Skip to main content

Advertisement

Log in

Bioaccumulation of 10 trace elements in juvenile fishes of the Lower Paraná River, Argentina: implications associated with essential fish growing habitat

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study assessed the concentration, bioconcentration, and bioaccumulation of As, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, and Zn in juvenile fishes (Acestrorynchus pantaneiro, Brycon orbygnianus, Cyphocharax voga, Megaleporinus obtusidens, Odontesthes bonariensis, Pimelodus maculatus, Prochilodus lineatus, Salminus brasiliensis, and Schizodon borelli) in the Lower Paraná River (Argentina), the most extensive floodplain from the Plata Basin. The floodplain is crucial for the reproduction and growth of various species such as P. lineatus, M. obtusidens, and S. brasiliensis, which complete their life cycle in this environment. In total, 90 individuals were sampled for nitrogen stable isotope, and trace element analysis in muscle tissue, water, and sediment was analyzed. The results show that all the studied species bioaccumulate Cr, Mg, Ni, and Zn. In particular, B. orbygnianus and P. maculatus presented the highest bioaccumulation factor for Cr. A biodilution of Co through the food chain was observed. No positive correlation was found between element concentration and trophic level, but we observed significant differences between trophic guilds (herbivorous, omnivorous, and carnivorous). Our findings suggest that feeding habits determine trace element concentrations. To establish differential behavior between different species within the aquatic web further studies are necessary, particularly in the floodplain of the Paraná, which is a crucial nursery area for most commercially important fishes from the Plata Basin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abujanra F, Agostinho AA, Hahn NS (2009) Effects of the flood regime on the body condition of fish of different trophic guilds in the Upper Paraná River floodplain, Brazil. Braz J Biol 69:459–468. https://doi.org/10.1590/S1519-69842009000300003

    Article  Google Scholar 

  • Adams SM, Ham KD (2011) Application of biochemical and physiological indicators for assessing recovery of fish populations in a disturbed stream. Environ Manage 47:1047–1063. https://doi.org/10.1007/s00267-010-9599-7

    Article  Google Scholar 

  • AFC (2012) Argentinean Food Codex. Buenos Aires, Argentina

    Google Scholar 

  • Agostinho AA, Gomes LC, Veríssimo S et al (2004) Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fisher 14:11–19. https://doi.org/10.1007/s11160-004-3551-y

    Article  Google Scholar 

  • Agostinho AA, Bonecker CC, Gomes LC (2009) Effects of water quantity on connectivity: the case of the upper Paraná River floodplain. Ecohydrol Hydrobiol 9:99–113. https://doi.org/10.2478/v10104-009-0040-x

    Article  Google Scholar 

  • Agostinho AA, Thomaz SM, Minte-Vera CV, Winemiller KO (2018) Biodiversity in the high Paraná River floodplain. In: Gopal B, Junk WJ, Davis JA (eds) Biodiversity in wetlands: assessment, function and conservation. Backhuys Publishers, Leiden, pp 89–118

    Google Scholar 

  • Ali H, Khan E (2018) Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett 16:903–917. https://doi.org/10.1007/s10311-018-0734-7

    Article  CAS  Google Scholar 

  • Ali H, Khan E (2019) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-Concepts and implications for wildlife and human health. Hum Ecol Risk Assess 25:1353–1376

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem ID:6730305. https://doi.org/10.1155/2019/6730305

  • Allen-Gil SM, Gubala CP, Landers DH, Lasorsa BK, Crecelius EA, Curtis LR (1997) Heavy metal accumulation in sediment and freshwater fish in US Arctic lakes. Environ Toxicol Chem 16:733–741. https://doi.org/10.1002/etc.5620160418

    Article  CAS  Google Scholar 

  • Amara R, Méziane T, Gilliers C, Hermel G, Laffargue P (2007) Growth and condition indices in juvenile sole Solea solea measured to assess the quality of essential fish habitat. Mar Ecol Prog Ser 351:201–208. https://doi.org/10.3354/meps07154

    Article  Google Scholar 

  • Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639. https://doi.org/10.1139/f01-004

    Article  Google Scholar 

  • Anderson C, Cabana G (2007) Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. J N Am Benthol Soc 26:273–285

