Ahmad M, Arif MI (2008) Susceptibility of Pakistani populations of cotton aphid Aphis gossypii (Homoptera: Aphididae) to endosulfan, organophosphorus and carbamate insecticides. Crop Prot 27(3):523–531. https://doi.org/10.1016/j.cropro.2007.08.006
CAS
Article
Google Scholar
Alford AM, Krupke CH (2019) Movement of the neonicotinoid seed treatment clothianidin into groundwater, aquatic plants, and insect herbivores. Environ Sci Technol 53(24):14368–14376. https://doi.org/10.1021/acs.est.9b05025
CAS
Article
Google Scholar
Alix VC, Mercier T (2009) Risks to bees from dusts emitted at sowing of coated seeds: concerns, risk assessment and risk management. Julius-Kühn Archive
Al-mazra’awi MS, Ateyyat M (2009) Insecticidal and repellent activities of medicinal plant extracts against the sweet potato whitefly, Bemisia tabaci (Hom.: Aleyrodidae) and its parasitoid Eretmocerus mundus (Hym.: Aphelinidae). J Pest Sci 82(2):149–154
An R, Orellana D, Phelan LP, Cañas L, Grewal PS (2016) Entomopathogenic nematodes induce systemic resistance in tomato against Spodoptera exigua, Bemisia tabaci and Pseudomonas syringae. Biol Control 93:24–29. https://doi.org/10.1016/j.biocontrol.2015.11.001
Article
Google Scholar
Ansari MA, Evans M, Butt TM (2009) Identification of pathogenic strains of entomopathogenic nematodes and fungi for wireworm control. Crop Prot 28(3):269–272. https://doi.org/10.1016/j.cropro.2008.11.003
Article
Google Scholar
Antony B, Palaniswami MS, Kirk AA, Henneberry TJ (2004) Development of Encarsia bimaculata (Heraty and Polaszek) (Hymenoptera: Aphelinidae) in Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) nymphs. Biol Control 30(3):546–555. https://doi.org/10.1016/j.biocontrol.2004.01.018
Article
Google Scholar
Aqueel MA, Leather SR (2011) Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot 30(2):216–221. https://doi.org/10.1016/j.cropro.2010.09.013
Article
Google Scholar
Azzam S, Wang F, Wu J-C, Shen J, Wang L-P, Yang G-Q, Guo Y-R (2009) Comparisons of stimulatory effects of a series of concentrations of four insecticides on reproduction in the rice brown planthopper Nilaparvata lugens Stål (Homoptera: Delphacidae). Int J Pest Manag 55(4):347–358. https://doi.org/10.1080/09670870902934872
CAS
Article
Google Scholar
Azzam S, Yang F, Wu J-C, Geng J, Yang G-Q (2011) Imidacloprid-induced transference effect on some elements in rice plants and the brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae). Insect Sci 18(3):289–297. https://doi.org/10.1111/j.1744-7917.2010.01352.x
CAS
Article
Google Scholar
Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos Trans R Soc Lond Ser B Biol Sci 363(1492):761–776. https://doi.org/10.1098/rstb.2007.2182
CAS
Article
Google Scholar
Barratt BIP, Moran VC, Bigler F, van Lenteren JC (2018) The status of biological control and recommendations for improving uptake for the future. BioControl 63(1):155–167. https://doi.org/10.1007/s10526-017-9831-y
Article
Google Scholar
Barzman M, Paolo B, Nicholas A, Birch E, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen A-C, Ratnadass A, Ricci P, Sarah J-L, Sattin M (2015) Eight principles of integrated pest management. Agron Sustain Dev 35(4):1199–1215. https://doi.org/10.1007/s13593-015-0327-9
Article
Google Scholar
Basanth YS, Sannaveerappanavar VT, Sidde Gowda DK (2013) susceptibility of different populations of Nilaparvata lugens from major rice growing areas of Karnataka, India to Different Groups of Insecticides. Rice Sci 20(5):371–378. https://doi.org/10.1016/S1672-6308(13)60147-X
Article
Google Scholar
Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87. https://doi.org/10.1016/j.pestbp.2015.04.004
CAS
Article
Google Scholar
Bateman R (2016) The Role of Pesticides in SE Asian Rice IPM: a view from the Mekong Delta. Outlooks Pest Manag 27(2):53–60. https://doi.org/10.1564/v27_apr_02
Article
Google Scholar
Bažok R, Sivčev I, Kos T, Barčić JI, Kiss J, Jankovič S (2011) Pherocon AM trapping and the “whole plant count” method—a comparison of two sampling techniques to estimate the WCR adult densities in Central Europe. Cereal Res Commun 39(2):298–305 https://www.bib.irb.hr/444719?〈=ENLiving&rad = 444719
Article
Google Scholar
Bellamy DE, Asplen MK, Byrne DN (2004) Impact of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on open-field Bemisia tabaci (Hemiptera: Aleyrodidae) populations. Biol Control 29(2):227–234. https://doi.org/10.1016/S1049-9644(03)00150-6
Article
Google Scholar
Benefer CM, Knight ME, Ellis JS, Hicks H, Blackshaw RP (2012) Understanding the relationship between adult and larval Agriotes distributions: The effect of sampling method, species identification and abiotic variables. Appl Soil Ecol 53:39–48. https://doi.org/10.1016/j.apsoil.2011.11.004
Article
Google Scholar
Bi JL, Toscano NC, Madore MA (2003) Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations. J Chem Ecol 29(3):747–761. https://doi.org/10.1023/a:1022880905834
CAS
Article
Google Scholar
Bixler RD (2017) Beautiful bugs, bothersome bugs, and FUN bugs: examining human interactions with insects and other arthropods AU - Shipley, Nathan J. Anthrozoös 30(3):357–372. https://doi.org/10.1080/08927936.2017.1335083
Article
Google Scholar
Blacquière T, Smagghe G, van Gestel CAM, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21(4):973–992. https://doi.org/10.1007/s10646-012-0863-x
CAS
Article
Google Scholar
Bollinger EK, Caslick JW (1985) Northern corn rootworm beetle densities near a red-winged blackbird roost. Can J Zool 63(3):502–505. https://doi.org/10.1139/z85-073
Article
Google Scholar
Bommarco R, Miranda F, Bylund H, Björkman C (2011) Insecticides suppress natural enemies and increase pest damage in cabbage. J Econ Entomol 104(3):782–791. https://doi.org/10.1603/EC10444
CAS
Article
Google Scholar
Bommarco R, Kleijn D, Potts SG (2013) Ecological intensification: harnessing ecosystem services for food security. Trends Ecol Evol 28(4):230–238. https://doi.org/10.1016/j.tree.2012.10.012
Article
Google Scholar
Bonmatin JM, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell EA, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res Int 22(1):35–67. https://doi.org/10.1007/s11356-014-3332-7
CAS
Article
Google Scholar
Bortolotti L, Sabatini AG, Mutinelli F, Astuti M, Lavazza A, Piro R, Tesoriero D, Medrzycki P, Sgolastra F, Porrini C (2009) Spring honey bee losses in Italy, pp 148–152 https://www.cabdirect.org/cabdirect/abstract/20113401186
Google Scholar
Bottrell DG, Schoenly KG (2012) Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. J Asia Pac Entomol 15(1):122–140. https://doi.org/10.1016/j.aspen.2011.09.004
Article
Google Scholar
Brandl MA, Schumann M, Przyklenk M, Patel A, Vidal S (2017) Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum. J Pest Sci 90(2):479–493. https://doi.org/10.1007/s10340-016-0824-x
Article
Google Scholar
Bredeson MM, Lundgren JG (2015a) A survey of the foliar and soil arthropod communities in sunflower (Helianthus annuus) fields of central and eastern South Dakota. J Kansas Entomol Soc 88(3):305–315. https://doi.org/10.2317/0022-8567-88.3.305
Article
Google Scholar
