Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats

Abstract

Novel adsorbent, phosphoric acid-modified Paeonia ostii seed coats (PA-PSC) were successfully prepared by low-temperature pyrolysis to effectively remove Cu(II) from aqueous solution. The results revealed that equilibrium adsorption capacity (qe) of PA-PSC for Cu(II) was notably enhanced up to 4-folds compared with the raw PSC. FT-IR and XPS analyses suggested that the adsorption of Cu(II) by PA-PSC was primarily ascribed to electrostatic forces and complexing effects. Besides, equilibrium and kinetic studies demonstrated that Freundlich and pseudo-second-order models were the actually fairly good approximations of Cu(II) adsorption. Thermodynamic analysis revealed that the adsorption of Cu(II) onto PA-PSC was a chemical, endothermic, and spontaneous process. Lastly, reusability study further confirmed the applicability of PA-PSC as a promising adsorbent for removing Cu(II) from aqueous solution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Adebisi GA, Chowdhury ZZ, Alaba PA (2017) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958–968. https://doi.org/10.1016/j.jclepro.2017.02.047

    CAS  Article  Google Scholar 

  2. Ahmed MB, Zhou JL, Ngo HH, Guo WS, Chen MF (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851. https://doi.org/10.1016/j.biortech.2016.05.057

    CAS  Article  Google Scholar 

  3. Albadarin AB, Collins MN, Naushad M, Shirazian S, Walker G, Mangwandi C (2016) Activated lignin–chitosan extruded blends for efficient adsorption of methylene blue. Chem Eng J 307:264–272. https://doi.org/10.1016/j.cej.2016.08.089

    CAS  Article  Google Scholar 

  4. Almughamisi MS, Khan ZA, Alshitari W, Elwakeel KZ (2020) Recovery of chromium(VI) oxyanions from aqueous solution using cu(OH)2 and CuO embedded chitosan adsorbents. J Polym Environ 28:47–60. https://doi.org/10.1007/s10924-019-01575-z

    CAS  Article  Google Scholar 

  5. Altenor S, Carene B, Emmanuel E, Lambert J, Ehrhardt JJ, Gaspard S (2009) Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J Hazard Mater 165:1029–1039. https://doi.org/10.1016/j.jhazmat.2008.10.133

    CAS  Article  Google Scholar 

  6. Alves MD, Aracri FM, Cren ÉC, Mendes AA (2017) Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. Chem Eng J 311:1–12. https://doi.org/10.1016/j.cej.2016.11.069

    CAS  Article  Google Scholar 

  7. Amirnia S, Ray MB, Margaritis A (2016) Copper ion removal by Acer saccharum leaves in a regenerable continuous-flow column. Chem Eng J 287:755–764. https://doi.org/10.1016/j.cej.2015.11.056

    CAS  Article  Google Scholar 

  8. Babić BM, Milonjić SK, Polovina MJ, Kaludierović BV (1999) Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 37:477–481. https://doi.org/10.1016/s0008-6223(98)00216-4

    Article  Google Scholar 

  9. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC (2016) KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem Eng J 286:476–484. https://doi.org/10.1016/j.cej.2015.10.099

    CAS  Article  Google Scholar 

  10. Ben-Ali S, Jaouali I, Souissi-Najar S, Ouederni A (2016) Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. J Clean Prod 142:3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081

    CAS  Article  Google Scholar 

  11. Bilal M, Shah JA, Ashfaq T, Gardazi SMH, Tahir AA, Pervez A, Haroon H, Mahmood Q (2013) Waste biomass adsorbents for copper removal from industrial wastewater—a review. J Hazard Mater 263:322–333. https://doi.org/10.1016/j.jhazmat.2013.07.071

    CAS  Article  Google Scholar 

  12. Bilgin E, Erol K, Köse K, Köse DA (2018) Use of nicotinamide decorated polymeric cryogels as heavy metal sweeper. Environ Sci Pollut R 25:27614–27627. https://doi.org/10.1007/s11356-018-2784-6

    CAS  Article  Google Scholar 

  13. Blanco SPDM, Scheufele FB, Módenes AN, Espinoza-Quiñones FR, Marin P, Kroumov AD, Borba CE (2017) Kinetic, equilibrium and thermodynamic phenomenological modeling of reactive dye adsorption onto polymeric adsorbent. Chem Eng J 307:466–475. https://doi.org/10.1016/j.cej.2016.08.104