    Article  CAS  Google Scholar 

  • APHA (2012) Standard Methods for the Examination of Water and Wastewater, twenty-second ed. American Water Works Association/American Public Works Association/Water Environment Federation

  • Arriberé MA, Campbell LM, Rizzo AP, Arcagni M, Revenga J, Guevara SR (2010) Trace elements in plankton, benthic organisms, and forage fish of Lake Moreno, Northern Patagonia, Argentina. Water Air Soil Pollut 212:167–182

    Article  Google Scholar 

  • Avigliano E, Lozano C, Plá RR, Volpedo AV (2016) Toxic element determination in fish from Paraná River Delta (Argentina) by neutron activation analysis: tissue distribution and accumulation and health risk assessment by direct consumption. J Food Compos Anal 54:27–36. https://doi.org/10.1016/j.jfca.2016.09.011

    Article  CAS  Google Scholar 

  • Avigliano E, Monferrán MV, Sánchez S, Wunderlin DA, Gastaminz J, Volpedo AV (2019) Distribution and bioaccumulation of 12 trace elements in water, sediment and tissues of the main fishery from different environments of the La Plata basin (South America): Risk assessment for human consumption. Chemosphere. 236:124394. https://doi.org/10.1016/j.chemosphere.2019.124394

    Article  CAS  Google Scholar 

  • Baigún CRM, Puig A, Minotti PG, Kandus P, Quintana R, Vicari R, Bo R, Oldani NO, Nestler JA (2008) Resource use in the Parana River Delta (Argentina): moving away from an ecohydrological approach? Ecohydrol Hydrobiol 8:245–262. https://doi.org/10.2478/v10104-009-0019-7

    Article  Google Scholar 

  • Baigún CRM, Minotti P, Oldani N (2013) Assessment of sábalo (Prochilodus lineatus) fisheries in the lower Paraná river basin (Argentina) based on hydrological, biological, and fishery indicators. Neotrop Ichthyol 11:199–210. https://doi.org/10.1590/S1679-62252013000100023

    Article  Google Scholar 

  • Baigún CRM, Colautti DC, Maiztegui T (2016) Rio de la Plata (La Plata River) and Estuary (Argentina and Uruguay). In: Finlayson C, Milton G, Prentice R, Davidson N (eds) The Wetland Book. Springer, Dordrecht, pp 1–9. https://doi.org/10.1007/978-94-007-6173-5_243-1

    Chapter  Google Scholar 

  • Baldo F, Drake P (2002) A multivariate approach to the feeding habits of small fishes in the Guadalquivir Estuary. J Fish Biol 61:21–32. https://doi.org/10.1111/j.1095-8649.2002.tb01758.x

    Article  Google Scholar 

  • Battauz YS, de Paggi SBJ, Paggi JC (2014) Passive zooplankton community in dry littoral sediment: reservoir of diversity and potential source of dispersal in a subtropical floodplain lake of the Middle Paraná River (Santa Fe, Argentina). Int Rev Hydrobiol 99:277–286. https://doi.org/10.1002/iroh.201301670

    Article  Google Scholar 

  • Bayley PB (1995) Understanding large river: floodplain ecosystems. BioScience 45:153–158. https://doi.org/10.2307/1312554

    Article  Google Scholar 

  • Blust R (2011) Cobalt. In: Fish physiology. Academic Press, pp 291-326

  • Boareto A, Giareta E, Guiloski I, Rodrigues M, Freire C (2018) Effects of short-term exposure to copper on biochemical biomarkers in juvenile freshwater fish. Pan-Am J Aquat Sci 13:135–147

    Google Scholar 

  • Bonetto AA (1975) Hydrologic regime of the Parana River and its influence on ecosystems. In: Coupling of land and water systems. Springer, Berlin, pp 10-175. https://doi.org/10.1007/978-3-642-86011-9

  • Bonetto AA, Wais I, Castello H (1989) The increasing damming of the Parana basin and its effects on the lower reaches. Reg Rivers Res Manag 4:333–346

    Article  Google Scholar 

  • Cabral HN (2000) Comparative feeding ecology of sympatric Solea solea and S. senegalensis, within the nursery areas of the Tagus estuary, Portugal. J Fish Biol 57:1550–1562. https://doi.org/10.1006/jfbi.2000.1408

    Article  Google Scholar 

  • Camargo MMP, Fernandes MN, Martinez CBR (2009) How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquat Toxicol 94:40–46