Bredeson MM, Lundgren JG (2015b) Thiamethoxam seed treatments have no impact on pest numbers or yield in cultivated sunflowers. J Econ Entomol 108(6):2665–2671. https://doi.org/10.1093/jee/tov249
CAS
Article
Google Scholar
Bredeson MM, Reese RN, Lundgren JG (2015) The effects of insecticide dose and herbivore density on tri-trophic effects of thiamethoxam in a system involving wheat, aphids, and ladybeetles. Crop Prot 69:70–76. https://doi.org/10.1016/j.cropro.2014.12.010
CAS
Article
Google Scholar
Breuer GB, Schlegel J, Kauf P, Rupf R (2015) The Importance of Being Colorful and Able to Fly: Interpretation and implications of childrenʼs statements on selected insects and other invertebrates. Int J Sci Educ 37(16):2664–2687. https://doi.org/10.1080/09500693.2015.1099171
Article
Google Scholar
Burgio G, Ferrari R, Boriani L, Pozzati M, van Lenteren J (2006) The role of ecological infrastructures on Coccinellidae (Coleoptera) and other predators in weedy field margins within northern Italy agroecosystems. Bull Insectol 59 http://www.bulletinofinsectology.org/pdfarticles/vol59-2006-059-067burgio.pdf
Burgio G, Ragaglini G, Petacchi R, Ferrari R, Pozzati M, Furlan L (2012) Optimization of Agriotes sordidus monitoring in northern Italy rural landscape, using a spatial approach. Bull Insectol 65(1):123–131. http://www.bulletinofinsectology.org/pdfarticles/vol65-2012-123-131burgio.pdf
Google Scholar
Calvo-Agudo M, Gonzalez-Cabrera J, Pico Y, Calatayud-Vernich P, Urbaneja A, Dicke M, Tena A (2019) Neonicotinoids in excretion product of phloem-feeding insects kill beneficial insects. Proc Natl Acad Sci U S A 116(34):16817–16822. https://doi.org/10.1073/pnas.1904298116
CAS
Article
Google Scholar
Carreck NL, Ratnieks FLW (2014) The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies? J Apic Res 53(5):607–614. https://doi.org/10.3896/IBRA.1.53.5.08
Article
Google Scholar
Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22(1):119–134. https://doi.org/10.1007/s11356-014-3277-x
CAS
Article
Google Scholar
Choate BA, Lundgren JG (2015) Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis. Crop Prot 77:110–118. https://doi.org/10.1016/j.cropro.2015.07.021
Article
Google Scholar
Crafts-Brandner SJ (2002) Plant nitrogen status rapidly alters amino acid metabolism and excretion in Bemisia tabaci. J Insect Physiol 48(1):33–41. https://doi.org/10.1016/S0022-1910(01)00140-8
CAS
Article
Google Scholar
Cresswell JE, Desneux N, van Engelsdorp D (2012) Dietary traces of neonicotinoid pesticides as a cause of population declines in honey bees: an evaluation by Hillʼs epidemiological criteria. Pest Manag Sci 68(6):819–827. https://doi.org/10.1002/ps.3290
CAS
Article
Google Scholar
Cullen R, Warner KD, Jonsson M, Wratten SD (2008) Economics and adoption of conservation biological control:272–280. https://doi.org/10.1016/j.biocontrol.2008.01.016
Day RL, Hickman JM, Sprague RI, Wratten SD (2015) Predatory hoverflies increase oviposition in response to colour stimuli offering no reward: Implications for biological control. Basic Appl Ecol 16(6):544–552. https://doi.org/10.1016/j.baae.2015.05.004
Article
Google Scholar
Dedryver C-A, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol 333(6):539–553. https://doi.org/10.1016/j.crvi.2010.03.009
Article
Google Scholar
Deguine J-P, Ferron P, Russell D (2008) Sustainable pest management for cotton production. A review. Agron Sustain Dev 28(1):113–137. https://doi.org/10.1051/agro:2007042
Article
Google Scholar
Doucet-Personeni C, Halm MP, Touffet F, Rortais A, and Arnold G (2003) Imidaclopride utilisé en enrobage de semences (Gaucho®) et troubles des abeilles. Comité Scientifique et Technique de l'Etude Multifactorielle des Troubles des Abeilles (CST). https://controverses.sciences-po.fr/archive/pesticides/rapportfin.pdf
Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environ Sci Technol 49(8):5088–5097. https://doi.org/10.1021/es506141g
CAS
Article
Google Scholar
Douglas MR, Tooker JF (2016) Meta-analysis reveals that seed-applied neonicotinoids and pyrethroids have similar negative effects on abundance of arthropod natural enemies. PeerJ 4:e2776. https://doi.org/10.7717/peerj.2776
CAS
Article
Google Scholar
Douglas MR, Rohr JR, Tooker JF (2015) EDITOR'S CHOICE: Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. J Appl Ecol 52(1):250–260. https://doi.org/10.1111/1365-2664.12372
Article
Google Scholar
Down RE, Cuthbertson AGS, Mathers JJ, Walters KFA (2009) Dissemination of the entomopathogenic fungi, Lecanicillium longisporum and L. muscarium, by the predatory bug, Orius laevigatus, to provide concurrent control of Myzus persicae, Frankliniella occidentalis and Bemisia tabaci. Biol Control 50(2):172–178. https://doi.org/10.1016/j.biocontrol.2009.03.010
Article
Google Scholar
Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Prot 20(9):853–869. https://doi.org/10.1016/S0261-2194(01)00116-8
Article
Google Scholar
Eng ML, Stutchbury BJM, Morrissey CA (2019) A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 365(6458):1177–1180. https://doi.org/10.1126/science.aaw9419
CAS
Article
Google Scholar
Escalada MM, Heong KL (2004) A participatory exercise for modifying rice farmers’ beliefs and practices in stem borer loss assessment. Crop Prot 23(1):11–17. https://doi.org/10.1016/S0261-2194(03)00161-3
Article
Google Scholar
Esser AD, Milosavljević I, Crowder DW (2015) Effects of neonicotinoids and crop rotation for managing wireworms in wheat crops. J Econ Entomol 108(4):1786–1794. https://doi.org/10.1093/jee/tov160
CAS
Article
Google Scholar
Fabre F, Dedryver C-A, Plantegenest M, Hullé M, Rivot E (2010) Hierarchical Bayesian modelling of plant colonisation by winged aphids: inferring dispersal processes by linking aerial and field count data. Ecol Model 221(15):1770–1778. https://doi.org/10.1016/j.ecolmodel.2010.04.006
Article
Google Scholar
Finlay KJ, Luck JE (2011) Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop–vector–virus pathosystem. Agric Ecosyst Environ 144(1):405–421. https://doi.org/10.1016/j.agee.2011.08.011
Article
Google Scholar
Fogel MN, Schneider MI, Desneux N, Gonzalez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22(6):1063–1071. https://doi.org/10.1007/s10646-013-1094-5
CAS
Article
Google Scholar
Furlan L (1996) The biology of Agriotes ustulatus Schäller (Col., Elateridae). I. Adults and oviposition. J Appl Entomol 120(1-5):269–274. https://doi.org/10.1111/j.1439-0418.1996.tb01605.x
Article
Google Scholar
Furlan L (2004) The biology of Agriotes sordidus Illiger (Col., Elateridae). J Appl Entomol 128(9-10):696–706. https://doi.org/10.1111/j.1439-0418.2004.00914.x
Article
Google Scholar
Furlan (2005) An IPM approach targeted against wireworms: what has been done and what still has to be done. IOBC/WPRS Bull 28(2):91–100 10.1.1.427.501
Google Scholar
Furlan L (2014) IPM thresholds for Agriotes wireworm species in maize in Southern Europe. J Pest Sci 87(4):609–617. https://doi.org/10.1007/s10340-014-0583-5
Article
Google Scholar
Furlan L, Kreutzweiser D (2015) Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry. Environ Sci Pollut Res 22(1):135–147. https://doi.org/10.1007/s11356-014-3628-7