    CAS  Article  Google Scholar 

  14. Boehm HP (2002) Surface oxides on carbon and their analysis: a critical assessment. Carbon 40:145–149. https://doi.org/10.1016/s0008-6223(01)00165-8

    CAS  Article  Google Scholar 

  15. Chen XH, Xu RT, Xu YT, Hu H, Pan SQ, Pan HK (2018) Natural adsorbent based on sawdust for removing impurities in waste lubricants. J Hazard Mater 350:38–45. https://doi.org/10.1016/j.jhazmat.2018.01.057

    CAS  Article  Google Scholar 

  16. Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod 124:103–113. https://doi.org/10.1016/j.jclepro.2016.02.084

    CAS  Article  Google Scholar 

  17. Elwakeel KZ, El-Bindary AA, Kouta EY, Guibal E (2017) Functionalization of polyacrylonitrile/Na-Y-zeolite composite with amidoxime groups for the sorption of Cu(II), Cd(II) and Pb(II) metal ions. Chem Eng J 332:727–736. https://doi.org/10.1016/j.cej.2017.09.091

    CAS  Article  Google Scholar 

  18. Erol K, Uzun L (2017) Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. J Macromol Sci A 54:867–875. https://doi.org/10.1080/10601325.2017.1342519

    CAS  Article  Google Scholar 

  19. Gao XY, Wu L, Xu Q, Tian W, Li ZY, Kobayashi N (2018) Adsorption kinetics and mechanisms of copper ions on activated carbons derived from pinewood sawdust by fast H3PO4 activation. Environ Sci Pollut R 25:7907–7915. https://doi.org/10.1007/s11356-017-1079-7

    CAS  Article  Google Scholar 

  20. Gupta N, Sen R (2017) Kinetic and equilibrium modelling of Cu(II) adsorption from aqueous solution by chemically modified groundnut husk (Arachis hypogaea). J Environ Chem Eng 7:1–21. https://doi.org/10.1016/j.jece.2017.07.048

    CAS  Article  Google Scholar 

  21. Hamza MF, Aly MM, Adel-Rahman AA, Ramadan S, Raslan H, Wang SY, Vincent T, Guibal E (2017) Functionalization of magnetic chitosan particles for the sorption of U(VI), Cu(II) and Zn(II)—hydrazide derivative of glycine-grafted chitosan. Materials 10:539–559. https://doi.org/10.3390/ma10050539

    CAS  Article  Google Scholar 

  22. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    CAS  Article  Google Scholar 

  23. Ingle PK, Karishma A, Rathod VK (2016) Copper removal using acid activated peanut husk from aqueous solution. J Environ Eng Landsc 24:210–217. https://doi.org/10.3846/16486897.2016.1184151

    Article  Google Scholar 

  24. Jurado-López B, Vieira RS, Rabelo RB, Beppu MM, Casada J, Rodríguez-Castellón E (2017) Formation of complexes between functionalized chitosan membranes and copper: a study by angle resolved XPS. Mater Chem Phys 185:152–161. https://doi.org/10.1016/j.matchemphys.2016.10.018

    CAS  Article  Google Scholar 

  25. Kapoor M, Raj T, Vijayaraj M, Chopra A, Gupta RP, Tuli DK, Kumar R (2015) Structural features of dilute acid, steam exploded, and alkali pretreated mustard stalk and their impact on enzymatic hydrolysis. Carbohyd Polym 124:265–273. https://doi.org/10.1016/j.carbpol.2015.02.044

    CAS  Article  Google Scholar 

  26. Kennedy AR, Kirkhouse JBA, Mccarney KM, Puissegur O, Smith WE, Staunton E, Teat SJ, Cherryman JC, James R (2004) Supramolecular motifs in s-block metal-bound sulfonated monoazo dyes, part 1: structural class controlled by cation type and modulated by sulfonate aryl ring position. Chem Eur J 10:4606–4615. https://doi.org/10.1002/chem.200400375

    CAS  Article  Google Scholar 

  27. Koble RA, Corrigan TE (1952) Adsorption isotherms for pure hydrocarbons. Ind Eng Chem 44:383–387. https://doi.org/10.1021/ie50506a049

