Skip to main content

Advertisement

Log in

Environmentally relevant bisphenol A concentrations effects on the seagrass Cymodocea nodosa different parts elongation: perceptive assessors of toxicity

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Toxicity data on bisphenol A (BPA) effects on aquatic macrophytes remain scarce. Therefore, environmentally relevant BPA concentrations (0.03, 0.1, 0.3, 0.5, 1, and 3 μg L−1) were tested on the seagrass Cymodocea nodosa different parts length increase. All plant parts, at low BPA concentrations (0.03–0.3 μg L−1), elongated equally to the control, while their lengthening and elongation rates gradually decreased by increasing BPA concentrations. A gradual increase of “Toxicity index” with increasing BPA concentrations was observed but was lower for juvenile blades and higher for plagiotropic rhizomes and adult leaves. In all parts, the LOECs were 0.3 and the NOECs 0.1 μg L−1 at 10th day. Juvenile blades displayed, under acute stress, lengthening inhibition at lower concentrations than the rhizomes and adult blades, but at a lower extent. The EC50 values were lower for the rhizome internodes, followed by the adult blades and higher for the juvenile blades. Using as a biological “endpoint” the elongation, all C. nodosa parts and specifically the rhizomes and adult blades, followed by intermediate blades, adult sheaths, and juvenile blades, seemed to be sensitive BPA toxicity assessors. The evaluation of the relative sensitivity of the different parts to BPA toxicity could help identify the most suitable seagrass part for early diagnosis of the risk posed by BPA to seagrass meadows and could constitute a valuable tool to derive the seawater quality criteria and to be used in BPA monitoring programs for rational management of the coastal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamakis IDS, Malea P, Panteris E (2018) The effects of bisphenol A on the seagrass Cymodocea nodosa: leaf elongation impairment and cytoskeleton disturbance. Ecotoxicol Environ Saf 157:431–440

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    CAS  Google Scholar 

  • Alexander HC, Dill DC, Smith LW, Guiney PD, Dorn P (1988) Bisphenol A: acute aquatic toxicity. Environ Toxicol Chem 7:19–26

    CAS  Google Scholar 

  • Arditsoglou A, Voutsa D (2012) Occurrence and partitioning of endocrine-disrupting compounds in the marine environment of Thermaikos Gulf, Northern Aegean Sea, Greece. Mar Pollut Bull 64:2443–2452

    CAS  Google Scholar 

  • Basheer C, Lee HK, Tan KS (2004) Endocrine disrupting alkylphenols and bisphenol-A in coastal waters and supermarket seafood from Singapore. Mar Pollut Bull 48:1161–1167

    CAS  Google Scholar 

  • Beck IC, Bruhn R, Gandrass J (2006) Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 63:1870–1878

    CAS  Google Scholar 

  • Bonanno B, Borg JA (2018) Comparative analysis of trace element accumulation in seagrasses Posidonia oceanica and Cymodocea nodosa: biomonitoring applications and legislative issues. Mar Pollut Bull 128:24–31

    CAS  Google Scholar 

  • Cabaco S, Ferreira O, Santos R (2010) Population dynamics of the seagrass Cymodocea nodosa in Ria Formosa lagoon following inlet artificial relocation. Estuar Coast Shelf Sci 87:510–516

    Google Scholar 

  • Cancemi G, Buia MC, Mazzella L (2002) Structure and growth dynamics of Cymodocea nodosa meadow. Sci Mar 66:365–373

    Google Scholar 

  • Caunter JE, Williams TD, Hetheridge MJ, Evans MR (2000) Bisphenol a: multigeneration study with fathead minnow (Pimephales promelas), Brixham Environmental Laboratory, Zeneca, Ltd. Report no. BL6878/B pp 91

  • Commission of the European Communities (1996) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No 1488/94 on risk assessment for existing substances. Part II; Environmental Risk Assessment. Luxembourg: Office for official publications of the European Communities

  • Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, Brooks BW (2015) Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13:1559325815598308

    Google Scholar 

  • Crane M, Newman MC (2000) What level of effect is a no observed effect? Environ Toxicol Chem 19:516–519