CAS
Article
Google Scholar
Furlan L, Tóth M (2007) Occurrence of click beetle pest spp.(Coleoptera, Elateridae) in Europe as detected by pheromone traps: survey results of 1998-2006. IOBC WPRS Bull 30(7):19 http://csalomontraps.com/7publications/clickbeetles7.pdf
Google Scholar
Furlan L, Contiero B, Chiarini F, Colauzzi M, Sartori E, Benvegnù I, Fracasso F, Giandon P (2017a) Risk assessment of maize damage by wireworms (Coleoptera: Elateridae) as the first step in implementing IPM and in reducing the environmental impact of soil insecticides. Environ Sci Pollut Res 24(1):236–251. https://doi.org/10.1007/s11356-016-7692-z
CAS
Article
Google Scholar
Furlan L, Vasileiadis VP, Chiarini F, Huiting H, Leskovšek R, Razinger J, Holb IJ, Sartori E, Urek G, Verschwele A, Benvegnù I, Sattin M (2017b) Risk assessment of soil-pest damage to grain maize in Europe within the framework of Integrated Pest Management. Crop Prot 97:52–59. https://doi.org/10.1016/j.cropro.2016.11.029
Article
Google Scholar
Furlan L, Pozzebon A, Duso C, Simon-Delso N, Sánchez-Bayo F, Marchand PA, Codato F, van Lexmond MB, Bonmatin J-M (2018) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-1052-5
Furlan L, Benvegnù I, Chiarini F, Loddo D, Morari F (2020) Meadow-ploughing timing as an integrated pest management tactic to prevent soil-pest damage to maize. Eur J Agron 112:125950. https://doi.org/10.1016/j.eja.2019.125950
CAS
Article
Google Scholar
Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R, Kuhlmann M, Kleijn D, Klein AM, Kremen C, Morandin L, Scheper J, Winfree R (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12(8):439–447. https://doi.org/10.1890/130330
Article
Google Scholar
Gerling D, Naranjo SE (1998) The Effect of insecticide treatments in cotton fields on the levels of parasitism of Bemisia tabaci (Gennadius) sl. Biol Control 12(1):33–41. https://doi.org/10.1006/bcon.1998.0613
Article
Google Scholar
Giarola LTP, Martins SGF, Toledo Costa MCP (2006) Computer simulation of Aphis gossypii insects using Penna aging model. Phys A Stat Mech Appl 368(1):147–154. https://doi.org/10.1016/j.physa.2005.11.057
Article
Google Scholar
Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22(1):103–118. https://doi.org/10.1007/s11356-014-3180-5
CAS
Article
Google Scholar
Goldberger JR, Lehrer N (2016) Biological control adoption in western U.S. orchard systems: results from grower surveys. Biol Control 102(C):101–111. https://doi.org/10.1016/j.biocontrol.2015.09.004
Article
Google Scholar
Gonzalez-Andujar JL, Garcia-de Ceca JL, Fereres A (1993) Cereal aphids expert system (CAES): identification and decision making. Comput Electron Agric 8(4):293–300. https://doi.org/10.1016/0168-1699(93)90017-U
Article
Google Scholar
Gosselke U, Triltsch H, Roßberg D, Freier B (2001) GETLAUS01—the latest version of a model for simulating aphid population dynamics in dependence on antagonists in wheat. Ecol Model 145(2):143–157. https://doi.org/10.1016/S0304-3800(01)00386-6
Article
Google Scholar
Gross K, Rosenheim JA (2011) Quantifying secondary pest outbreaks in cotton and their monetary cost with causal-inference statistics. Ecol Appl 21(7):2770–2780. https://doi.org/10.1890/11-0118.1
Article
Google Scholar
Grossman LS (1999) The Political ecology of bananas : contract farming, peasants, and agrarian change in the Eastern Caribbean / L.S. Grossman. Vol. 55
Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig JL, Villareal S, Van Chien H, Cuong Le Q, Channoo C, Chengwattana N, Lan LP, Hai Le H, Chaiwong J, Nicol HI, Perovic DJ, Wratten SD, Heong KL (2016) Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat Plants 2:16014 England
Article
Google Scholar
Gurr GM, Wratten SD, Landis DA, You M (2017) Habitat management to suppress pest populations: progress and prospects. Annu Rev Entomol 62:91–109. https://doi.org/10.1146/annurev-ento-031616-035050
CAS
Article
Google Scholar
Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55(1):34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011
Article
Google Scholar
Hadi BAR, Garcia CPF, Heong KL (2015) Susceptibility of Nilaparvata lugens (Hemipteran: Delphacidae) populations in the Philippines to insecticides. Crop Prot 76:100–102. https://doi.org/10.1016/j.cropro.2015.07.002
CAS
Article
Google Scholar
Harrington RC, Suzanne J, Welham SJ, Verrier PJ, Denholm CH, Hullé M, Maurice D, Rounsevell MD, Cocu N, European Union Examine Consortium (2007) Environmental change and the phenology of European aphids. Glob Chang Biol 13(8):1550–1564. https://doi.org/10.1111/j.1365-2486.2007.01394.x
Article
Google Scholar
He W, Yang M, Li Z, Qiu J, Liu F, Xiaosheng Q, Qiu Y, Li R (2015) High levels of silicon provided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper. Crop Prot 67:20–25. https://doi.org/10.1016/j.cropro.2014.09.013
CAS
Article
Google Scholar
Heinrichs, Mochida (1984) From secondary to major pest status: the case of insecticide-induced rice brown planthopper, Nilaparvata lugens, resurgence. Prot Ecol 1:201–218
Google Scholar
Hemerik L, Bianchi F, van de Wiel I, Fu D, Zou Y, Xiao H, van der Werf W (2018) Survival analysis of brown plant hoppers (Nilaparvata lugens) in rice using video recordings of predation events. Biol Control 127:155–161. https://doi.org/10.1016/j.biocontrol.2018.08.023
Article
Google Scholar
Henry M, Béguin M, Requier F, Rollin O, Odoux J-F, Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079):348–350. https://doi.org/10.1126/science.1215039
CAS
Article
Google Scholar
Heong KL, Escalada MM, Sengsoulivong V, Schiller J (2002) Insect management beliefs and practices of rice farmers in Laos. Agric Ecosyst Environ 92(2):137–145. https://doi.org/10.1016/S0167-8809(01)00304-8
Article
Google Scholar
Hermann A, Brunner N, Hann P, Wrbka T, Kromp B (2013) Correlations between wireworm damages in potato fields and landscape structure at different scales. J Pest Sci 86(1):41–51. https://doi.org/10.1007/s10340-012-0444-z
Article
Google Scholar
Herron GA, Wilson LJ (2011) Neonicotinoid resistance in Aphis gossypii Glover (Aphididae: Hemiptera) from Australian cotton. Aust J Entomol 50(1):93–98. https://doi.org/10.1111/j.1440-6055.2010.00788.x
Article
Google Scholar
Hladik ML, Main AR, Goulson D (2018) Environmental risks and challenges associated with neonicotinoid insecticides. Environ Sci Technol 52(6):3329–3335. https://doi.org/10.1021/acs.est.7b06388
CAS
Article
Google Scholar
Hoelmer KA (2007) Field cage evaluation of introduced Eretmocerus species (Hymenoptera: Aphelinidae) against Bemisia tabaci strain B (Homoptera: Aleyrodidae) on cantaloupe. Biol Control 43(2):156–162. https://doi.org/10.1016/j.biocontrol.2007.07.010
Article
Google Scholar
Hong-xing X, Yang Y-j, Lu Y-h, Zheng X-s, Jun-ce T, Feng-xiang L, Qiang F, Lu Z-x (2017) Sustainable management of rice insect pests by non-chemical-insecticide technologies in China. Rice Sci 24(2):61–72. https://doi.org/10.1016/j.rsci.2017.01.001
Article
Google Scholar
Horgan F (2017) Integrated pest management for sustainable rice cultivation: a holistic approach.