    CAS  Article  Google Scholar 

  28. Konggidinata MI, Chao B, Lian QY, Subramaniam R, Zappi M, Gang DD (2017) Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto ordered mesoporous carbon (OMC). J Hazard Mater 336:249–259. https://doi.org/10.1016/j.jhazmat.2017.04.073

    CAS  Article  Google Scholar 

  29. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1063/1.4929609

    CAS  Article  Google Scholar 

  30. Li RH, Liang W, Wang JJ, Gaston LA, Huang D, Huang H, Lei S, Awasthi MK, Zhou BY, Xiao R, Zhang ZQ (2018) Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash. J Environ Manag 212:77–87. https://doi.org/10.1016/j.jenvman.2017.12.034

    CAS  Article  Google Scholar 

  31. Lin G, Wang SX, Zhang LB, Hu T, Peng JH, Cheng S, Fu LK (2018) Selective and high efficient removal of Hg2+ onto the functionalized corn bract by hypophosphorous acid. J Clean Prod 192:639–646. https://doi.org/10.1016/j.jclepro.2018.05.043

    CAS  Article  Google Scholar 

  32. Liu Q, Qu LB, Ren BZ (2019) Effective removal of copper ions from aqueous solution by iminodiacetic acid-functionalized Paeonia ostii seed coats. J Disper Sci Technol 41:1126–1135. https://doi.org/10.1080/01932691.2019.1614457

    CAS  Article  Google Scholar 

  33. Lopičić ZR, Stojanović MD, Kaluđerović Radoičić TS, Milojković JV, Petrović MS, Mihajlović ML, Kijevčanin MLJ (2017) Optimization of the process of Cu(II) sorption by mechanically treated Prunus persica, L—contribution to sustainability in food processing industry. J Clean Prod 156:95–105. https://doi.org/10.1016/j.jclepro.2017.04.041

    CAS  Article  Google Scholar 

  34. Mahaninia MH, Rahimian P, Kaghazchi T (2015) Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution. Chin J Chem Eng 23:50–56. https://doi.org/10.1016/j.cjche.2014.11.004

    CAS  Article  Google Scholar 

  35. Mandal A, Singh N (2016) Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L. J Environ Sci Heal B 51:192–203. https://doi.org/10.1080/03601234.2015.1108817

    CAS  Article  Google Scholar 

  36. Myglovets M, Poddubnaya OI, Sevastyanova O, Lindstöm ME, Gawdzik B, Sobiesiak M, Tsyba MM, Sapsay VI, Klymchuk DO, Puziy AM (2014) Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80:771–783. https://doi.org/10.1016/j.carbon.2014.09.032

    CAS  Article  Google Scholar 

  37. Peng HB, Gao P, Chu G, Pan B, Peng JH, Xing BS (2017) Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853. https://doi.org/10.1016/j.envpol.2017.07.004

    CAS  Article  Google Scholar 

  38. Puziy AM, Poddubnaya OI, Martínez-Alonso A, Suárez-García F, Tascón JMD (2002) Synthetic carbons activated with phosphoric acid I. Surface chemistry and ion binding properties Carbon 40:1493–1505. https://doi.org/10.1016/S0008-6223(01)00317-7

    CAS  Article  Google Scholar 

  39. Romero-Cano LA, García-Rosero H, González-Gutiérrez LV, Baldenegro-Pérez LA, Carrasco-Marín F (2017) Functionalized adsorbents prepared from fruit peels: equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution. J Clean Prod 162:195–204. https://doi.org/10.1016/j.jclepro.2017.06.032

    CAS  Article  Google Scholar 

  40. Romero-González J, Peralta-Videa JR, Rodríguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn 37:343–347. https://doi.org/10.1016/j.jct.2004.09.013

    CAS  Article  Google Scholar 

  41. Sawalha MF, Peralta-Videa JR, Romero-González JR, Gardea-Torresdey JL (2006) Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies. J Colloid Interf Sci 300:100–104. https://doi.org/10.1016/j.jcis.2006.03.029

