Skip to main content

Advertisement

Log in

Biota as toxic metal indicators

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Metal in the environment arises from both natural sources and human activities. Toxic metals in air, soil, and water have become a global problem. They are potential hazards to aquatic, animal, and human life because of their toxicity, bioaccumulative, and non-biodegradable nature. The major impacts of metal pollutants can be stated as ecosystem contamination and health problems of exposed human populations. Those problems have been a cause of increasing public concern throughout the world. Some trace metals are used by living organisms to stabilize protein structures, facilitate electron transfer reactions, and catalyze enzymatic reactions. But even metals that are biologically essential can be harmful to living organisms at high levels of exposure. An increasing concentration of heavy metals in the environment can modify mineral and enzyme functions of human beings. During the last two decades, the interest in using bioindicators as monitoring tools to assess environmental pollution with toxic metals has increased. Bioindicators are flora and fauna members, which are collected and analyzed to measure the levels of metal contaminants. Bioindicators therefore identify health hazards. Various living organisms, such as microbes, fungi, plants, animals, and humans, are used to monitor toxic metals from air, water, sediment, soil, and food chain. Here, we review recent bioindicators, toxicity assessment, and ecological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aboal RJ, Fernández AJ, Boquete T, Carballeira A (2010) Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci Total Environ 408:6291–6297

    CAS  Google Scholar 

  • Agusa T, Nomura K, Kunito T, Anan Y, Iwata H, Tanabe S (2011) Accumulation of trace elements in harp seals (Phoca groenlandica) from Pangnirtung in the Baffin Island, Canada. Mar Pollut Bull 63:489–499

    CAS  Google Scholar 

  • Ahmad BF (2006) Use of microorganisms as bioindicators for detecting of heavy metals. Master of Science. Universiti Putra, Malaysia

    Google Scholar 

  • Akcali I, Kucuksezgin F (2011) A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas. Mar Pollut Bull 62:637–645

    CAS  Google Scholar 

  • Ayodele JT, Bayero AS (2010) Manganese concentrations in hair and fingernail of some Kano inhabitants. J Appl Sci Environ Manag 14(1):17–21

    CAS  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Botany Volume 2012, Article ID 848614, p 6. doi:10.1155/2012/848614

  • Azizi NS, Colagar HA, Hafeziyan MS (2012) Removal of Cd (II) from aquatic system using Oscillatoria sp. biosorbent. Sci World J Article ID 347053, p 7. doi:10.1100/2012/347053

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    CAS  Google Scholar 

  • Backor M, Loppi S (2009) Interactions of lichens with heavy metals—a review. Biol Plant 53:214–222

    CAS  Google Scholar 

  • Bardi U (2010) Extracting minerals from seawater: an energy analysis. Sustainability 2:980–992. doi:10.3390/su2040980

    CAS  Google Scholar 

  • Baslar S, Dogan Y, Durkan N, Bag H (2009) Biomonitoring of zinc and manganese in bark of Turkish red pine of western Anatolia. J Environ Biol 30(5):831–834

    CAS  Google Scholar 

  • Basu N, Head J (2010) Mammalian wildlife as complementary models in environmental neurotoxicology. Neurotoxicol Teratol 32:114–119

    CAS  Google Scholar 

  • Basu N, Scheuhammer MA, Bursian JS, Elliott J, Rouvinen-Watt K, Chan MH (2007) Mink as a sentinel species in environmental health. Environ Res 103:130–144

    CAS  Google Scholar 

  • Bellante A, Sprovieri M, Buscaino G, Buffa G, Di Stefano V, Manta SD, Barra M, Filiciotto F, Bonanno A, Mazzola S (2012) Distribution of Cd and As in organs and tissues of four marine mammal species stranded along the Italian coasts. J Env Mon 14:2382–2391

    Google Scholar 

  • Bellotto VR, Miekeley N (2007) Trace metals in mussel shells and corresponding soft tissue samples: a validation experiment for the use of Perna perna shells in pollution monitoring. Anal Bioanal Chem 389(3):769–776

    Google Scholar 

  • Bhattacharya P, Samal CA, Majumdar J, Santra CS (2010) Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut 213:3–13