Horgan FG (2018) Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Prot 110:21–33. https://doi.org/10.1016/j.cropro.2018.03.013
CAS
Article
Google Scholar
Horgan FG, Crisol E (2013) Hybrid rice and insect herbivores in Asia. Entomol Exp Appl 148(1):1–19. https://doi.org/10.1111/eea.12080
Article
Google Scholar
Horgan FG, Ramal AF, Bernal CC, Villegas JM, Stuart AM, Almazan MLP (2016) Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Sci 6:7–15. https://doi.org/10.1016/j.profoo.2016.02.002
Article
Google Scholar
Hosaka T, Sugimoto K, Numata S (2017) Childhood experience of nature influences the willingness to coexist with biodiversity in cities. Palgrave Commun 3:17071. https://doi.org/10.1057/palcomms.2017.71
Article
Google Scholar
Houndété TA, Kétoh GK, Hema OSA, Brévault T, Glitho IA, Martin T (2010) Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Manag Sci 66(11):1181–1185. https://doi.org/10.1002/ps.2008
CAS
Article
Google Scholar
Humann-Guilleminot S, Binkowski ŁJ, Jenni L, Hilke G, Glauser G, Helfenstein F (2019a) A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J Appl Ecol 56(7):1502–1514. https://doi.org/10.1111/1365-2664.13392
CAS
Article
Google Scholar
Humann-Guilleminot S, Clément S, Desprat J, Binkowski ŁJ, Glauser G, Helfenstein F (2019b) A large-scale survey of house sparrows feathers reveals ubiquitous presence of neonicotinoids in farmlands. Sci Total Environ 660:1091–1097. https://doi.org/10.1016/j.scitotenv.2019.01.068
CAS
Article
Google Scholar
Jaffuel G, Hiltpold I, Turlings TCJ (2015) Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots can be used to induce quiescence in entomopathogenic nematodes. J Chem Ecol 41(9):793–800. https://doi.org/10.1007/s10886-015-0623-5
CAS
Article
Google Scholar
Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59(7):2897–2908. https://doi.org/10.1021/jf101303g
CAS
Article
Google Scholar
Johnson SN, Benefer CM, Frew A, Griffiths BS, Hartley SE, Karley AJ, Rasmann S, Schumann M, Sonnemann I, Robert CAM (2016) New frontiers in belowground ecology for plant protection from root-feeding insects. Appl Soil Ecol 108:96–107. https://doi.org/10.1016/j.apsoil.2016.07.017
Article
Google Scholar
Jung J, Racca P, Schmitt J, Kleinhenz B (2014) SIMAGRIO-W: Development of a prediction model for wireworms in relation to soil moisture, temperature and type. J Appl Entomol 138(3):183–194. https://doi.org/10.1111/jen.12021
Article
Google Scholar
Kabaluk T (2014) Targeting the click beetle Agriotes obscurus with entomopathogens as a concept for wireworm biocontrol. BioControl 59(5):607–616. https://doi.org/10.1007/s10526-014-9603-x
Article
Google Scholar
Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C, Hunt L, Larsen AE, Martinez-Salinas A, O'Rourke ME, Rusch A, Poveda K, Jonsson M, Rosenheim JA, Schellhorn NA, Tscharntke T, Wratten SD, Zhang W, Iverson AL, Adler LS, Albrecht M, Alignier A, Angelella GM, Zubair Anjum M, Avelino J, Batary P, Baveco JM, Fjja B, Birkhofer K, Bohnenblust EW, Bommarco R, Brewer MJ, Caballero-Lopez B, Carriere Y, Carvalheiro LG, Cayuela L, Centrella M, Cetkovic A, Henri DC, Chabert A, Costamagna AC, De la Mora A, de Kraker J, Desneux N, Diehl E, Diekotter T, Dormann CF, Eckberg JO, Entling MH, Fiedler D, Franck P, Frank van Veen FJ, Frank T, Gagic V, Garratt MPD, Getachew A, Gonthier DJ, Goodell PB, Graziosi I, Groves RL, Gurr GM, Hajian-Forooshani Z, Heimpel GE, Herrmann JD, Huseth AS, Inclan DJ, Ingrao AJ, Iv P, Jacot K, Johnson GA, Jones L, Kaiser M, Kaser JM, Keasar T, Kim TN, Kishinevsky M, Landis DA, Lavandero B, Lavigne C, Le Ralec A, Lemessa D, Letourneau DK, Liere H, Lu Y, Lubin Y, Luttermoser T, Maas B, Mace K, Madeira F, Mader V, Cortesero AM, Marini L, Martinez E, Martinson HM, Menozzi P, Mitchell MGE, Miyashita T, Molina GAR, Molina-Montenegro MA, O'Neal ME, Opatovsky I, Ortiz-Martinez S, Nash M, Ostman O, Ouin A, Pak D, Paredes D, Parsa S, Parry H, Perez-Alvarez R, Perovic DJ, Peterson JA, Petit S, Philpott SM, Plantegenest M, Plecas M, Pluess T, Pons X, Potts SG, Pywell RF, Ragsdale DW, Rand TA, Raymond L, Ricci B, Sargent C, Sarthou JP, Saulais J, Schackermann J, Schmidt NP, Schneider G, Schuepp C, Sivakoff FS, Smith HG, Stack Whitney K, Stutz S, Szendrei Z, Takada MB, Taki H, Tamburini G, Thomson LJ, Tricault Y, Tsafack N, Tschumi M, Valantin-Morison M, Van Trinh M, van der Werf W, Vierling KT, Werling BP, Wickens JB, Wickens VJ, Woodcock BA, Wyckhuys K, Xiao H, Yasuda M, Yoshioka A, Zou Y (2018) Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc Natl Acad Sci U S A 115(33):E7863–e7870. https://doi.org/10.1073/pnas.1800042115
CAS
Article
Google Scholar
Kaster V, and Showers JW (1984) Modeling black cutworm (Lepidoptera: Noctuidae) field development in Iowa. Vol 13
Khatiwada JR, Ghimire S, Khatiwada SP, Paudel B, Bischof R, Jiang J, Haugaasen T (2016) Frogs as potential biological control agents in the rice fields of Chitwan, Nepal. Agric Ecosyst Environ 230:307–314. https://doi.org/10.1016/j.agee.2016.06.025
Article
Google Scholar
Kim JJ, Kim KC (2008) Selection of a highly virulent isolate of Lecanicillium attenuatum against cotton aphid. J Asia Pac Entomol 11(1):1–4. https://doi.org/10.1016/j.aspen.2008.02.001
Article
Google Scholar
Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43(1):243–270. https://doi.org/10.1146/annurev.ento.43.1.243
CAS
Article
Google Scholar
Koo H-N, An J-J, Park S-E, Kim J-I, Kim G-H (2014) Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Prot 55:91–97. https://doi.org/10.1016/j.cropro.2013.09.010
CAS
Article
Google Scholar
Kos T, Bažok R, Gunjača J, Igrc Barčić J (2014) Western corn rootworm adult captures as a tool for the larval damage prediction in continuous maize. J Appl Entomol 138(3):173–182. https://doi.org/10.1111/jen.12010
Article
Google Scholar
Kuhlmann U, van der Burgt WACM (1998) Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol News Inf 19(2):59–68 https://www.cabi.org/isc/abstract/19981107724
Google Scholar
Kumar R, Kranthi S, Nitharwal M, Jat SL, Monga D (2012) Influence of pesticides and application methods on pest and predatory arthropods associated with cotton. Phytoparasitica 40(5):417–424. https://doi.org/10.1007/s12600-012-0241-5
CAS
Article
Google Scholar
Kurtz B, Hiltpold I, Turlings TCJ, Kuhlmann U, Toepfer S (2008) Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes. BioControl 54(2):255–262. https://doi.org/10.1007/s10526-008-9156-y
Article
Google Scholar
Kuusk AK, Cassel-Lundhagen A, Kvarnheden A, Ekbom B (2008) Tracking aphid predation by lycosid spiders in spring-sown cereals using PCR-based gut-content analysis. Basic Appl Ecol 9(6):718–725. https://doi.org/10.1016/j.baae.2007.08.012
CAS
Article
Google Scholar
Kwon SH, Kim D-S (2017) Effects of temperature and photoperiod on the production of sexual morphs of Aphis gossypii (Hemiptera: Aphididae) in Jeju, Korea. J Asia Pac Entomol 20(1):53–56. https://doi.org/10.1016/j.aspen.2016.11.006
Article
Google Scholar
LaCanne CE, Lundgren JG (2018) Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ 6:e4428. https://doi.org/10.7717/peerj.4428
Article
Google Scholar
Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201. https://doi.org/10.1146/annurev.ento.45.1.175
CAS
Article
Google Scholar
Lazreg F, Huang Z, Ali S, Ren S (2009) Effect of Lecanicillium muscarium on Eretmocerus sp. nr. furuhashii (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Hemiptera: Aleyrodidae). J Pest Sci 82(1):27–32. https://doi.org/10.1007/s10340-008-0215-z
Article
Google Scholar
Liu J-L, Zhang H-M, Chen X, Yang X, Jin-Cai W (2013) Effects of rice potassium level on the fecundity and expression of the vitellogenin gene of Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). J Asia Pac Entomol 16(4):411–414. https://doi.org/10.1016/j.aspen.2013.06.001
CAS
Article
Google Scholar
