Skip to main content
Log in

Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Finding a facile and practical method to produce black TiO2 remains a challenge. Bismuth-vanadium co-doped black TiO2 (BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The light absorption of the synthesized Bi-V co-coped black TiO2 nanoparticles was significantly improved in the visible and infrared regions. The XRD patterns indicated that the black TiO2 contained mixed phases of brookite, anatase, and rutile of TiO2. This was further confirmed by Raman spectroscopy. The photocatalytic activity of the sample was evaluated by reduction of hexavalent chromium (Cr(VI)) under visible light irradiation. Among investigated hole (h+) scavengers, ethylenediaminetetraacetic acid (EDTA) led to the highest reduction of Cr(VI) with a molar ratio of 1:5 (EDTA:Cr(VI)). The results indicated that the Bi-V co-coped black TiO2 nanocomposite can reduce 94% of 1 mg/L of Cr(VI) within 20 min irradiation time (pH 3 and catalyst dose of 1 g/L). Introducing a simple method to synthesize black TiO2 which has absorption in the visible and infrared region can open up new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aarthi T, Madras G (2008) Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2. Catal Commun 9:630–634

    CAS  Google Scholar 

  • Adamo C, Ernzerhof M, Scuseria GE (2000) The meta-GGA functional: Thermochemistry with a kinetic energy density dependent exchange-correlation functional. The J Chem Phys 112(6):2643–2649

  • Antoniadis A, Takavakoglou V, Zalidis G, Poulios I (2007) Development and evaluation of an alternative method for municipal wastewater treatment using homogeneous photocatalysis and constructed wetlands. Catal Today 124:260–265

    CAS  Google Scholar 

  • Chen D, Ray AK (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci 56:1561–1570

    CAS  Google Scholar 

  • Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  Google Scholar 

  • Chen X, Liu L, Peter YY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750

    CAS  Google Scholar 

  • Chen S, Xiao Y, Wang Y, Hu Z, Zhao H, Xie W (2018) A facile approach to prepare black TiO2 with oxygen vacancy for enhancing photocatalytic activity. Nanomaterials 8:245

    CAS  Google Scholar 

  • Chenthamarakshan C, Yang H, Ming Y, Rajeshwar K (2000) Photocatalytic reactivity of zinc and cadmium ions in UV-irradiated titania suspensions. J Electroanal Chem 494:79–86

    CAS  Google Scholar 

  • Danon A et al (2012) Effect of reactor materials on the properties of titanium oxide nanotubes. ACS Catal 2:45–49. https://doi.org/10.1021/cs200392m

    Article  CAS  Google Scholar 

  • Di Palma L, Gueye M, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76

    Google Scholar 

  • Djellabi R, Ghorab M (2015) Photoreduction of toxic chromium using TiO2-immobilized under natural sunlight: effects of some hole scavengers and process parameters. Desalin Water Treat 55:1900–1907

    CAS  Google Scholar 

  • Farhadian N, Akbarzadeh R, Pirsaheb M, Jen T-C, Fakhri Y, Asadi A (2019) Chitosan modified N, S-doped TiO2 and N, S-doped ZnO for visible light photocatalytic degradation of tetracycline. Int J Biol Macromol 132:360–373. https://doi.org/10.1016/j.ijbiomac.2019.03.217

    Article  CAS  Google Scholar 

  • Huang L, Chan Q, Wu X, Wang H, Liu Y (2012) The simultaneous photocatalytic degradation of phenol and reduction of Cr (VI) by TiO2/CNTs. J Ind Eng Chem 18:574–580

    CAS  Google Scholar 

  • Irandost M, Akbarzadeh R, Pirsaheb M, Asadi A, Mohammadi P, Sillanpää M (2019) Fabrication of highly visible active N, S co-doped TiO2@MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: mechanisms, modeling and degradation pathway. J Mol Liq 291. https://doi.org/10.1016/j.molliq.2019.111342

  • Isari AA, Hayati F, Kakavandi B, Rostami M, Motevassel M, Dehghanifard E (2020) N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: an effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem Eng J 392:123685. https://doi.org/10.1016/j.cej.2019.123685

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Jain S, Suhas (2004) Removal of chlorophenols using industrial wastes. Environ Sci Technol 38:1195–1200

    CAS  Google Scholar 

  • Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L (2006) Aqueous Cr (VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. J Hazard Mater 134:94–103

    CAS  Google Scholar 

  • Kanki T, Yoneda H, Sano N, Toyoda A, Nagai C (2004) Photocatalytic reduction and deposition of metallic ions in aqueous phase. Chem Eng J 97:77–81

