Collection of study organisms
On 19 November 2018, we manually collected 50 equally sized case-bearing Lepidostoma basale (Kolenati, 1848) larvae in the Brexbach (50.26165° N, 7.34305° E), a small stream in the town of Bendorf (Rhineland Palatinate, Germany). These larvae had a case length of 0.42 ± 0.02 cm (mean ± SEM; n = 50 larval cases). After collection, we immediately transported all larvae to the laboratory. At the lab, we kept the larvae in an aerated 10-L tank in a climate-controlled room at 16 °C for 24 h under a natural day/night rhythm. Stones and leaves from the collection site served as refuges and food for the larvae.
Substrate preparation
During our experiments, we offered two high-density plastic types (PVC and PET) together with pre-sieved sand (density ca. 1.2–1.6 g cm−3; sand grain size 200 μm to 500 μm) to the larvae. We prepared the MP particles using a black PVC plastic wrapper and blue PET beverage bottles as raw material. To obtain PVC and PET MPs, we used scissors to cut the plastics into small pieces (< 1 cm) and then froze them in a freezer at − 80 °C for 9 h. Subsequently, we shredded the frozen plastic parts using a glass blender (MX15, 500 W; Koenig, Verl, Germany) while we continuously added distilled water and crushed ice to the plastic pieces. After drying the plastic mixture in an oven at 40 °C, we mechanically sieved the plastics using stacked sieves with mesh sizes of 200 μm and 500 μm (analytical screening machine AS 200; Retsch, Haan, Germany). The mesh sizes were chosen as particles in the cases of the field-collected L. basale larvae were between 200 and 500 μm in size. For quality control, we determined the polymer types of the raw plastic material using Fourier-transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode (Vertex 70; Bruker, Ettlingen, Germany; Appendix Fig. 7) in a wavenumber range between 4000 and 370 cm−1 with 8 co-added scans and a spectral resolution of 4 cm−1.
Case construction experiment
We conducted the experiment for 48 h (20–22 November 2018) during which we offered five different treatments (PVC low concentration (‘PVC lc’), PVC high concentration (‘PVC hc’), PET low concentration (‘PET lc’), PET high concentration (‘PET hc’), only sand) with ten replicates (jars) each to individual caddisfly larvae. After 48 h, the larvae did not collect any new case-building material and stopped building their cases. Hence, we considered their case building as finished. We chose to offer a low and high PVC or PET concentration to the larvae as we did not know under which MP exposure the larvae would incorporate MP into their cases. Hence, we filled fifty individual glass jars with 200 mL stream water and a total of 15 g substrate. In the two low MP concentration treatments (‘PET lc’ and ‘PVC lc’), we offered a plastic/sand ratio of 0.1% (15 mg MP and 14,985 mg sand) to individual caddisfly larvae, resembling high naturally occurring microplastic (ranging from 63 to 5000 μm in size) concentrations in sediments of the Rhine River (Klein et al. 2015). In the high concentration treatments (‘PET hc’ and ‘PVC hc’), we offered a plastic/sand ratio of 2% (300 mg MP and 14,700 mg sand) to the larvae. Furthermore, we prepared the ‘only sand’ treatment to test whether newly built sand cases would be structurally different from newly built cases with sand and plastics. To remove the larvae from their original cases, we gently pushed each larva with a blunt probe through its posterior case opening until it left its case. Then, we placed one caseless larva at random in each jar. The larvae were left in the jars for 48 h at a constant temperature of 16 °C, under a natural day/night cycle and under constant aeration. After the experiment, we fixed all larvae together with their newly built cases in 70% ethanol (EtOH).
Determination of MP particle numbers per treatment
In the literature, microplastic concentrations in sediments are either given as microplastic particle number per kg of sediment (numerical abundance) or as microplastic weight per kg of sediment (mass fraction; Klein et al. 2015). Hence, to determine which MP particle numbers corresponded to the MP amounts used for the low (15 mg MP) and high (300 mg MP) PET and PVC treatments, we weighed 10, 200, 400, 600, 800, 1000, 1200 and 1400 PVC and PET particles, respectively, with an analytical balance (XS205 Dual-Range Analytical Balance; Mettler Toledo, Giessen, Germany) and performed a linear regression analysis (R2 for PVC and PET 0.99). In the ‘PVC lc’ treatment, there were ca. 1238 PVC particles; in the ‘PVC hc’ treatment, there were ca. 23,624 PVC particles; in the ‘PET lc’ treatment, there were ca. 1246 PET particles; and in the PET ‘high concentration’ treatment, there were ca. 24,831 PET particles. The information on MP particle numbers per treatment that we obtained illustrated how many PET and PVC particles were available to the caddisfly larvae for case building in the different treatments.
Determination of the plastic fraction in newly built cases
To determine the plastic fractions in the newly built portable and emergency cases, we deconstructed all cases in individual glass beakers using 20 mL hydrogen peroxide solution (34.5–36.5% H2O2; Sigma-Aldrich, Steinheim, Germany; Ehlers et al. 2019). Then, we sealed all samples with parafilm to prevent any airborne contamination and placed the samples on a laboratory shaker for 7 days (Ehlers et al. 2019). In parallel to the case deconstruction, we ran blanks containing only 20 mL H2O2 to exclude any contamination from our samples. Afterwards, we filtered the samples onto membrane filters with a pore size of 0.2 μm and a diameter of Ø 47 mm (Whatman, UK) using a stainless steel pressure filtration unit (model 16249, Ø 47 mm; Sartorius, Göttingen, Germany). We placed the filters in small aluminium bowls, covered them with aluminium foil and dried them in an oven at 50 °C for 24 h. To calculate the plastic and sand proportions in the cases, we counted the number of particles (MPs and sand) on each filter using a digital microscope (VHX-2000; Keyence, Osaka, Japan).
Case stability analysis
For the case stability analysis, we used a customised caddis case cracker (Otto and Svensson 1980; Fig. 1) to determine the resistance force of the newly built portable cases. To assess the cases’ resistance force, we placed each case on top of two metal plates standing on edge (width 2 mm; Fig. 1). A metal plate (lever arm) connected to an empty bucket lay on top of the cases. Filling the bucket with sand increased the load until the case broke which was the moment when we stopped to add more sand into the bucket. We then weighed the content of the bucket, and from the respective force F1, we calculated the force F2 that we needed to break the cases using the torque (M). Within our measurement accuracy, the lever was aligned perpendicular to the direction of the gravitational force during the experiment. With an empty bucket, the end of the lever arm resulted in a mass of 106 g on top of the cases and gave rise to an additional force (F3) of 1.04 N, which we added to F2. The higher the force that we needed to break a portable case, the more stable the case. We used the following formulas for our calculations:
$$ M=100\ \mathrm{mm}\times {F}_1 $$
$$ M=1000\ \mathrm{mm}\times {F}_2 $$
$$ {F}_3=0.106\ \mathrm{kg}\times 9.81\ \mathrm{m}\ {\mathrm{s}}^{-2} $$
$$ {F}_2={F}_1\times \frac{1}{10}+{F}_3 $$
Statistical analysis
To test whether case stability decreases with increasing PET or PVC content in the portable cases, we used Pearson correlations to determine the relationship between the percentage of MP particles present in the portable cases and the force (F2) that we needed to break the cases. We confirmed the normality of our data using the Kolmogorov-Smirnov tests. We performed all analyses using Statistica 10 (StatSoft, Tulsa, OK, USA). In our analysis, we did not include the portable cases of the larvae that had previously built an emergency case as the energy that they used for emergency case construction might have affected the energy that was available for the construction of the portable case later on.