Losey JE, Vaughan M (2006) The Economic Value of ecological services provided by insects. BioScience 56(4):311–323. https://doi.org/10.1641/0006-3568(2006)56[311:tevoes]2.0.co;2
Article
Google Scholar
Lu Z-X, Heong K-L, Yu X-P, Cui H (2004) Effects of plant nitrogen on ecological fitness of the brown planthopper, Nilaparvata lugens Stal. in rice. J Asia Pac Entomol 7(1):97–104. https://doi.org/10.1016/S1226-8615(08)60204-6
Article
Google Scholar
Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487(7407):362–365. https://doi.org/10.1038/nature11153
CAS
Article
Google Scholar
Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R (2015) Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLoS One 10(8):e0136928. https://doi.org/10.1371/journal.pone.0136928
CAS
Article
Google Scholar
Ma F, Ding Z, Cheng X (2001) Chaos and predictable time-scale of the brown planthopper Nilaparvata Lugens (Stål) occurrence system. J Asia Pac Entomol 4(1):67–74. https://doi.org/10.1016/S1226-8615(08)60106-5
Article
Google Scholar
Ma X-y, Wu H-w, Jiang W-l, Ma Y-j, Ma Y (2016) Weed and insect control affected by mixing insecticides with glyphosate in cotton. J Integr Agric 15(2):373–380. https://doi.org/10.1016/S2095-3119(15)61188-1
CAS
Article
Google Scholar
Mann JA, Harrington R, Carter N, Plumb RT (1997) Control of aphids and barley yellow dwarf virus in spring-sown cereals. Crop Prot 16(1):81–87. https://doi.org/10.1016/S0261-2194(96)00068-3
Article
Google Scholar
Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields*. Weed Res 43(2):77–89. https://doi.org/10.1046/j.1365-3180.2003.00326.x
Article
Google Scholar
Matsumura M, Takeuchi H, Satoh M, Sanada-Morimura S, Otuka A, Watanabe T, Van Thanh D (2008) Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manag Sci 64(11):1115–1121. https://doi.org/10.1002/ps.1641
CAS
Article
Google Scholar
Matsuura A, Nakamura M (2014) Development of neonicotinoid resistance in the cotton aphid Aphis gossypii (Hemiptera: Aphididae) in Japan. Appl Entomol Zool 49(4):535–540. https://doi.org/10.1007/s13355-014-0289-4
CAS
Article
Google Scholar
Matyjaszczyk E (2017) Comparison between seed and foliar treatment as a tool in integrated pest management. J Agric Food Chem 65(30):6081–6086. https://doi.org/10.1021/acs.jafc.7b01095
CAS
Article
Google Scholar
Matyjaszczyk E, Sobczak J, Szulc M (2015) Is the possibility of replacing seed dressings containing neonicotinoids with other means of protection viable in major Polish agricultural crops? J Plant Prot Res 55(4). https://doi.org/10.1515/jppr-2015-0056
Maxim L, van der Sluijs J (2013) Seed-dressing systemic insecticides and honeybees. in late lessons from early warnings: science, precaution, innovation. European Environment Agency (EEA), Copenhagen
Google Scholar
McNeil JN, Cotnoir PA, Leroux T, Laprade R, Schwartz JL (2010) A Canadian national survey on the public perception of biological control. BioControl 55(4):445–454. https://doi.org/10.1007/s10526-010-9273-2
Article
Google Scholar
Meehan TD, Gratton C (2016) A landscape view of agricultural insecticide use across the conterminous US from 1997 through 2012. PLoS One 11(11):e0166724–e0166724. https://doi.org/10.1371/journal.pone.0166724
CAS
Article
Google Scholar
Metcalf RL (1986) Methods for the study of pest Diabrotica. In: Krysan J, Miller T (eds) Foreword. Spingerl-Verlag, New York, pp 1–23 https://link.springer.com/content/pdf/bfm%3A978-1-4612-4868-2%2F1.pdf
Google Scholar
Milosavljević I, Esser AD, Murphy KM, Crowder DW (2019) Effects of imidacloprid seed treatments on crop yields and economic returns of cereal crops. Crop Prot 119:166–171. https://doi.org/10.1016/j.cropro.2019.01.027
CAS
Article
Google Scholar
Min S, Lee SW, Choi B-R, Lee SH, Kwon DH (2014) Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stål), a migratory pest in Korea. J Asia Pac Entomol 17(4):711–716. https://doi.org/10.1016/j.aspen.2014.07.005
CAS
Article
Google Scholar
Miranda M, Vedenov DV (2001) Innovations in agricultural and natural disaster insurance. Am J Agric Econ 83(3):650–655. https://doi.org/10.1111/0002-9092.00185
Article
Google Scholar
Mourtzinis S, Krupke CH, Esker PD, Varenhorst A, Arneson NJ, Bradley CA, Byrne AM, Chilvers MI, Giesler LJ, Herbert A, Kandel YR, Kazula MJ, Hunt C, Lindsey LE, Malone S, Mueller DS, Naeve S, Nafziger E, Reisig DD, Ross WJ, Rossman DR, Taylor S, Conley SP (2019) Neonicotinoid seed treatments of soybean provide negligible benefits to US farmers. Sci Rep 9(1):11207. https://doi.org/10.1038/s41598-019-47442-8
CAS
Article
Google Scholar
Moustier P, Tam PTG, Anh DT, Binh VT, Loc NTT (2010) The role of farmer organizations in supplying supermarkets with quality food in Vietnam. Food Policy 35(1):69–78. https://doi.org/10.1016/j.foodpol.2009.08.003
Article
Google Scholar
Muneret L, Mitchell M, Seufert V, Aviron S, Djoudi EA, Petillon J, Plantegenest M, Thiery D, Rusch A (2018) Evidence that organic farming promotes pest control. Nat Sustain 1(7):361–368. https://doi.org/10.1038/s41893-018-0102-4
Article
Google Scholar
Nanthakumar M, Jhansi Lakshmi V, Shashi Bhushan V, Balachandran SM, Mohan M (2012) Decrease of rice plant resistance and induction of hormesis and carboxylesterase titre in brown planthopper, Nilaparvata lugens (Stål) by xenobiotics. Pestic Biochem Physiol 102(2):146–152. https://doi.org/10.1016/j.pestbp.2011.12.006
CAS
Article
Google Scholar
Naranjo SE (2001) Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Prot 20(9):835–852. https://doi.org/10.1016/S0261-2194(01)00115-6
Article
Google Scholar
Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645. https://doi.org/10.1146/annurev-ento-010814-021005
CAS
Article
Google Scholar
Naveed M, Salam A, Saleem MA (2007) Contribution of cultivated crops, vegetables, weeds and ornamental plants in harboring of Bemisia tabaci (Homoptera: Aleyrodidae) and associated parasitoids (Hymenoptera: Aphelinidae) in cotton agroecosystem in Pakistan. J Pest Sci 80(4):191–197. https://doi.org/10.1007/s10340-007-0171-z
Article
Google Scholar
Naveed M, Salam A, Saleem MA, Sayyed AH (2008) Effect of foliar applications of some insecticides onBemisia tabaci, predators and parasitoids: Implications in its management in Pakistan. Phytoparasitica 36(4):377–387. https://doi.org/10.1007/bf02980817
CAS
Article
Google Scholar
Nicholls CI, Pérez N, Vasquez L, Altieri MA (2002) The Development and status of biologically based integrated pest management in Cuba. Integr Pest Manag Rev 7(1):1–16. https://doi.org/10.1023/a:1025728320114
Article
Google Scholar
Nielsen C, Steenberg T (2004) Entomophthoralean fungi infecting the bird cherry-oat aphid, Rhopalosiphum padi, feeding on its winter host bird cherry, Prunus padus. J Invertebr Pathol 87(1):70–73. https://doi.org/10.1016/j.jip.2004.05.003
Article
Google Scholar
Noleppa S, Hahn T (2013) The value of neonicotinoid seed treatment in the European Union: a socioeconomic, technological and environmental review. In Humboldt Forum for Food and Agriculture (HFFA)
Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43. https://doi.org/10.1017/S0021859605005708
Article
Google Scholar
Parker WE (1994) Evaluation of the use of food baits for detecting wireworms (Agriotes spp., Coleoptera: Elateridae) in fields intended for arable crop production. Crop Prot 13(4):271–276. https://doi.org/10.1016/0261-2194(94)90014-0
Article
Google Scholar
Parker WE (1996) The development of baiting techniques to detect wireworms (Agriotes spp., Coleoptera: Elateridae) in the field, and the relationship between bait-trap catches and wireworm damage to potato. Crop Prot 15(6):521–527. https://doi.org/10.1016/0261-2194(96)00020-8
Article
Google Scholar
Parry HR, Evans AJ, Morgan D (2006) Aphid population response to agricultural landscape change: a spatially explicit, individual-based model. Ecol Model 199(4):451–463. https://doi.org/10.1016/j.ecolmodel.2006.01.006