    Article  CAS  Google Scholar 

  • Campbell LM, Fisk AT, Wang W, Kock G, Muir DCG (2005a) Evidence for bio-magnification of rubidium in freshwater and marine food webs. Can J Fish Aquat Sci 62:1161–1167

    Article  CAS  Google Scholar 

  • Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005b) Mercury and other trace elements in a pelagic Artic marine food web (North-water Polynya, Baffin Bay). Sci Total Environ 351–352:247–263

    Article  Google Scholar 

  • Campbell PG, Giguère A, Bonneris E, Hare L (2005c) Cadmium-handling strategies in two chronically exposed indigenous freshwater organisms-the yellow perch (Perca flavescens) and the floater mollusc (Pyganodon grandis). Aquat Toxicol 72:83–97

    Article  CAS  Google Scholar 

  • Campos SAB, Dal-Magro J, de Souza-Franco GM (2018) Metals in fish of different trophic levels in the area of influence of the AHE Foz do Chapecó reservoir, Brazil. Environ Sci Pollut R 25:26330–26340.

  • Carvalho C, Fernandes MN (2008) Effect of copper on liver key enzymes of anaerobic glucose metabolism from freshwater tropical fish Prochilodus lineatus. Comp Biochem Physiol A Mol Integr Physiol 151:437–442. https://doi.org/10.1016/j.cbpa.2007.04.016

    Article  CAS  Google Scholar 

  • Cataldo D, Colombo JC, Boltovskoy D, Bilos C, Landoni P (2001) Environmental toxicity assessment in the Paraná river delta (Argentina): simultaneous evaluation of selected pollutants and mortality rates of Corbicula fluminea (Bivalvia) early juveniles. Environ Pollut 112:379–389. https://doi.org/10.1016/S0269-7491(00)00145-7

    Article  CAS  Google Scholar 

  • CCME (2003) Summary of existing Canadian environmental quality guidelines. Can Environ Qual Guidel

  • Chen CY, Stemberger RS, Klaue B, Blum JD, Pickhardt PC, Folt CL (2000) Accumulation of heavy metals in food web components across a gradient of lakes. Limnol Oceanogr 45:1525–1536

    Article  CAS  Google Scholar 

  • Coat S, Monti D, Bouchon C, Lepoint G (2009) Trophic relationships in a tropical stream food web assessed by stable isotope analysis. Freshw Biol 54:1028–1041

    Article  CAS  Google Scholar 

  • Cui B, Zhang Q, Zhang K, Liu X, Zhang H (2011) Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China. Environ Pollut 159:1297–1306

    Article  CAS  Google Scholar 

  • de Moraes LAF, Lenzi E, Luchese EB (1997) Mercury in two fish species from the Parana River floodplain, Parana, Brazil. Environ Pollut 98:123–127. https://doi.org/10.1016/S0269-7491(97)00101-2

    Article  Google Scholar 

  • Dhanakumar S, Solaraj G, Mohanraj R (2015) Heavy metal partitioning in sediments and bioaccumulation in commercial fish species of three major reservoirs of river Cauvery delta region, India. Ecotox Environ Safe 113:145–151. https://doi.org/10.1016/j.ecoenv.2014.11.032

    Article  CAS  Google Scholar 

  • Drago EC (2007) The physical dynamics of the river–lake floodplain system. In: The Middle Paraná River. Springer, Berlin, Heidelberg, pp 83-122. https://doi.org/10.1007/978-3-540-70624-3_4

  • EFSA (2009) EFSA Panel on contaminants in the food chain (CONTAM) scientific opinion on arsenic in food. https://doi.org/10.2903/j.efsa.2009.1351.

  • EFSA (2010) EFSA panel on contaminants in the food chain (CONTAM) scientific opinion on lead in food.

