. Meat Sci 66:467–473

    Article  CAS  Google Scholar 

  • Messaoudi I, El Heni J, Hammouda F et al (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161. https://doi.org/10.1007/s12011-009-8324-y

  • Miller MD, Crofton KM, Rice DC, Zoeller RT (2009) Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect 117(7):1033–1041

    Article  CAS  Google Scholar 

  • Mitchell AL, Pearce SHS (2019) Autoimmune thyroid diseases. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM (eds) Clinical immunology, principles and practice, 5th edn. Elsevier, Philadelphia, pp 947–956

    Google Scholar 

  • Monteiro C, Conceição S, Bastos V, Oliveira H (2019) Cr (VI) -induced genotoxicity and cell cycle arrest in human osteoblast cell line MG-63. J Appl Toxicol 1–9.

  • Nasiry Zarrin Ghabaee D, Talebpour Amiri F, Esmaeelnejad Moghaddam A, Khalatbary AR, Zargari M (2017) Administration of zinc against arsenic-induced nephrotoxicity during gestation and lactation in rat model. J Nephropathol 6(2):74–80

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oteiza PL, Olin KL, Fraga CG, Keen CL (1996) Oxidant defense systems in testes from zinc deficient rats. Exp Biol Med 213:85–91

    Article  CAS  Google Scholar 

  • Paksy K, Varga B, Lázár P (1996) Zinc protection against cadmium-induced infertility in female rats. Effect of zinc and cadmium on the progesterone production of cultured granulosa cells. BioMetals 10:27–36

    Article  Google Scholar 

  • Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol 24(1):66–73

    Article  CAS  Google Scholar 

  • Pekary AE, Lukaski HC, Mena I, Hershman JM (1991) Processing of TRH precursor peptides in rat brain and pituitary is zinc dependent. Peptides 12:1025–1032

    Article  CAS  Google Scholar 

  • Pilat-Marcinkiewicz B et al (2003) Structure and function of thyroid follicular cells in female rats chronically exposed to cadmium. Bulletin-Veterinary Institute in Pulwy 47:157–163

    Google Scholar 

  • Poli G, Biasi F, Leonarduzzi G (2008) 4-hydroxynonenal—protein adducts: a reliable biomarker of lipid oxidation in liver diseases. Mol Asp Med 29:67–71

    Article  CAS  Google Scholar 

  • Prakash P et al (1997) Superoxide anion radical production as a cadmium-mediated mechanism of toxicity in avian thyroid: An electron spins resonance study by spin trapping. Comp Biochem Physiol Part C Pharmacol Toxicol Endocrinol 118:89–95

    Google Scholar 

  • Prasad S (2013) Discovery of human Zinc deficiency: Its impact on human health and disease. Adv Nutr 2:176–190

    Article  CAS  Google Scholar 

  • Prasad AS, Bao B, Beck FWJ, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37:1182–1190

    Article  CAS  Google Scholar 

  • Quinteros F, Poliandri A, Machiavelli L, Cabilla JP, Duvilanski BH (2007) In vivo and in vitro effects of chromium VI on anterior pituitary hormone release and cell viability. Toxicol Appl Pharmacol 218(1):79–87

    Article  CAS  Google Scholar 

  • Richelmi P, Baldi C (1984) Blood levels of hexavalent chromium in rats. “In vitro” and “in vivo” experiments. Int J Environ Anal Chem 17(3-4):181–186

    Article  CAS  Google Scholar 

  • Rodrigues-Pereira P et al. (2015) Influence of Organotin on thyroid morphophysiological status. J Environ Health Sci.

  • Rogalska J, Brzóska MM, Roszczenko A, Moniuszko-Jakoniuk J (2009) Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. Chem Biol Interact 177:142–152

    Article  CAS  Google Scholar 

  • Saber TM, Farag MR, Cooper RG (2015) Ameliorative effect of extra virgin olive oil on hexavalent chromium-induced nephrotoxicity and genotoxicity in rats. Rev Med Vet 166(1-2):11–19

    CAS  Google Scholar 

  • Sekihashi K, Sasaki T, Yamamoto A, Kawamura K, Ikka T, Tsuda S, Sasaki YF (2001) A comparison of intraperitoneal and oral gavage administration in comet assay in mouse eight organs. Mutat Res-Gen Tox En 493(1-2):39–54

    Article  CAS  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  Google Scholar 