    CAS  Google Scholar 

  • Blagnytė R, Paliulis D (2010) Research into heavy metals pollution of atmosphere applying moss as bioindicator: a literature review. Environ Res Eng Manag 4(54):26–33, ISSN 2029-2139

    Google Scholar 

  • Boyle S, Kakouli-Duarte T (2008) Soils and bioindicators—the development of the nematode Steinernema feltiae as a bioindicator for chromium VI soil pollution (2008-FS-28-M1). EPA National Development Plan 2007-2013, STRIVE, Reports Series No. 38, Wexford, Ireland

  • Brej T (1998) Heavy metal tolerance in Agropyron repens (L.) P. Bauv. Populations from the Legnica copper smelter area, Lower Silesia. Acta Soc Bot Pol 67:325–333

    CAS  Google Scholar 

  • Burger J (2006) Bioindicators: a review of their use in the environmental literature 1970–2005. Environ Bioindic 1:136–144

    Google Scholar 

  • Burger J, Gochfeld M (2004) Marine birds as sentinels of environmental pollution. EcoHealth 1:263–274. doi:10.1007/s10393-004-0096-4

    Google Scholar 

  • CAOBISCO (1996) Heavy metals: 1–11. http://www.caobisco.com/doc_uploads/nutritional_factsheets/metals.pdf. Accessed 18 June 2012

  • Chen YC, Serrell N, Evers CD, Fleishman JB, Lambert FK, Weiss J, Mason RP, Bank SM (2008) Methylmercury in marine ecosystems—from sources to seafood consumers. Environ Health Perspect 116(12):1706–1712

    CAS  Google Scholar 

  • Chovanec A, Rudolf Hofer R, Schiemer F (2003) Fish as bioindicators. In: Breure AM, Markert BA, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier Science Ltd, Oxford, pp 639–676

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    CAS  Google Scholar 

  • COM (2004) Commission of the European Communities: Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee. “The European Environment & Health Action Plan 2004–2010”. Brussels 9.6.2004. COM (2004) Volume I and II. Brussels Belgium 2004:8; 2004:22

  • Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ Pollut 114:471–492

    CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris Copper and Zinc phytotoxicity: a comparison. J Plant Phys 159:869–876

    CAS  Google Scholar 

  • Dallinger R, Berger B, Gruber C, Hunziker P, Sturzenbaum S (2000) Metallothioneins in terrestrial invertebrates: structural aspects, biological significance and implications for their use as biomarkers. Cell Mol Biol 46:331–346

    CAS  Google Scholar 

  • Das KB, Roy A, Koschorreck M, Mandal MS, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43:883–894

    CAS  Google Scholar 

  • Dmuchowski W, Bytnerowicz A (2009) Long-term (1992–2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden. Environ Pollut 157:3413–3421

    CAS  Google Scholar 

  • Duarte AC, Giarratano E, Amin AO, Comoglio IL (2011) Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Mar Pollut Bull 62:1895–1904

    CAS  Google Scholar 

  • EC (2000) Council Directive 2000/14/EC of the European parliament and of the Council of 8 May 2000. Off J Eur Commun L 162/1–L 162/77

    Google Scholar 

  • EC (2004) Council Directive 2004/107/ec of the European parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off J Eur Union L 23/3–L 23/16

    Google Scholar 

  • EEA (2003) Hazardous substances in the European marine environment: Trends in metals and persistent organic pollutants. Topic report 2/2003

  • EEC (1979) Council directive 79/409/EEC of 2 April 1979 on the conservation of wild birds. http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1979/L/01979L0409-20070101-en.pdf. Data of access 5/09/2012

  • EEC (1990) Council directive 90/313/EEC of 7 June 1990 on the freedom of access to information on the environment. Off J Eur Union L 41/26–L L 41/32

  • FAO/WHO (2004) Summary of evaluations performed by the joint FAO/WHO expert committee on food additives (JECFA 1956–2003). ILSI Press International Life Sciences Institute, Washington, DC

    Google Scholar 

  • FAO/WHO (2007) Summary of evaluations performed by the joint FAO/WHO expert committee on food additives (JECFA 1956–2007) (first through 68th meetings). Food and Agriculture Organization of the United Nations and the World Health Organization. ILSI Press International Life Sciences Institute, Washington, DC