    CAS  Article  Google Scholar 

  42. Song XP, Jiang Y, Rong XJ, Wei W, Wang SF, Nie SX (2016) Surface characterization and chemical analysis of bamboo substrates pretreated by alkali hydrogen peroxide. Bioresour Technol 216:1098–1101. https://doi.org/10.1016/j.biortech.2016.06.026

    CAS  Article  Google Scholar 

  43. Šoštarić TD, Petrović MS, Pastor FT, Lončarević DR, Petrović JT, Milojković JV, Stojanović MD (2018) Study of heavy metals biosorption on native and alkali-treated apricot shells and its application in wastewater treatment. J Mol Liq 259:340–349. https://doi.org/10.1016/j.molliq.2018.03.055

    CAS  Article  Google Scholar 

  44. Thomas LC, Chittenden RA (1964) Characteristic infrared absorption frequencies of organophosphorus compounds-I the phosphoryl (P=O) group. Spectrochim Acta 20:467–487. https://doi.org/10.1016/0371-1951(64)80043-6

    CAS  Article  Google Scholar 

  45. Tong KS, Kassim MJ, Azraa A (2011) Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: equilibrium, kinetics, and thermodynamic studies. Chem Eng J 170:145–153. https://doi.org/10.1016/j.cej.2011.03.044

    CAS  Article  Google Scholar 

  46. Villaescusa I, Fiol N, Martínez M, Miralles N, Poch J, Serarols J (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002. https://doi.org/10.1016/j.watres.2003.10.040

    CAS  Article  Google Scholar 

  47. Wan ZQ, Li KQ (2018) Effect of pre-pyrolysis mode on simultaneous introduction of nitrogen/oxygen-containing functional groups into the structure of bagasse-based mesoporous carbon and its influence on Cu(II) adsorption. Chemosphere 194:370–380. https://doi.org/10.1016/j.chemosphere.2017.11.181

    CAS  Article  Google Scholar 

  48. Wang CQ, Wang H (2018) Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater—contribution to sustainability in agroforestry. J Clean Prod 184:921–928. https://doi.org/10.1016/j.jclepro.2018.03.004

    CAS  Article  Google Scholar 

  49. Wu L, Wan WJ, Shang ZS, Gao XY, Kobayashi N, Luo GQ, Li ZY (2018) Surface modification of phosphoric acid activated carbon by using non-thermal plasma for enhancement of Cu(II) adsorption from aqueous solutions. Sep Purif Technol 197:156–169. https://doi.org/10.1016/j.seppur.2018.01.007

    CAS  Article  Google Scholar 

  50. Yang GX, Jiang H (2014) Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res 48:396–405. https://doi.org/10.1016/j.watres.2013.09.050

    CAS  Article  Google Scholar 

  51. Zhang YH, Liu FQ, Zhu CQ, Zhang XP, Wei MM, Wang FH, Ling C, Li AM (2017a) Multifold enhanced synergistic removal of nickel and phosphate by a (N, Fe)-dual-functional bio-sorbent: mechanism and application. J Hazard Mater 329:290–298. https://doi.org/10.1016/j.jhazmat.2017.01.054

    CAS  Article  Google Scholar 

  52. Zhang XX, Shi QQ, Ji D, Niu LX, Zhang YL (2017b) Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia, section, Moutan, DC.) species native to China. Food Res Int 97:141–148. https://doi.org/10.1016/j.foodres.2017.03.018

    CAS  Article  Google Scholar 

  53. Zhong QQ, Yue QY, Li Q, Gao BY, Xu X (2014) Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass. Carbohyd Polym 111:788–796. https://doi.org/10.1016/j.carbpol.2014.05.043

    CAS  Article  Google Scholar 

  54. Zuo XJ, Liu ZG, Chen MD (2016) Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar. Bioresour Technol 207:262–267. https://doi.org/10.1016/j.biortech.2016.02.032

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Key R&D Program of China (Grant No.: 2017YFC0212404).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Baozeng Ren.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Han, R., Qu, L. et al. Enhanced adsorption of copper ions by phosphoric acid-modified Paeonia ostii seed coats. Environ Sci Pollut Res (2020). https://doi.org/10.1007/s11356-020-10296-z

Download citation

Keywords

  • Phosphoric acid modification
  • Paeonia ostii seed coats
  • Adsorption
  • Copper ions
  • Mechanism