  • Sole J et al (1990) In vivo effects of nickel and cadmium in rats on lipid peroxidation and ceruloplasmin activity. Bull Environ Contam Toxicol 44:686–691

    Article  CAS  Google Scholar 

  • Song M, Kim YJ, Park YK, Ryu JC (2012) Changes in thyroid peroxidase activity in response to various chemicals. J Environ Monit 14(8):2121–2126

    Article  CAS  Google Scholar 

  • Soudani N, Sefi M, Ben Amara I, Boudawara T, Zeghal N (2010) Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73(4):671–678. https://doi.org/10.1016/j.ecoenv.2009.10.002

  • Soudani N, Ben Amara I, Sefi M, Boudawara T, Zeghal N (2011) Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp Toxicol Pathol 63(6):541–548

    Article  CAS  Google Scholar 

  • Stadtman ER, Levine RL (2006) Protein Oxidation. Ann N Y Acad Sci 899(1):191–208

    Article  Google Scholar 

  • Stepniak J et al (2013) Membrane lipids and nuclear DNA are differently susceptive to Fenton reaction substrates in porcine thyroid. Toxicol in Vitro 27:71–78

    Article  CAS  Google Scholar 

  • Šulinskienė J et al. (2019) Effect of zinc on the oxidative stress biomarkers in the brain of nickel-treated mice. Oxidative Med Cell Longev

  • Sumner ER, Shanmuganathan A, Sideri TC, Willetts SA, Houghton JE, Avery SV (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:1939–1948

    Article  CAS  Google Scholar 

  • Thomson CD, Campbell JM, Miller J, Skeaff SA, Livingstone V (2009) Selenium and iodine supplementation: effect on thyroid function of older New Zealanders. Am J Clin Nutr 90:1038–1046

    Article  CAS  Google Scholar 

  • Triggiani V et al (2009) Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune 9(3):277–294

    CAS  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  Google Scholar 

  • Wen G, Ringseis R, Eder K (2017) Endoplasmic reticulum stress inhibits expression of genes involved in thyroid hormone synthesis and their key transcriptional regulators in FRTL-5 thyrocytes. PLoSONE 12(11):e0187561

    Article  CAS  Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signalling. Free Radic Biol Med 45(5):549–561

    Article  CAS  Google Scholar 

  • Winther KH, Bonnema SJ, Cold F, Debrabant B, Nybo M, Cold S, Hegedüs L (2015) Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol 172:657–667

    Article  CAS  Google Scholar 

  • Yang H, Zhang W, Kong Q, Liu H, Sun R, Lin B, Zhang H, Xi Z (2013) Effects of pubertal exposure to thiazole-Zn on thyroid function and development in female rats. Food Chem Toxicol 53:100–104

    Article  CAS  Google Scholar 

  • Yildiz A, Kaya Y, Tanriverdi O (2019) Effect of the interaction between selenium and zinc on DNA repair in association with cancer prevention. J Cancer Prev 24(3):146–154. https://doi.org/10.15430/JCP.2019.24.3.146

  • Yoshizuka M, Mori N, Hamasaki K, Tanaka I, Yokoyama M, Hara K, Doi Y, Umezu YI, Araki H, Sakamoto Y, Miyazaki M, Fujimoto S (1991) Cadmium toxicity in the thyroid gland of pregnant rats. Exp Mol Pathol 55:97–104

    Article  CAS  Google Scholar 

  • Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938):332–336

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the DGRSDT/MESRS (code: N ° E2212600).

Author information

Authors and Affiliations

Authors

Contributions

Anfal Fedala and Ounassa Adjroud designed the experiment; Anfal Fedala and Rim Timoumi performed the experiment; Anfal Fedala, Ounassa Adjroud, Salwa Abid-Essefi, and Rim Timoumi analyzed the data; Anfal Fedala and Ounassa Adjroud wrote the manuscript; Ounassa Adjroud and Salwa Abid Essefi revised the manuscript; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Anfal Fedala.

Ethics declarations

Ethical approval

All procedures were approved by the Institutional Animal Care and Use Committee of Batna University.

Informed consent

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedala, A., Adjroud, O., Abid-Essefi, S. et al. Protective effects of selenium and zinc against potassium dichromate–induced thyroid disruption, oxidative stress, and DNA damage in pregnant Wistar rats. Environ Sci Pollut Res 28, 22563–22576 (2021). https://doi.org/10.1007/s11356-020-12268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-12268-9

Keywords

Navigation