  • FAO/WHO (2010) Joint FAO/WHO expert committee on food additives. Seventy-third meeting, Geneva, 8–17 June 2010

  • Fatima AR, Ahmad M (2005) Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Sci Total Environ 346:256–273

    CAS  Google Scholar 

  • Filipovic-Trajkovic R, Ilic SZ, Sunic L, Andjelkovic S (2012) The potential of different plant species for heavy metals accumulation and distribution. J Food Agric Environ 10(1):959–964

    CAS  Google Scholar 

  • Freisinger E (2010) The metal-thiolate clusters of plant metallothioneins. Chim 64(4):216–224. doi:10.2533/chimia.2010.217

    Google Scholar 

  • Fritsch C, Coeurdassier M, Giraudoux P, Raoul F, Douay F (2011) Spatially explicit analysis of metal transfer to biota: influence of soil contamination and landscape. PLoS One 6(5):e20682. doi:10.1371/journal.pone.0020682

    CAS  Google Scholar 

  • Frontalini F, Coccioni R (2011) Benthic foraminifera as bioindicators of pollution: a review of Italian research over the last three decades. Revue de Micropaléontol 54:115–127

    Google Scholar 

  • Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol (CINP) 14(1):123–130

    CAS  Google Scholar 

  • Giarratano E, Gil MN, Malanga G (2011) Seasonal and pollution-induced variations in biomarkers of transplanted mussels within the Beagle Channel. Mar Pollut Bull 62:1337–1344

    CAS  Google Scholar 

  • Gundacker C, Hengstschläger M (2012) The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr 162(9–10):201–206

    Google Scholar 

  • Hall MC, Rhind MS, Wilson JM (2008) The potential for use of gastropod mollusks as bioindicators of endocrine disrupting compounds in the terrestrial environment. J Environ Monit 11:491–497

    Google Scholar 

  • Hargreaves LA, Whiteside PD, Grant Gilchrist G (2011) Concentrations of 17 elements, including mercury, in the tissues, food and abiotic environment of Arctic shorebirds. Sci Total Environ 409:3757–3770

    CAS  Google Scholar 

  • Harmens H, Norris DA, Koerber GR, Buse A, Steinnes E, Ruhling A (2008) Temporal trends (1990–2000) in the concentration of cadmium, lead and mercury in mosses across Europe. Environ Pollut 151:368–376

    CAS  Google Scholar 

  • Hashem RA, Abed FK (2007) Aluminum, cadmium and microorganisms in female hair and nails from Riyadh. Saudi Arabia J Med Sci 7(2):263–266

    CAS  Google Scholar 

  • Hauser-Davis AR, de Campos CR, Ziolli LR (2012) Fish metalloproteins as biomarkers of environmental contamination. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, Springer, Berlin. p 218. doi:10.1007/978-1-4614-3137-4_2

  • Hegelund NJ, Schiller M, Kichey T, Hansen HT, Pedas P, Husted S, Schjoerring KJ (2012) Barley metallothioneins. Plant Physiol Preview. doi:10.1104/pp.112.197798

    Google Scholar 

  • Hirano T, Tamae K (2010) Heavy metal-induced oxidative DNA damage in earthworms: a review. Appl Environ Soil Sci. doi:10.1155/2010/726946

    Google Scholar 

  • Hodkinson ID, Jackson JK (2005) Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environ Manag 35(5):649–666

    Google Scholar 

  • Holt EA, Miller SW (2011) Bioindicators: using organisms to measure environmental impacts. Nat Educ Knowl 2(2):8

    Google Scholar 

  • Horai S, Watanabe I, Takada H, Iwamizu Y, Hayashi T, Tanabe S, Kuno K (2007) Trace element accumulations in 13 avian species collected from the Kanto area, Japan. Sci Total Environ 373:512–525

    CAS  Google Scholar 

  • Hossain AM, Piyatida P, Teixeira da Silva AJ, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot, Article ID 872875. doi:10.1155/2012/872875