    CAS  Google Scholar 

  • Di Leo A, Annicchiarico C, Cardellicchio N, Spada L, Giandomenico S (2013) Trace metal distributions in Posidonia oceanica and sediments from Taranto Gulf (Ionian Sea, Southern Italy). Mediterr Mar Sci 14:204–213

    Google Scholar 

  • Dong J, Li XL, Liang RJ (2009) Bisphenol A pollution of surface water and its environmental factors. J Ecol Rural Environ 25:94–97

    CAS  Google Scholar 

  • European Union (EU) (2003) European Union Risk Assessment Report. Bisphenol A, CAS No:80-05-7. Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, 3rd Priority List. Luxembourg: Office for Official Publications of the European Communities; 2003

  • European Union (EU) (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC

  • European Union (EU) (2010) European Union risk assessment report, 4,4-isopropylidenediphenol (BPA). European Communities, Luxembourg. Approved in February 2010, EUR 24588 EN

  • Fabris GJ, Harris JE, Smith JD (1982) Uptake of cadmium by the seagrass Heterozostera tasmanica from Corio Bay and Western Port, Vistoria. Aust J Ma Freshw Res 39:829–836

    Google Scholar 

  • Flint S, Markle T, Thompson S, Wallace E (2012) Bisphenol A exposure, effects, and policy: a wildlife perspective. J Environ Manag 104:19–34

    CAS  Google Scholar 

  • Heemken OP, Reincke H, Stachel B, Theobald N (2001) The occurrence of xenoestrogens in Elbe River and North Sea. Chemosphere 45:245–259

    CAS  Google Scholar 

  • Idrees S, Shabir S, Ilyas N, Batool N, Kanwal S (2015) Assessment of cadmium on wheat (Triticum aestivum L.) in hydroponics medium. Agrociencia 49:917–929

  • Ji MK, Kabra AN, Choi J, Hwang JH, Kim JR, Abou-Shanab RAI, Oh YK, Jeon BH (2014) Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol Eng 73:260–269

    Google Scholar 

  • Kang JH, Asai D, Katayama Y (2007) Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Crit Rev Toxicol 37:607–625

    CAS  Google Scholar 

  • Kang JH, Kondo F (2006) Distribution and biodegradation of bisphenol A in water hyacinth. Bull Environ Contam Toxicol 77:500–507

    CAS  Google Scholar 

  • Kashiwagi K, Utsumi K, Kashiwagi K, Ohta S, Sugihara K, Hanada H, Kitamura S (2008) Effects of endocrine disrupting chemicals on amphibian metamorphosis and mitochondrial membrane permeability transition. J Health Sci 54:273–280

    CAS  Google Scholar 

  • Ledent G, Warnau M, Temara A, Jangoux M, Dubois P (1992) Ecotoxicology of the Posidonia meadow in the Mediterranean: distribution of the heavy metals and dynamics of cadmium accumulation in Posidonia oceanica (L.) Delile. Belg. J Zool 122:249

    Google Scholar 

  • Lee HB, Peart TE (2000) Bisphenol A contamination in Canadian municipal and industrial wastewater and sludge samples. Water Qual Res J 35:283–289

    CAS  Google Scholar 

  • Lewis MA, Devereux R (2009) Nonnutrient anthropogenic chemicals in seagrass ecosystems: fate and effects. Environ Toxicol Chem 28:644–661

    CAS  Google Scholar 

  • Li R, Bi R, Chen H, Mu L, Zhang L, Chen Q, Xie H, Luo Y, Xie L (2017) The acute toxicity of bisphenol A and lignin-derived bisphenol in algae, daphnids, and Japanese medaka. Environ Sci Pollut Res 24:23872–23879

    CAS  Google Scholar 

  • Li R, Liu Y, Chen G, Tam NFY, Shin PKS, Cheung SG, Luan T (2008) Physiological responses of the alga Cyclotella caspia to bisphenol A exposure. Bot Mar 51:360–369