  • Erickson RJ, Mount DR, Highland TL, Hockett JR, Leonard EN, Mattson VR, Dawson TD, Lott KG (2010) Effects of copper, cadmium, lead, and arsenic in a live diet on juvenile fish growth. Can J Fish Aquat Sci 67:1816–1826. https://doi.org/10.1139/F10-098

    Article  CAS  Google Scholar 

  • Espinach Ros A, Fuentes C (2000) Recursos pesqueros y pesquerías de la Cuenca del Plata [Fishery resources and fisheries in the La Plata basin]. In: Bezzi S, Akselman R, Boschi E (Eds) Sintesis del estado de las pesquerías marítimas argentinas y de la Cuenca del Plata. Instituto Nacional de Investigación y Desarrollo Pesquero, pp. 353–388

  • Fang T, Lu W, Li J, Zhao X, Yang K (2017) Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China. Environ Sci Pollut Res 24(18):15390–15400. https://doi.org/10.1007/s11356-017-9053-y

    Article  CAS  Google Scholar 

  • FAO/WHO (1984) Codex alimentarius volume XVII-Contaminants. Roma

  • FAO/WHO (1989) Evaluation of certain food additives and the contaminants mercury, lead and cadmium, WHO Technical Report Series No. 505

  • Ferretti M, Cenni E, Bussotti F, Batistoni P (1995) Vehicle-induced lead and cadmium contamination of roadside soil and plants in Italy. Chem Ecol 11:21–228

    Article  Google Scholar 

  • Franco A, Elliott M, Franzoi P, Torricelli P (2008) Life strategies of fishes in European estuaries: the functional guild approach. Mar Ecol Prog Ser 354:219–228. https://doi.org/10.3354/meps07203

    Article  Google Scholar 

  • Frei R, Poiré D, Frei KM (2014) Weathering on land and transport of chromium to the ocean in a subtropical region (Misiones, NW Argentina): a chromium stable isotope perspective. Chem Geol 381:110–124. https://doi.org/10.1016/j.chemgeo.2014.05.015

    Article  CAS  Google Scholar 

  • Froese R, Pauly D (2012) Fishbase www.fishbase.org. World wide web electronic publication

  • Fuentes CM (1998) Deriva de larvas de Sabalo, Prochilodus lineatus (Valenciennes, 1847) y otras especies de peces de interés comercial, en el Río Paraná Inferior. Doctoral dissertation, Buenos Aires University

  • Gerking SD (1994) Feeding ecology of fish–Academic Press Inc. San Diego

  • Gómez S, Villar C, Bonetto C (1998) Zinc toxicity in the fish Cnesterodon decemmaculatus in the Paraná River and Río de La Plata Estuary. Environ Pollut 99:159–165. https://doi.org/10.1016/S0269-7491(97)00194-2

    Article  Google Scholar 

  • Grey J (2006) The use of stable isotope analyses in freshwater ecology: current awareness. Pol J Ecol 54:563–584

    CAS  Google Scholar 

  • Guo B, Jiao D, Wang J, Lei K, Lin C (2016) Trophic transfer of toxic elements in the estuarine invertebrate and fish food web of Daliao River, Liaodong Bay, China. Marine Poll Bull 13:258–265. https://doi.org/10.1016/j.marpolbul.2016.09.031

    Article  CAS  Google Scholar 

  • Gusso-Choueri PK, de Araújo GS, Cruz ACF, de Oliveira Stremel TR, de Campos SX, de Souza Abessa DM et al (2018) Metals and arsenic in fish from a Ramsar site under past and present human pressures: Consumption risk factors to the local population. Sci Total Environ 628:621–630. https://doi.org/10.1016/j.scitotenv.2018.02.005

    Article  CAS  Google Scholar 

  • Handy RD, Poxton MG (1993) Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fisher 3:205–241. https://doi.org/10.1007/BF00043929

    Article  Google Scholar 

  • Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can J Fish Aquat Sci 50:2071–2076

    Article  CAS  Google Scholar 

  • Jardine TD, Kidd KA, Fisk AT (2006) Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ Sci Technol 40:7501–7511

    Article  CAS  Google Scholar 

  • Joyeux JC, Campanha Filho EA, Jesus HCD (2004) Trace metal contamination in estuarine fishes from Vitória Bay, ES, Brazil. Braz Arch Biol Technol 47:765–774. https://doi.org/10.1590/S1516-89132004000500012

    Article  CAS  Google Scholar 

  • Kidd KA (1998) Use of stable isotope ratios in freshwater and marine biomagnification studies. Environ Toxicol:357–376

  • Kwok CK, Liang Y, Wang H, Dong YH, Leung SY, Wong MH (2014) Bioaccumulation of heavy metals in fish and Ardeid at Pearl River Estuary, China. Ecotox Environ Safe 106:62–67. https://doi.org/10.1016/j.ecoenv.2014.04.016