  • Hubbart AJ (2012) Hair analysis as an environmental health Bioindicator: a case-study using pelage of the California Ground Squirrel (Spermophilus beecheyi). Int J Appl Sci Technol 2:227–294

    Google Scholar 

  • Jakimska A, Konieczka P, Skora K, Namiesnik J (2011) Bioaccumulation of metals in tissues of marine animals, part II: metal concentrations in animal tissues. Pol J Environ Stud 20(5):1127–1146

    CAS  Google Scholar 

  • Johnson A, Singhal N, Hashmatt M (2011) Metal–plant interactions: toxicity and tolerance. Environ Pollut 20:29–63

    CAS  Google Scholar 

  • Joksimovic D, Stankovic S (2012) The trace metal accumulation in marine organisms of the southeastern Adriatic coast, Montenegro. J Serb Chem Soc 77(1):105–117

    CAS  Google Scholar 

  • Joksimovic D, Tomic I, Stankovic RA, Jovic M, Stankovic S (2011a) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127:632–637

    CAS  Google Scholar 

  • Joksimovic D, Stankovic RA, Stankovic S (2011b) Metal accumulation in the biological indicator (Posidonia oceanica) from the Montenegrin coast. Stud Mar 25(1):37–58

    Google Scholar 

  • Jovic M, Stankovic RA, Slavković Beskoski L, Tomic I, Degetto S, Stankovic S (2011) The environmental quality of the coastal water of the Boka Kotorska bay (Montenegro) using mussels as a bioindicator. J Serb Chem Soc 76(6):933–946

    CAS  Google Scholar 

  • Jovic M, Onjia A, Stankovic S (2012) Toxic metal health risk by mussel consumption. Environ Chem Lett 1:69–77

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace Elements in Soils and Plants, 2nd edn. CRC Press, Boca Ratón

  • Kakkar P, Jaffery FN (2005) Biological markers for metal toxicity. J Environ Toxicol Pharmacol 19:335–349

    CAS  Google Scholar 

  • Kakuschke A, Gandrass J, Luzardo PO, Boada DL, Zaccaroni A, Griesel S, Grebe M, Profrock D, Erbsloeh H-B, Valentine-Thon E, Prange A, Kramer K (2012) Postmortem health and pollution investigations on harbor seals (Phoca vitulina) of the islands Helgoland and Sylt. Int Sch Res Netw ISRN Zool, Vol. 2012, Article ID 106259, pp 1–8. doi:10.5402/2012/106259

  • Kalac P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    CAS  Google Scholar 

  • Kalisinska E, Lisowski P, Kosik-Bogacka DI (2012) Red Fox Vulpes vulpes (L., 1758) as a bioindicator of mercury contamination in terrestrial ecosystems of North-Western Poland. Biol Trace Elem Res 145:172–180

    CAS  Google Scholar 

  • Kitowski L, Kowalski R, Komosa A, Lechowski J, Grzywaczewski G, Scibior R, Pilucha G, Chrapowicki M (2012) Diversity of total mercury concentrations in kidneys of birds from Eastern Poland. Ekológia (Bratislava) 31(1):12–21

  • Kord B, Mataji A, Babaie S (2010) Pine (Pinus Eldarica Medw.) needles as indicator for heavy metals pollution. Int J Environ Sci Technol 7(1):79–84

    CAS  Google Scholar 

  • Krystofova O, Shestivska V, Galiova M, Novotny K, Kaiser J, Zehnalek J, Babula P, Opatrilova R, Adam V, Kizek R (2009) Sunflower plants as bioindicators of environmental pollution with lead (II) ions. Sensors 9:5040–5058

    CAS  Google Scholar 

  • Kumar C, Igbaria A, D’Autreaux B, Anne-Gaëlle Planson A-G, Junot C, Godat E, Bachhawat KA, Delaunay-Moisan A, Toledano BM (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 30(10):2044–2056

    CAS  Google Scholar 

  • Lai HY, Juang KW, Chen ZS (2010) Large-area experiment on uptake of metals by twelve plant species growing in soil contaminated with multiple metals. Int J Phytoremed 12:785–797