Article
Google Scholar
Pathak and Dhaliwal (1981) Trends and strategies for rice insect problems is tropical Asia. IRRIResearch paper series 64 (1981 July)
Pecenka JR, Lundgren JG (2015) Non-target effects of clothianidin on monarch butterflies. Naturwissenschaften 102(3-4):19. https://doi.org/10.1007/s00114-015-1270-y
CAS
Article
Google Scholar
Pedigo LP (1989) Entomology and pest management. Macmillan Publishing Company, New York
Google Scholar
Pedigo LP, Rice ME (2014) Entomology and pest management. Waveland Press
Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22(1):68–102. https://doi.org/10.1007/s11356-014-3471-x
CAS
Article
Google Scholar
Pisa L, Goulson D, Yang EC, Gibbons D, Sanchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-017-0341-3
Pistorius J, Bischoff G, Heimbach U (2009) Bee poisoning by abrasion of active substances from seed treatment of maize during seeding in spring 2008. J Kult 61(1):9–14 http://www.journal-kulturpflanzen.de
Google Scholar
Piyaratne MKDK, Zhao H, Meng Q (2013) APHIDSim: A population dynamics model for wheat aphids based on swallowtail catastrophe theory. Ecol Model 253:9–16. https://doi.org/10.1016/j.ecolmodel.2012.12.032
Article
Google Scholar
Praneetvatakul S, Schreinemachers P, Pananurak P, Tipraqsa P (2013) Pesticides, external costs and policy options for Thai agriculture. Environ Sci Pol 27:103–113. https://doi.org/10.1016/j.envsci.2012.10.019
Article
Google Scholar
Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Charles H, Godfray J, Goulson D, Hartley SE, Lampkin N, Morris C, Gary P, Vara Prasad PV, Reganold J, Rockstrom J, Smith P, Thorne P, Wratten S (2018) Global assessment of agricultural system redesign for sustainable intensification. Nat Sustain 1(8):441–446. https://doi.org/10.1038/s41893-018-0114-0
Article
Google Scholar
Puinean AM, Denholm I, Millar NS, Nauen R, Williamson MS (2010) Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pestic Biochem Physiol 97(2):129–132. https://doi.org/10.1016/j.pestbp.2009.06.008
CAS
Article
Google Scholar
Quiggin JC, Karagiannis G, Stanton J (1993) Crop insurance and crop production: an empirical study of moral hazard and adverse selection. Aust J Agric Econ 37(2):95–113. https://doi.org/10.1111/j.1467-8489.1993.tb00531.x
Article
Google Scholar
Rashid MM, Jahan M, Islam KS (2016) Impact of nitrogen, phosphorus and potassium on brown planthopper and tolerance of its host rice plants. Rice Sci 23(3):119–131. https://doi.org/10.1016/j.rsci.2016.04.001
Article
Google Scholar
Ritter C, Richter E (2013) Control methods and monitoring of Agriotes wireworms (Coleoptera: Elateridae). J Plant Dis Prot 120(1):4–15. https://doi.org/10.1007/bf03356448
CAS
Article
Google Scholar
Rogers EM (1962) Diffusion of innovations. Free Press of Glencoe, New York
Google Scholar
Romeis J, Naranjo SE, Meissle M, Shelton AM (2018) Genetically engineered crops help support conservation biological control. Biol Control 130:136–154. https://doi.org/10.1016/j.biocontrol.2018.10.001
Article
Google Scholar
Rossing WAH, Daamen RA, Hendrix EMT (1994) Framework to support decisions on chemical pest control under uncertainty, applied to aphids and brown rust in winter wheat. Crop Prot 13(1):25–34. https://doi.org/10.1016/0261-2194(94)90132-5
Article
Google Scholar
Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27. https://doi.org/10.1016/j.biocon.2019.01.020
Article
Google Scholar
Sánchez-Bayo F, Goka K, Hayasaka D (2016) Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front Environ Sci 4(71). https://doi.org/10.3389/fenvs.2016.00071
Saringer G, Takács A (1994) Biology and control of Tanymecus dilaticollis Gyll.(Col., Curculionidae). Acta Phytopathol Entomol Hung 29:173–173 https://akjournals.com/view/journals/038/038-overview.xml
Google Scholar
Schut M, Rodenburg J, Klerkx L, van Ast A, Bastiaans L (2014) Systems approaches to innovation in crop protection. A systematic literature review. Crop Prot 56:98–108. https://doi.org/10.1016/j.cropro.2013.11.017
Article
Google Scholar
Schütz K, Bonkowski M, Scheu S (2008) Effects of Collembola and fertilizers on plant performance (Triticum aestivum) and aphid reproduction (Rhopalosiphum padi). Basic Appl Ecol 9(2):182–188. https://doi.org/10.1016/j.baae.2006.07.003
Article
Google Scholar
Seagraves M, Lundgren J (2012) Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci 85:125–132. https://doi.org/10.1007/s10340-011-0374-1
Article
Google Scholar
Seltenrich N (2017) Catching up with popular pesticides: more human health studies are needed on neonicotinoids. Environ Health Perspect 125(2):A41–A42. https://doi.org/10.1289/ehp.125-A41
Article
Google Scholar
Sequeira RV, Naranjo SE (2008) Sampling and management of Bemisia tabaci (Genn.) biotype B in Australian cotton. Crop Prot 27(9):1262–1268. https://doi.org/10.1016/j.cropro.2008.04.002
Article
Google Scholar
Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77(7):1975–1988. https://doi.org/10.2307/2265694
Article
Google Scholar
Sgolastra F, Porrini C, Maini S, Bortolotti L, Medrzycki P, Mutinelli F, Lodesani M (2017) Healthy honey bees and sustainable maize production: why not. Bull Insectol 70(1):156–160 https://www.buzzaboutbees.net/support-files/neonicsandmaizeitalystudy.pdf
Google Scholar
Shao X, Liu Z, Xu X, Li Z, Qian X (2013) Overall status of neonicotinoid insecticides in China: production, application and innovation. J Pestic Sci 38(1):1–9. https://doi.org/10.1584/jpestics.D12-037
CAS
Article
Google Scholar
Sheng-miao YU, Qian-yu JIN, You-nan OUYANG, De-hai XU (2004) Efficiency of controlling weeds, insect pests and diseases by raising ducks in the paddy fields. Chin J Biol Control 20(2):99–102 http://www.zgswfz.com.cn/CN/abstract/article_325.shtml
Google Scholar
Shentu X-P, Li D-T, Xu J-F, Liang S, Xiao-Ping Y (2016) Effects of fungicides on the yeast-like symbiotes and their host, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pestic Biochem Physiol 128:16–21. https://doi.org/10.1016/j.pestbp.2015.10.010
CAS
Article
Google Scholar
Shields MW, Johnson AC, Pandey S, Cullen R, González-Chang M, Wratten SD, Gurr GM (2019) History, current situation and challenges for conservation biological control. Biol Control 131:25–35. https://doi.org/10.1016/j.biocontrol.2018.12.010
Article
Google Scholar
Silvie PJ, Renou A, Vodounnon S, Bonni G, Adegnika MO, Héma O, Prudent P, Sorèze J, Ochou GO, Togola M, Badiane D, Ndour A, Akantetou PK, Ayeva B, Brévault T (2013) Threshold-based interventions for cotton pest control in West Africa: What's up 10 years later? Crop Prot 43:157–165. https://doi.org/10.1016/j.cropro.2012.09.006
Article
Google Scholar
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22(1):5–34. https://doi.org/10.1007/s11356-014-3470-y
CAS
Article
Google Scholar
Sogawa K, Liu G, Qiang Q (2009) Prevalence of whitebacked planthoppers in Chinese hybrid rice and whitebacked planthopper resistance in Chinese japonica rice. In: Heong KL, Hardy B (eds) Planthoppers: new threats to the sustainability of intensive rice production systems in Asia. International Rice Research Institute, Manila
Google Scholar
Sohrabi F, Shishehbor P, Saber M, Mosaddegh MS (2012) Lethal and sublethal effects of buprofezin and imidacloprid on the whitefly parasitoid Encarsia inaron (Hymenoptera: Aphelinidae). Crop Prot 32:83–89. https://doi.org/10.1016/j.cropro.2011.10.005
CAS
Article
Google Scholar
Spangenberg JH, Douguet JM, Settele J, Heong KL (2015) Escaping the lock-in of continuous insecticide spraying in rice: developing an integrated ecological and socio-political DPSIR analysis. Ecol Model 295:188–195. https://doi.org/10.1016/j.ecolmodel.2014.05.010
Article
Google Scholar