    Article  CAS  Google Scholar 

  • Lozano IE, Llamazares Vegh S, Gómez MI, Piazza YG, Salva JL, Fuentes CM (2019) Episodic recruitment of young Prochilodus lineatus (Valenciennes, 1836) (Characiformes: Prochilodontidae) during high discharge in a floodplain lake of the River Paraná, Argetina. Fish Manag Ecol. 26:260–268. https://doi.org/10.1111/fme.12348

    Article  Google Scholar 

  • Lunardelli B, Cabral MT, Vieira CE, Oliveira LF, Risso WE, Meletti PC, Martinez CB (2018) Chromium accumulation and biomarker responses in the Neotropical fish Prochilodus lineatus caged in a river under the influence of tannery activities. Ecotox Environ Safe 153:188–194. https://doi.org/10.1016/j.ecoenv.2018.02.023

    Article  CAS  Google Scholar 

  • Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, Cambridge

    Google Scholar 

  • Meng L, Orphanides CD, Christopher Powell J (2002) Use of a fish index to assess habitat quality in Narragansett Bay, Rhode Island. Trans Am Fish Soc 131:731–742. https://doi.org/10.1577/1548-8659(2002)131<0731:UOAFIT>2.0.CO;2

    Article  Google Scholar 

  • Merian E (1984) Introduction on environmental chemistry and global cycles of chromium, nickel, cobalt beryllium, arsenic, cadmium and selenium, and their derivatives. Toxicol Environ Chem 8:9–38

    Article  CAS  Google Scholar 

  • Monferrán MV, Garnero P, de los Angeles Bistoni M, Anbar AA, Gordon GW, Wunderlin DA (2016) From water to edible fish. Transfer of metals and metalloids in the San Roque Reservoir (Córdoba, Argentina). Implications associated with fish consumption. Ecol Indic 63:48–60. https://doi.org/10.1016/j.ecolind.2015.11.048

    Article  CAS  Google Scholar 

  • Mortuza MG, Al-Misned FA (2015) Heavy metal concentration in two freshwater fishes from Wadi Hanifah (Riyadh, Saudi Arabia) and evaluation of possible health hazard to consumers. Pak J Zool 47(3):839–845

    CAS  Google Scholar 

  • Nakatani K, Agostinho AA, Baumgartner G, Bialetzki A, Sanches PV, Makrakis MC, Pavanelli CS (2001) Ovos e larvas de peixes de água doce: desenvolvimento e manual de identificação. EDUEM, Maringá

    Google Scholar 

  • Nfon E, Cousins IT, Jarvinen O, Mukherjee AB, Verta M, Broman D (2009) Trophodynamics of mercury and other trace elements in a pelagic food chainfrom the Baltic. Sea Sci Total Environ 407:6267–6274

    Article  CAS  Google Scholar 

  • Nupelia F, Binacional I (1990) Ecologia de populações de peixes no Reservatório de Itaipu, nos primeiros anos de sua formação. Annual Report–Março/88 a Fevereiro/89, 7 etapa, Project Report Itaipu Binacional, Maringá, Paraná

  • Oliveira EF, Goulart E, Breda L, Minte-Vera CV, Paiva LRDS, Vismara MR (2010) Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotrop Ichthyol 8:569–586. https://doi.org/10.1590/S1679-62252010000300002

    Article  Google Scholar 

  • Owens NJP (1987) Natural variations in δ15N in marine environment. Adv Mar Biol 24:390–451

  • Ownby DR, Newman MC, Mulvey M, Vogelbein WK, Unger MA, Arzayus LF (2002) Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote contaminated sediments. Environ Toxicol Chem 21:1897–1902. https://doi.org/10.1002/etc.5620210917

    Article  CAS  Google Scholar 

  • Peluso L, Abelando M, Apartín CD, Almada P, Ronco AE (2013) Integrated ecotoxicological assessment of bottom sediments from the Paraná basin, Argentina. Ecotox Environ Safe 98:179–186. https://doi.org/10.1016/j.ecoenv.2013.09.001

    Article  CAS  Google Scholar 

  • Petry AC, Agostinho AA, Gomes LC (2003) Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotrop Ichthyol 1:111–119. https://doi.org/10.1590/S1679-62252003000200005