    CAS  Google Scholar 

  • Lam SKI, Wang XW (2008) Trace element deficiency in freshwater cladoceran Daphnia magna. Aquat Biol 1:217–224

    Google Scholar 

  • Lavery JT, Kemper MC, Sanderson K, Schultz GC, Coyle P, James G, Mitchell GJ, Seuront L (2009) Heavy metal toxicity of kidney and bone tissues in South Australian adult bottlenose dolphins (Tursiops aduncus). Mar Environ Res 67:1–7

    CAS  Google Scholar 

  • Luy N, Gobert S, Sartoretto S, Biondo R, Bouquegneau J-M, Richir J (2012) Chemical contamination along the Mediterranean French coast using Posidonia oceanica (L.) Delile above-ground tissues: a multiple trace element study. Ecol Indic 18:269–277

    CAS  Google Scholar 

  • Madoz-Escande C, Simon O (2006) Contamination of terrestrial gastropods, Helix aspersa maxima, with 137Cs, 85Sr, 133Ba and 123mTe by direct, trophic and combined pathways. J Environ Radioact 89:30–47

    CAS  Google Scholar 

  • Markert B, Wuenschmann S, Fraenzle S, Figueiredo GMA, Ribeiro PA, Wang M (2011) Bioindication of atmospheric trace metals—with special references to megacities. Environ Pollut 159:1991–1995

    CAS  Google Scholar 

  • Markovic J, Joksimovic D, Stankovic S (2012) Trace elements concentrations determined in collected wild mussels in the coastal area of southeastern Adriatic, Montenegro. Arch Biol Sci Belgrade 64(1):265–275

    Google Scholar 

  • Melaku S, Morris V, Raghavan D, Hosten C (2008) Seasonal variation of heavy metals in ambient air and precipitation at a single site in Washington, DC. Environ Pollut 155:88–98

    CAS  Google Scholar 

  • Moloukhia H, Sleem S (2011) Bioaccumulation, fate and toxicity of two heavy metals common in industrial wastes in two aquatic mollusks. J Am Sci 7(8):459–464

    Google Scholar 

  • Musarrat J, Zaidi A, Khan SM, Siddiqui AM, Al-Khedhairy AA (2011) Genotoxicity assessment of heavy metal–contaminated soils. Environ Pollut 20:323–342

    CAS  Google Scholar 

  • Nagajyoti CP, Lee DK, Sreekanth MVT (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nordberg M, Nordberg FG (2009) Metallothioneins: historical development and overview. Met Ions Life Sci 5:1–29

    CAS  Google Scholar 

  • Norgate T, Jahanshahi S, Rankin JW (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15:838–848

    Google Scholar 

  • Nriagu OA (1996) A history of global metal pollution. Science 272:223–224

    Google Scholar 

  • OECD (1994) Data requirements for pesticide registration in OECD member countries: survey results. Report. Organisation for Economic Co-operation and Development, Series on Pesticides No. 1, Paris

  • Olayinka OT, Idowu AB, Dedeke GA, Akinloye OA, Ademolu KO, Bamgbola AA (2011) Earthworm as bio-indicator of heavy metal pollution around Lafarge, Wapco Cement Factory, Ewekoro, Nigeria. Proceedings of the environmental man conference, Federal University of Agriculture, Abeokuta, Nigeria

  • OSPAR (2002) Cadmium. Hazardous substances series. OSPAR Commission 2002. OSPAR publication number 151/2002

  • Östensson O (2006) Mineral and metals production: an overview. Caromb Consulting, Stockholm

    Google Scholar 

  • Paoli L, Corsini A, Bigagli V, Vannini J, Bruscoli C, Loppi S (2012) Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ Pollut 161:70–75

    CAS  Google Scholar 

  • Park Y-B, Lee K-J, Ro M-H, Kim HJ (2011) Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Appl Soil Ecol 5:17–24

    Google Scholar 

  • Pokorny B (2006) Roe deer (Capreolus capreolus L.) antlers as an accumulative and reactive bioindicator of lead pollution near the largest Slovene thermal power plant. Vet Arh 76:S131–S142