Staudacher K, Schallhart N, Pitterl P, Wallinger C, Brunner N, Landl M, Kromp B, Glauninger J, Traugott M (2013) Occurrence of Agriotes wireworms in Austrian agricultural land. J Pest Sci 86(1):33–39. https://doi.org/10.1007/s10340-011-0393-y
Article
Google Scholar
Stenberg JA (2017) A conceptual framework for integrated pest management. Trends Plant Sci 22(9):759–769. https://doi.org/10.1016/j.tplants.2017.06.010
CAS
Article
Google Scholar
Sufyan M, Neuhoff D, Furlan L (2011) Assessment of the range of attraction of pheromone traps to Agriotes lineatus and Agriotes obscurus. Agric For Entomol 13(3):313–319. https://doi.org/10.1111/j.1461-9563.2011.00529.x
Article
Google Scholar
Sullivan GH, Sánchez G, Weller SC, Edwards CR (1999) Sustainable development in Central Americaʼs non-traditional export crops sector through adoption of integrated pest management practices: Guatemalan case study. Sustain Dev Int 1:123–126 https://p2infohouse.org/ref/22/21996.pdf
Article
Google Scholar
Taliansky-Chamudis A, Gomez-Ramirez P, Leon-Ortega M, Garcia-Fernandez AJ (2017) Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Sci Total Environ 595:93–100. https://doi.org/10.1016/j.scitotenv.2017.03.246
CAS
Article
Google Scholar
Tittonell PA (2014) Ecological intensification of agriculture - sustainable by nature. Curr Opin Environ Sustain 8:53–61. https://doi.org/10.1016/j.cosust.2014.08.006
Article
Google Scholar
Toepfer S, Haye T, Erlandson M, Goettel M, Lundgren JG, Kleespies RG, Weber DC, Cabrera Walsh G, Peters A, Ehlers RU, Strasser H, Moore D, Keller S, Vidal S, Kuhlmann U (2009) A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management. Biocontrol Sci Tech 19(1):1–65. https://doi.org/10.1080/09583150802524727
Article
Google Scholar
Toepfer S, Kurtz B, Kuhlmann U (2010) Influence of soil on the efficacy of entomopathogenic nematodes in reducing Diabrotica virgifera virgifera in maize. J Pest Sci 83(3):257–264. https://doi.org/10.1007/s10340-010-0293-6
Article
Google Scholar
Tooker JF, Douglas MR, Krupke CH (2017) Neonicotinoid seed treatments: limitations and compatibility with integrated pest management. Agric Environ Lett 2. https://doi.org/10.2134/ael2017.08.0026
Tosi S, Burgio G, Nieh JC (2017) Common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci Rep 7(1):1201. https://doi.org/10.1038/s41598-017-01361-8
CAS
Article
Google Scholar
Tóth M (2013) Pheromones and attractants of click beetles: an overview. J Pest Sci 86(1):3–17. https://doi.org/10.1007/s10340-012-0429-y
Article
Google Scholar
Tóth M, Furlan L, Yatsynin VG, Ujváry I, Szarukán I, Imrei Z, Subchev M, Tolasch T, Francke W (2002) Identification of sex pheromone composition of click beetle Agriotes brevis Candeze. J Chem Ecol 28(8):1641–1652. https://doi.org/10.1023/a:1019984714858
Article
Google Scholar
Tóth M, Furlan L, Xavier A, Vuts J, Toshova T, Subchev M, Szarukán I, Yatsynin V (2007) New sex attractant composition for the click beetle Agriotes proximus: similarity to the Pheromone of Agriotes lineatus. J Chem Ecol 34(1):107–111. https://doi.org/10.1007/s10886-007-9398-7
CAS
Article
Google Scholar
Tóth M, Furlan L, Vuts J, Szarukán I, Ujváry I, Yatsynin VG, Tolasch T, Francke W (2015) Geranyl hexanoate, the female-produced pheromone of Agriotes sordidus Illiger (Coleoptera: Elateridae) and its activity on both sexes. Chemoecology 25(1):1–10. https://doi.org/10.1007/s00049-014-0170-5
CAS
Article
Google Scholar
Tschumi M, Ekroos J, Hjort C, Smith HG, Birkhofer K (2018) Rodents, not birds, dominate predation-related ecosystem services and disservices in vertebrate communities of agricultural landscapes. Oecologia 188(3):863–873. https://doi.org/10.1007/s00442-018-4242-z
Article
Google Scholar
van Herk WG, Vernon RS (2013) Wireworm damage to wheat seedlings: effect of temperature and wireworm state. J Pest Sci 86(1):63–75. https://doi.org/10.1007/s10340-012-0461-y
Article
Google Scholar
van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl 57(1):1–20. https://doi.org/10.1007/s10526-011-9395-1
Article
Google Scholar
Van Mele P, Vodouhe SD, Wanvoeke J (2009) The power of video to trigger innovation: rice processing in central Benin AU - Zossou, Espérance. Int J Agric Sustain 7(2):119–129. https://doi.org/10.3763/ijas.2009.0438
Article
Google Scholar
Vasileiadis VP, Sattin M, Otto S, Veres A, Pálinkás Z, Ban R, Pons X, Kudsk P, van der Weide R, Czembor E, Moonen AC, Kiss J (2011) Crop protection in European maize-based cropping systems: current practices and recommendations for innovative integrated pest management. Agric Syst 104(7):533–540. https://doi.org/10.1016/j.agsy.2011.04.002
Article
Google Scholar
Veres A, Tóth F, Kiss J, Fetykó K, Orosz S, Lavigne C, Otto S, Bohan D (2012) Spatio-temporal dynamics of Orius spp. (Heteroptera: Anthocoridae) abundance in the agricultural landscape. Agric Ecosyst Environ 162:45–51. https://doi.org/10.1016/j.agee.2012.08.009
Article
Google Scholar
Veres A, Petit S, Conord C, Lavigne C (2013) Does landscape composition affect pest abundance and their control by natural enemies? A review. Agric Ecosyst Environ 166:110–117. https://doi.org/10.1016/j.agee.2011.05.027
Article
Google Scholar
Vernon RS, van Herk WG, Clodius M, Tolman J (2016) Companion planting attract-and-kill method for wireworm management in potatoes. J Pest Sci 89(2):375–389. https://doi.org/10.1007/s10340-015-0707-6
Article
Google Scholar
Viscarret MM, López SN (2004) Biological studies on Encarsia porteri (Mercet) (Hymenoptera: Aphelinidae) an heterotrophic parasitoid of the Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) complex. Biol Control 30(2):236–240. https://doi.org/10.1016/j.biocontrol.2003.10.002
Article
Google Scholar
Vreysen MJB, Robinson AS, Hendrichs J (2007) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/978-1-4020-6059-5
Vuts J, Tolasch T, Furlan L, Csonka ÉB, Felföldi T, Márialigeti K, Toshova TB, Subchev M, Xavier A, Tóth M (2012) Agriotes proximus and A. lineatus (Coleoptera: Elateridae): a comparative study on the pheromone composition and cytochrome c oxidase subunit I gene sequence. Chemoecology 22(1):23–28. https://doi.org/10.1007/s00049-011-0091-5
CAS
Article
Google Scholar
Vuts J, Furlan L, Csonka ÉB, Woodcock CM, Caulfield JC, Mayon P, Pickett JA, Birkett MA, Tóth M (2014) Development of a female attractant for the click beetle pest Agriotes brevis. Pest Manag Sci 70(4):610–614. https://doi.org/10.1002/ps.3589
CAS
Article
Google Scholar
Ward DP, DeGooyer TA, Vaughn TT, Head GP, McKee MJ, Astwood JD, Pershing JC (2004) Genetically enhanced maize as a potential management option for corn rootworm: YieldGard rootworm maize case study. In: Vidal S, Kuhlmann U, Edwards CR (eds) Western corn rootworm: ecology and management. CABI, Wallingford, p 320. https://doi.org/10.1079/9780851998176.0000
Chapter
Google Scholar
Waterhouse DF (1998) Biological control of insect pests : Southeast Asian prospects / D.F. Waterhouse. Edited by Research Australian Centre for International Agricultural, ACIAR monograph series ; no. 51. Australian Centre for International Agricultural Research, Canberra
Wesseler J, Fall EH (2010) Potential damage costs of Diabrotica virgifera virgifera infestation in Europe – the ‘no control’ scenario. J Appl Entomol 134(5):385–394. https://doi.org/10.1111/j.1439-0418.2010.01510.x
Article
Google Scholar
Westphal C, Vidal S, Horgan FG, Gurr GM, Escalada M, Van Chien H, Tscharntke T, Heong KL, Settele J (2015) Promoting multiple ecosystem services with flower strips and participatory approaches in rice production landscapes. Basic Appl Ecol 16(8):681–689. https://doi.org/10.1016/j.baae.2015.10.004
Article
Google Scholar
Whitehorn PR, O’Connor S, Wackers FL, Goulson D (2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 336:351–352. https://doi.org/10.1126/science.1215025
CAS
Article
Google Scholar
Winarto YT (2004) Seeds of knowledge: the beginning of integrated pest management in Java.