    Article  Google Scholar 

  • Pihl L, Modin J, Wennhage H (2005) Relating plaice (Pleuronectes platessa) recruitment to deteriorating habitat quality: effects of macroalgal blooms in coastal nursery grounds. Can J Fish Aquat Sci 62:184–1193. https://doi.org/10.1139/f05-023

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2

    Article  Google Scholar 

  • Quinn MR, Feng X, Folt CL, Chamberlain CP (2003) Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes. Sci Total Environ 317:73–89

    Article  CAS  Google Scholar 

  • Quiros R, Bechara JA, de Resende EK (2007) Fish diversity and ecology, habitats and fisheries for the un-dammed riverine axis Paraguay-Parana-Rio de la Plata (Southern South America). Aquat Ecosyst Health 10:187–200. https://doi.org/10.1080/14634980701354761

    Article  Google Scholar 

  • Revenga JE, Campbell LM, Arribére MA, Guevara SR (2012) Arsenic, cobalt and chromium food web biodilution in a Patagonia mountain lake. Ecotox Environ Safe 81:1–10. https://doi.org/10.1016/j.ecoenv.2012.03.014

    Article  CAS  Google Scholar 

  • Ribeiro AM, Risso WE, Fernandes MN, Martinez CB (2014) Lead accumulation and its effects on the branchial physiology of Prochilodus lineatus. Fish Physiol Biochem 40:645–657. https://doi.org/10.1007/s10695-013-9873-8

    Article  CAS  Google Scholar 

  • Ronco AE, Marino DJG, Abelando M, Almada P, Apartin CD (2016) Water quality of the main tributaries of the Parana Basin: glyphosate and AMPA in surface water and bottom sediments. Environ Monit Assess. 188. https://doi.org/10.1007/s10661-016-5467-0

  • Sagrario G, Ferrero L (2013) The trophic role of Cyphocharax voga (Hensel 1869) according to foraging area and diet analysis in turbid shallow lakes. Fund Appl Limnol 183:75–88. https://doi.org/10.1127/1863-9135/2013/0385

    Article  Google Scholar 

  • Sarre GA, Potter IC (2000) Variation in age compositions and growth rates of Acanthopagrus butcheri (Sparidae) among estuaries: some possible contributing factors. Fish Bull 98:785–799

    Google Scholar 

  • Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84. https://doi.org/10.1007/s10311-013-0430-6

    Article  CAS  Google Scholar 

  • Stassen MJ, van de Ven MW, van der Heide T, Hiza MAG, van der Velde G, Smolders AJ (2010) Population dynamics of the migratory fish Prochilodus lineatus in a neotropical river: the relationships with river discharge, flood pulse, El Niño and fluvial megafan behaviour. Neotrop Ichthyol 8:113–122. https://doi.org/10.1590/S1679-62252010005000006

    Article  Google Scholar 

  • Steele MA, Forrester GE (2002) Early postsettlement predation on three reef fishes: effects on spatial patterns of recruitment. Ecology 83:1076–1091. https://doi.org/10.1890/0012-9658(2002)083[1076:EPPOTR]2.0.CO;2

    Article  Google Scholar 

  • Suresh G, Ramasamy V, Sundarrajan M, Paramasivam K (2015) Spatial and vertical distributions of heavy metals and their potential toxicity levels in various beach sediments from high-background-radiation area, Kerala, India. Mar Pollut Bull 91:389–400

    Article  CAS  Google Scholar 

  • Sverlij, S.B., Espinach Ros, A., Ortí, G., 1993. Synopsis de los datos biológicos del sábalo Prochilodus lineatus (Valenciennes, 1847), Food and Agriculture Organization of the United Nations - FAO Fisheries Synopsis, vol. 154

  • Szedlmayer ST, Lee JD (2004) Diet shifts of juvenile red snapper (Lutjanus campechanus) with changes in habitat and fish size. Fish Bull 102:366–375

    Google Scholar 

  • Szpak P, Metcalfe JZ, Macdonald RA (2017) Best practices for calibrating and reporting stable isotope measurements in archaeology. J Archaeol Sci Rep 13:609–616

    Google Scholar 

  • Türkmen M, Ciminli C (2007) Determination of metals in fish and mussel species by inductively coupled plasma-atomic emission spectrometry. Food Chem 103:670–675. https://doi.org/10.1016/j.foodchem.2006.07.054