    CAS  Google Scholar 

  • Rai N, Pal A (2002) Health hazards of heavy metals. EnviroNews ISEB India vol 8 No. 1. In: International conference on plants and environmental pollution (ICPEP-2). Proceedings of the 2nd international conference on plants and environmental pollution, Lucknow, India, 4–9 Feb 2002. http://isebindia.com/issuewise.html

  • Ratte TH, Hammers-Wirtz M, Cleuvers M (2003) Ecotoxicity testing. In: Markert AB, Breure MA, Zechmeister GH (eds) Bioindicators and biomonitors, Elsevier Science Ltd, Oxford, Vol. 6:221–256

  • Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport: a seed to wheel perspective. Series: green energy and technology. Springer, London, ISBN: 978-1-84882-137-8. doi:10.1007/978-1-84882-138-5

  • Reimann C, Matschullat J, Birke M, Salminen R (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24:1147–1167

    CAS  Google Scholar 

  • Rudy M (2010) Dependences between the age and the level of bioaccumulation of heavy metals in tissues and the chemical composition of wild boars’ meat. Food Add Contam 27:464–472

    CAS  Google Scholar 

  • Rybak A, Messyasz B, Łeska B (2012) Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg). Chemosphere 89:1066–1076

    CAS  Google Scholar 

  • Sanchez-Chardi A, Penarroja-Matutano C, Ribeiro OAC, Nadal J (2007) Bioaccumulation of metals and effects of a landfill in small mammals. Part II. The wood mouse, Apodemus sylvaticus. Chemosphere 70:101–109

    CAS  Google Scholar 

  • Semedo M, Reis-Henriques AM, Rey-Salgueiro L, Oliveira M, Delerue-Matos C, Morais S, Ferreira M (2012) Metal accumulation and oxidative stress biomarkers in octopus (Octopus vulgaris) from Northwest Atlantic. Sci Total Env 433:230–237

    Google Scholar 

  • Serbula MS, Miljkovic Dj D, Kovacevic MR, Ilic AA (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotoxicol Environ Saf 76:209–214

    CAS  Google Scholar 

  • Sevcikova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Veterin Med 56(11):537–546

    Google Scholar 

  • Shanker KA, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Shariati F, Shariati S (2011) Review on methods for determination of metallothioneins in aquatic organisms. Biol Trace Elem Res 141:340–366

    CAS  Google Scholar 

  • Smith NP, Cobb PG, Godard-Codding C, Hoff D, McMurry TS, Rainwater RT, Reynolds DK (2007) Contaminant exposure in terrestrial vertebrates. Environ Pollut 150:41–64

    CAS  Google Scholar 

  • Smolders R, Schramm K-W, Nickmilder M, Schoeters G (2009) Applicability of non-invasively collected matrices for human biomonitoring. Environ Health 8:8. doi:10.1186/1476-069X-8-8

    Google Scholar 

  • Sochova I, Hofman J, Holoubek I (2006) Using nematodes in soil ecotoxicology. Environ Int 32:374–383

    CAS  Google Scholar 

  • Stankovic S, Jovic M (2012) Health risks of heavy metals in the Mediterranean mussels as seafood. Environ Chem Lett 2:119–130

    Google Scholar 

  • Stankovic S, Jovic M (2013) Native and invasive mussels. In: Nowak Jarek, Kozlowski Michal (eds) MUSSELS: ecology, life habits and control, chap 1. NOVA Publisher, NY, pp 1–45

    Google Scholar 

  • Stankovic S, Stankovic RA (2013) Bioindicators of toxic metals. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 2, chap 5. Springer, Berlin, p 80

    Google Scholar 

  • Stankovic S, Jovic M, Stankovic RA, Katsikas L (2011) Heavy metals in seafood mussels. Risks for human health. In: Lichtfouse E et al (eds) Environmental chemistry for a sustainable world, vol 1, chap 9, 64:311–375, ISBN-10: 9400724411. ISBN-13: 978-94007244119. doi:10.1007/978-94-007-2442-6_9

  • Stankovic S, Jovic M, Milanov R, Joksimovic D (2011b) Trace elements concentrations (Zn, Cu, Pb, Cd, As and Hg) in the Mediterranean mussel (Mytilus galloprovincialis) and evaluation of mussel quality and possible human health risk from cultivated and wild sites of the southeastern Adriatic Sea, Montenegro. J Serb Chem Soc 76(12):1725–1737