    CAS  Google Scholar 

  • Karthikeyan S, Gupta V, Boopathy R, Titus A, Sekaran G (2012) A new approach for the degradation of aniline by mesoporous activated carbon as a heterogeneous catalyst: kinetic and spectroscopic studies. J Mol Liq 173:153–163

    CAS  Google Scholar 

  • Khaghani R, Kakavandi B, Ghadirinejad K, Dehghani Fard E, Asadi A (2019) Preparation, characterization and catalytic potential of γ-Fe2O3@AC mesoporous heterojunction for activation of peroxymonosulfate into degradation of cyfluthrin insecticide. Microporous Mesoporous Mater 284:111–121. https://doi.org/10.1016/j.micromeso.2019.04.013

    Article  CAS  Google Scholar 

  • Ku Y, Jung I-L (2001) Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142

    CAS  Google Scholar 

  • Ling CM, Mohamed AR, Bhatia S (2004) Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream. Chemosphere 57:547–554

    CAS  Google Scholar 

  • Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F (2016) Progress in black titania: a new material for advanced photocatalysis. Adv Energy Mater 6:1600452

    Google Scholar 

  • Liu Y, Tian L, Tan X, Li X, Chen X (2017) Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci Bull 62:431–441

    CAS  Google Scholar 

  • Meng X, Zhang G, Li N (2017) Bi24Ga2O39 for visible light photocatalytic reduction of Cr (VI): controlled synthesis, facet-dependent activity and DFT study. Chem Eng J 314:249–256

    CAS  Google Scholar 

  • Mohamed A, Osman T, Toprak MS, Muhammed M, Yilmaz E, Uheida A (2016) Visible light photocatalytic reduction of Cr (VI) by surface modified CNT/titanium dioxide composites nanofibers. J Mol Catal A Chem 424:45–53

    CAS  Google Scholar 

  • Mohapatra P, Samantaray SK, Parida K (2005) Photocatalytic reduction of hexavalent chromium in aqueous solution over sulphate modified titania. J Photochem Photobiol A Chem 170:189–194

    CAS  Google Scholar 

  • Naimi-Joubani M, Shirzad-Siboni M, Yang J-K, Gholami M, Farzadkia M (2015) Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J Ind Eng Chem 22:317–323

    CAS  Google Scholar 

  • Omidvar Borna M, Pirsaheb M, Vosoughi Niri M, Khosravi Mashizie R, Kakavandi B, Zare MR, Asadi A (2016) Batch and column studies for the adsorption of chromium(VI) on low-cost Hibiscus Cannabinus kenaf, a green adsorbent. J Taiwan Inst Chem Eng 68:80–89. https://doi.org/10.1016/j.jtice.2016.09.022

    Article  CAS  Google Scholar 

  • Papadam T, Xekoukoulotakis NP, Poulios I, Mantzavinos D (2007) Photocatalytic transformation of acid orange 20 and Cr (VI) in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 186:308–315

    CAS  Google Scholar 

  • Paririe M (1993) An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemical. Environ Sci Technol 27:1776–1782

    Google Scholar 

  • Parker J, Siegel R (1990) Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl Phys Lett 57:943–945

    CAS  Google Scholar 

  • Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31:2039–2044

    CAS  Google Scholar 

  • Petala E, Baikousi M, Karakassides MA, Zoppellaro G, Filip J, Tuček J, Vasilopoulos KC, Pechoušek J, Zbořil R (2016) Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water. Phys Chem Chem Phys 18:10637–10646

    CAS  Google Scholar 

  • Ren L et al (2019) Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl Catal B Environ 240:319–328. https://doi.org/10.1016/j.apcatb.2018.08.033

    Article  CAS  Google Scholar 

  • Rengaraj S, Venkataraj S, Yeon J-W, Kim Y, Li X, Pang G (2007) Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr (VI) under UV light illumination. Appl Catal B Environ 77:157–165

    CAS  Google Scholar 

  • Reyes-Contreras A, Camacho-López M, Camacho-López S, Olea-Mejía O, Esparza-García A, Bañuelos-Muñetón J, Camacho-López M (2017) Laser-induced periodic surface structures on bismuth thin films with ns laser pulses below ablation threshold. Optical Mater Express 7:1777–1786

    CAS  Google Scholar 

  • Sabate J, Anderson MA, Aguado MA, Giménez J, Cervera-March S, Hill CG (1992) Comparison of TiO2 powder suspensions and TiO2 ceramic membranes supported on glass as photocatalytic systems in the reduction of chromium(VI). J Mol Catal 71(1):57–68