    Article  CAS  Google Scholar 

  • USEPA (1991) Technical support document for water quality-based toxics control. USEPA. US Environ Prot Agency

  • Van der Oost R, Beyer J, Vermeulen NP (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharm 13:57–149

    Article  Google Scholar 

  • Van Hattum B, Korthals G, Van Straalen NM, Govers HAJ, Joosse ENG (1993) Accumulation patterns of trace metals in freshwater isopods in sediment bioassays-Influence of substrate characteristics, temperature and pH. Water Res 27:669–684. https://doi.org/10.1016/0043-1354(93)90177-J

    Article  Google Scholar 

  • Vazzoler AE, Agostinho AA, Hahn NS (Eds) (1997) A planicie de inundaçao do alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. EDUEM, Maringa

  • Villar C, Stripeikis J, Tudino M, Troccoli O, Bonetto C (1999) Trace metal concentrations in coastal marshes of the Lower Parana River and the Rio de la Plata Estuary. Hydrobiologia 397:187–195. https://doi.org/10.1023/A:1003730306880

    Article  CAS  Google Scholar 

  • Villar C, Stripeikis J, Colautti D, D'huicque L, Tudino M, Bonetto C (2001) Metals contents in two fishes of different feeding behaviour in the Lower Paraná River and Río de la Plata Estuary. Hydrobiologia 457:225–233. https://doi.org/10.1023/A:1012285820526

    Article  Google Scholar 

  • Wantzen KM, Marchese MR, Marques MI, Battirola LD (2016) Invertebrates in neotropical floodplains. In: Batzer D, Boix D (eds) Invertebrates in freshwater wetlands. Springer, Cham, pp 493–524. https://doi.org/10.1007/978-3-319-24978-0_14

    Chapter  Google Scholar 

  • Webb RM, Gómez-Gómez F, McIntyre SC (1998) Contaminants in sediments deposited in the San Juan Bay Estuary System (1925-95). In: Tercer Simposio Internacional de Hidrologías Tropicales. San Juan, Puerto Rico

  • Welcomme RL (1985) River fisheries (No. 262). FAO Fisheries Technical Paper pp 339

  • Won EJ, Choi B, Hong S, Khim JS, Shin KH (2018) Importance of accurate trophic level determination by nitrogen isotope of amino acids for trophic magnification studies: a review. Environ Pollut 238:677–690

    Article  CAS  Google Scholar 

  • Yang J, Chen L, Liu LZ, Shi WL, Meng XZ (2014) Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol Environ Saf 102:129–135. https://doi.org/10.1016/j.ecoenv.2014.01.010

    Article  CAS  Google Scholar 

  • Ziyaadini M et al (2017) Biota-sediment accumulation factor and concentration of heavy metals (Hg, Cd, As, Ni, Pb and Cu) in sediments and tissues of Chiton lamyi (Mollusca: Polyplacophora: Chitonidae) in Chabahar Bay, Iran. Iran J Fish Sci 16(4):1123–1134

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the 3IA-UNSAM and Laboratorio de Isótopos en Ciencias Ambientales (CONICET & UTN FRSR) laboratory teams for their assistance and technical support. The authors thank C. Bidone for her valuable assistance during ICP-MS measurements. Authors thank Dr. R. Callicó Fortunato for the English revision. Authors are grateful to local fisherman N. Yapura for his help in fieldwork. Finally, S. Llamazares Vegh wants to thank Dr. C. Fuentes for his constant support.

Funding

Financial and logistic support was provided by the CONICET (P-UE 22920180100047CO), Universidad de Buenos Aires (UBACYT 20020150100052BA), and ANPCyT (PICT 2015-1823)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Llamazares Vegh.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 6 Quality control results obtained in the analysis of standard reference materials for water (NIST1640a), sediment (WQB-3), and fish (DORM-4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llamazares Vegh, S., Biolé, F., Bavio, M. et al. Bioaccumulation of 10 trace elements in juvenile fishes of the Lower Paraná River, Argentina: implications associated with essential fish growing habitat. Environ Sci Pollut Res 28, 365–378 (2021). https://doi.org/10.1007/s11356-020-10466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-10466-z

Keywords

Navigation