    CAS  Google Scholar 

  • Suchara I, Sucharova J, Hola M, Reimann C, Boyd R, Filzmoser P, Englmaier P (2011) The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: a comparative study at the scale of the Czech Republic. Sci Total Environ 409:2281–2297

    CAS  Google Scholar 

  • Szyczewski P, Siepak J, Niedzielski P, Sobczyński T (2009) Research on heavy metals in Poland. Pol J Environ Stud 5:755–768

    Google Scholar 

  • Tataruch F, Kierdorf H (2003) Mammals as biomonitors. In: Markert AB, Breure MA, Zechmeister GH (eds) Bioindicators and biomonitors. Elsevier Science Ltd., Oxford 6:737–772

  • Torres AM, Barros PM, Campos GCS, Pinto E, Rajamani S, Sayre TR, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15

    CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Michael Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    CAS  Google Scholar 

  • Vardanyan L, Schmider K, Sayadyan H, Heege T, Heblinski J, Agyemang T, De J, Breuer J (2008) Heavy metal accumulation by certain aquatic macrophytes from lake Sevan (Armenia). In: Sengupta M and Dalwani R (eds) Proceedings of Taal-2007: the 12th world lake conference Jaipur, India. pp 1028–1038

  • Vlahogianni HT, Valavanidis A (2007) Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels M. galloprovincialis. Chem Ecol 23:361–371

    CAS  Google Scholar 

  • Vlahogianni T, Dassenakis M, Scoullos JM, Valavanidis A (2007) Integrated use of biomarkers (superoxide dismutase, catalase and lipid peroxidation) in mussels Mytilus galloprovincialis for assessing heavy metals’ pollution in coastal areas from the Saronikos Gulf of Greece. Mar Pollut Bull 54:1361–1371

    CAS  Google Scholar 

  • WHO (2007) Health risks of heavy metals from long-range transboundary air pollution. World Health Organization 2007. WHO Regional Office for Europe Copenhagen, Denmark ISBN 978 92 890 7179 6

  • Winkelmann KH (2005) On the applicability of imaging spectrometry for the detection and investigation of contaminated sites with particular consideration given to the detection of fuel hydrocarbon contaminants in soil. PhD Thesis, Brandenburg University of Technology

  • Wintle JN, Duffield AD, Barros BN, Jones DR, Rice MJ (2011) Total mercury in stranded marine mammals from the Oregon and southern Washington coasts. Mar Mammal Sci 27(4):E268–E278. doi:10.1111/j.1748-7692.2010.00461.x

    CAS  Google Scholar 

  • Wisłocka M, Krawczyk J, Klink A, Morrison L (2006) Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Pol J Environ Stud 15(5):811–818

    Google Scholar 

  • Wolff G, Pereira GC, Castro EM, Louzada J, Coelho FF (2012) The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: biomass and structure dependent on the cadmium concentration. Braz J Biol 72(1):71–77

    CAS  Google Scholar 

  • Wong CSC, Li X, Thornton I (2006) Urban environmental geochemistry of trace metals: a review. Environ Pollut 142:1–16

    CAS  Google Scholar 

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 183:1046–1052

    Google Scholar 

  • Yildiz D, Kula I, Ay G, Baslar S, Dogan Y (2010) Determination of trace elements in the plants of Mt. Bozdag, Izmir, Turkey. Arch Biol Sci Belgrade 62(3):731–738

    Google Scholar 

  • Zhang HC, Ge Y (2008) Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Sci 15:73–76

    Google Scholar 

  • Zhang WW, Ma ZJ (2011) Water birds as bioindicators of wetland heavy metal pollution. Procedia Environ Sci 10:2769–2774

    CAS  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the Ministry of Science and Technological Development of the Republic of Serbia, Contract No. III43009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavka Stankovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankovic, S., Kalaba, P. & Stankovic, A.R. Biota as toxic metal indicators. Environ Chem Lett 12, 63–84 (2014). https://doi.org/10.1007/s10311-013-0430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-013-0430-6

Keywords

Navigation