Wu W, Piyaratne MKDK, Zhao H, Li C, Hu Z, Xiangshun H (2014) Butterfly catastrophe model for wheat aphid population dynamics: construction, analysis and application. Ecol Model 288:55–61. https://doi.org/10.1016/j.ecolmodel.2014.05.017
Article
Google Scholar
Wyckhuys K, Lu Y, Morales H, Vázquez LL Moreno JL, Eliopoulos P, Mahecha LMH (2013) Current status and potential of conservation biological control for agriculture in the developing world. Vol 65
Wyckhuys KAG, Burra DD, Tran DH, Graziosi I, Walter AJ, Nguyen TG, Trong HN, Le BV, Le TTN, Fonte SJ (2017) Soil fertility regulates invasive herbivore performance and top-down control in tropical agroecosystems of Southeast Asia. Agric Ecosyst Environ 249:38–49. https://doi.org/10.1016/j.agee.2017.08.006
Article
Google Scholar
Wyckhuys KAG, Bentley JW, Lie R, Nghiem LTP, Fredrix M (2018) Maximizing farm-level uptake and diffusion of biological control innovations in today’s digital era. BioControl 63(1):133–148. https://doi.org/10.1007/s10526-017-9820-1
Article
Google Scholar
Wyckhuys KAG, Heong KL, Sanchez-Bayo F, Bianchi FJJA, Lundgren JG, Bentley JW (2019a) Ecological illiteracy can deepen farmers’ pesticide dependency. Environ Res Lett 14(9):093004. https://doi.org/10.1088/1748-9326/ab34c9
Article
Google Scholar
Wyckhuys KAG, Hughes AC, Buamas C, Johnson AC, Vasseur L, Reymondin L, Deguine JP, Sheil D (2019b) Biological control of an agricultural pest protects tropical forests. Commun Biol 2(1):10. https://doi.org/10.1038/s42003-018-0257-6
CAS
Article
Google Scholar
Wyckhuys KAG, Pozsgai G, Lovei GL, Vasseur L, Wratten SD, Gurr GM, Reynolds OL, Goettel M (2019c) Global disparity in public awareness of the biological control potential of invertebrates. Sci Total Environ 660:799–806. https://doi.org/10.1016/j.scitotenv.2019.01.077
CAS
Article
Google Scholar
Xian X, Zhai B, Zhang X, Cheng X, Wang J (2007) Teleconnection between the early immigration of brown planthopper (Nilaparvata lugens Stål) and ENSO indices: implication for its medium- and long-term forecast. Acta Ecol Sin 27(8):3144–3154. https://doi.org/10.1016/S1872-2032(07)60069-9
Article
Google Scholar
Yang N-W, Wan F-H (2011) Host suitability of different instars of Bemisia tabaci biotype B for the parasitoid Eretmocerus hayati. Biol Control 59(2):313–317. https://doi.org/10.1016/j.biocontrol.2011.07.019
Article
Google Scholar
Yang Y-j, Dong B-q, Xu H-x, Zheng X-s, Heong KL, Zhong-xian L (2014) Susceptibility to insecticides and ecological fitness in resistant rice varieties of field Nilaparvata lugens Stål population free from insecticides in laboratory. Rice Sci 21(3):181–186. https://doi.org/10.1016/S1672-6308(13)60181-X
CAS
Article
Google Scholar
Yang L, Han Y, Li P, Wen L, Hou M (2017) Silicon amendment to rice plants impairs sucking behaviors and population growth in the phloem feeder Nilaparvata lugens (Hemiptera: Delphacidae). Sci Rep 7(1):1101. https://doi.org/10.1038/s41598-017-01060-4
CAS
Article
Google Scholar
Yao F-L, Yu Z, Zhao J-W, Desneux N, He Y-X, Weng Q-Y (2015) Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. Chemosphere 128:49–55. https://doi.org/10.1016/j.chemosphere.2015.01.010
CAS
Article
Google Scholar
Yin J-L, Xu H-W, Wu J-C, Hu J-H, Yang G-Q (2014) Cultivar and insecticide applications affect the physiological development of the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Environ Entomol 37(1):206–212. https://doi.org/10.1603/0046-225x(2008)37[206:caiaat]2.0.co;2
Article
Google Scholar
Zhang X-m, Yang N-w, Wan F-h, Lövei GL (2014) Density and seasonal dynamics of Bemisia tabaci (Gennadius) Mediterranean on common crops and weeds around cotton fields in Northern China. J Integr Agric 13(10):2211–2220. https://doi.org/10.1016/S2095-3119(13)60613-9
Article
Google Scholar
Zhang X, Liao X, Mao K, Zhang K, Hu W, Li J (2016) Insecticide resistance monitoring and correlation analysis of insecticides in field populations of the brown planthopper Nilaparvata lugens (stål) in China 2012–2014. Pestic Biochem Physiol 132:13–20. https://doi.org/10.1016/j.pestbp.2015.10.003
CAS
Article
Google Scholar
Zhang H, Potts SG, Breeze T, Bailey A (2018) European farmers’ incentives to promote natural pest control service in arable fields. Land Use Policy 78:682–690. https://doi.org/10.1016/j.landusepol.2018.07.017
Article
Google Scholar
Zheng Y-L, Xu L, Wu J-C, Liu J-L, DuanMu H-L (2007) Time of occurrence of hopperburn symptom on rice following root and leaf cutting and fertilizer application with brown planthopper, Nilaparvata lugens (stål) infestation. Crop Prot 26(2):66–72. https://doi.org/10.1016/j.cropro.2006.04.001
Article
Google Scholar
Zhu Z-R, Cheng J-A, Jiang M-X, Zhang X-X (2004) Complex influence of rice variety, fertilization timing, and insecticide on population dynamics of Sogatella furcifera (Horvath) , Nilaparvata lugens (Stål) (Homoptera: Delphacidae) and their natural enemies in rice in Hangzhou, China. Vol 77
Zou Y, de Kraker J, Bianchi FJJA, van Telgen MD, Xiao H, van der Werf W (2017) Video monitoring of brown planthopper predation in rice shows flaws of sentinel methods. Sci Rep 7:42210–42210. https://doi.org/10.1038/srep42210
CAS
Article
Google Scholar