  • Salarian A-A, Hami Z, Mirzaei N, Mohseni SM, Asadi A, Bahrami H, Vosoughi M, Alinejad A, Zare M-R (2016) N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. J Mol Liq 220:183–191

  • Saleh TA, Gupta VK (2012) Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res 19:1224–1228

    CAS  Google Scholar 

  • Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14(11):2717–2744

  • Shvets P, Dikaya O, Maksimova K, Goikhman A (2019) A review of Raman spectroscopy of vanadium oxides. J Raman Spectrosc 50:1226-1244

  • Siboni MS, Samarghandi M, Azizian S, Kim W, Lee S (2011) The removal of hexavalent chromium from aqueous solutions using modified holly sawdust: equilibrium and kinetics studies. Environ Eng Res 16:55–60

    Google Scholar 

  • Szkoda M, Siuzdak K, Lisowska-Oleksiak A, Karczewski J, Ryl J (2015) Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays. Electrochem Commun 60:212–215

    CAS  Google Scholar 

  • Tan T, Beydoun D, Amal R (2003) Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. J Photochem Photobiol A Chem 159:273–280

    CAS  Google Scholar 

  • Taziwa R, Meyer E, Takata N (2017) Structural and Raman spectroscopic characterization of C-TiO2 nanotubes synthesized by a template-assisted sol-gel technique. J Nanosci Nanotechnol Res 1:1–11

    Google Scholar 

  • Teng F et al (2014) Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl Catal B Environ 148-149:339–343. https://doi.org/10.1016/j.apcatb.2013.11.015

    Article  CAS  Google Scholar 

  • Valari M, Antoniadis A, Mantzavinos D, Poulios I (2015) Photocatalytic reduction of Cr (VI) over titania suspensions. Catal Today 252:190–194

    CAS  Google Scholar 

  • Wang L, Jiang X (2009) Unusual catalytic effects of iron salts on phenol degradation by glow discharge plasma in aqueous solution. J Hazard Mater 161:926–932

    CAS  Google Scholar 

  • Wang T-H, Navarrete-López AM, Li S, Dixon DA, Gole JL (2010) Hydrolysis of TiCl: initial steps in the production of TiO. J Phys Chem A 114(28):7561–7570

  • Wang H et al (2015) Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction. J Hazard Mater 286:187–194

    CAS  Google Scholar 

  • Wang Y et al (2019) Enhancement mechanism of fiddlehead-shaped TiO2-BiVO4 type II heterojunction in SPEC towards RhB degradation and detoxification. Appl Surf Sci 463:234–243

    CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    CAS  Google Scholar 

  • Yao Z, Jia F, Jiang Y, Li C, Jiang Z, Bai X (2010) Photocatalytic reduction of potassium chromate by Zn-doped TiO2/Ti film catalyst. Appl Surf Sci 256:1793–1797

    CAS  Google Scholar 

  • Yu J-H, Nam S-H, Lee JW, Kim DI, Boo J-H (2016) Synthesis and characterization of vanadium doped TiO 2 for the visible light-driven photocatalytic activity. In: 2016 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, Piscataway, pp 785–788

    Google Scholar 

  • Zhang F, Jin R, Chen J, Shao C, Gao W, Li L, Guan N (2005) High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. J Catal 232:424–431

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Research Coucil of Kermanshah University of Medical Sciences for the financial assistance. The authors also would like to acknowledge the support of South African Global Excellence and Stature (GES) and the Centre for High-Performance Computing (CHPC), South Africa.

Funding

This work was financially supported by the Research Council of Kermanshah University of Medical Sciences (Grant Number: 980349, Ethical Code: IR.KUMS.REC.1398.438).

Author information

Authors and Affiliations

Authors

Contributions

A Asadi: supervision, conceptualization, methodology, investigation, writing—original draft, formal analysis, validation, writing—review and editing, project administration. R. Akbarzadeh: conceptualization, methodology, synthesis, data curation, formal analysis, writing—original draft. N Farhadian: writing—original draft, formal analysis, validation, writing—review and editing. T hasani: data curation, experimental work. S Salehi Morovat: writing—review and editing.

Corresponding author

Correspondence to Anvar Asadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work was performed under the Ethical Code IR.KUMS.REC.1398.438.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Responsible Editor: Sami Rtimi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh, R., Farhadian, N., Asadi, A. et al. Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst. Environ Sci Pollut Res 28, 9417–9429 (2021). https://doi.org/10.1007/s11356-020-11330-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11330-w

Keywords

Navigation