    CAS  Google Scholar 

  • Li X, Wang L, Wang S, Yang Q, Zhou Q, Huang X (2018) A preliminary analysis of the effects of bisphenol A on the plant root growth via changes in endogenous plant hormones, Ecotoxicol. Environ Saf 150:152–158

    CAS  Google Scholar 

  • Liu Y, Guan Y, Gao Q, Tam NFY, Zhu W (2010) Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80:592–599

    CAS  Google Scholar 

  • Llagostera I, Cervantes D, Sanmarti N, Romero J, Perez M (2016) Effects of copper exposure on photosynthesis and growth of the seagrass Cymodocea nodosa: an experimental assessment. J Environ Contam Tox 97:374–379

    CAS  Google Scholar 

  • Malea P, Adamakis IDS, Kevrekidis T (2013b) Kinetics of cadmium accumulation and its effects on microtubule integrity and cell viability in the seagrass Cymodocea nodosa. Aquat Toxicol 144-145:257–264

    CAS  Google Scholar 

  • Malea P, Adamakis IDS, Kevrekidis T (2013c) Microtubule integrity and cell viability under metal (Cu, Ni and Cr) stress in the seagrass Cymodocea nodosa. Chemosphere 93:1035–1042

    CAS  Google Scholar 

  • Malea P, Adamakis IDS, Kevrekidis T (2014) Effects of lead uptake on microtubule cytoskeleton organization and cell viability in the seagrass Cymodocea nodosa. Ecotoxicol Environ Saf 104:175–181

    CAS  Google Scholar 

  • Malea P, Kevrekidis T (2013) Trace element (Al, As, B, Ba, Cr, Mo, Ni, Se, Sr, Tl, U and V) distribution and seasonality in parts of the seagrass Cymodocea nodosa. Sci Total Environ 463:611–623

    Google Scholar 

  • Malea P, Kevrekidis T, Chatzipanagiotou KR, Mogias A (2018) Cadmium uptake kinetics in parts of the seagrass Cymodocea nodosa at high exposure concentrations. J Biol Res (Thessaloniki) 25:5

    Google Scholar 

  • Malea P, Kevrekidis T, Potouroglou M (2013a) Seasonal variation of trace metal (Mn, Zn, Cu, Pb, Co, Cd) concentrations in parts of the seagrass Cymodocea nodosa. Bot Mar 56:169–184

    CAS  Google Scholar 

  • Malea P, Mylona Z, Kevrekidis T (2019) Trace elements in the seagrass Posidonia oceanica: compartmentation and relationships with seawater and sediment concentrations. Sci Total Environ 686:63–74

    CAS  Google Scholar 

  • Malea P, Zikidou C (2011) Temporal variation in biomass partitioning of the seagrass Cymodocea nodosa at the Gulf of Thessaloniki, Greece. J Biol Res (Thessaloniki) 5:75–90

    Google Scholar 

  • Mandich A, Bottero S, Benfenati E, Cevasco A, Erratico C, Maggioni S, Massari A, Pedemonte F, Vigano L (2007) In vivo exposure of carp to graded concentrations of bisphenol A. Gen Comp Endocrinol 153:15–24

    CAS  Google Scholar 

  • Marbà N, Duarte CM (2001) Growth and sediment space occupation by seagrass Cymodocea nodosa roots. Mar Ecol Prog Ser 224:291–298

    Google Scholar 

  • Marcial HS, Hagiwara A, Snell TW (2003) Estrogenic compounds affect development of harpacticoid copepod Tigriopus japonicas. Environ Toxicol Chem 22:3025–3030

    CAS  Google Scholar 

  • Mateos-Naranjo E, Redondo Gómez S, Cambrollé J, Luque T, Figueroa M (2008) Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora. Plant Biol 10:754–762

    CAS  Google Scholar 

  • Mihaich E, Staples C, Ortego L, Klečka G, Woelz J, Dimond S, Hentges S (2018) Life cycle studies with 2 marine species and bisphenol A: the mysid shrimp (Americamysis bahia) and sheepshead minnow (Cyprinodon variegatus). Environ Toxicol Chem 37:398–410

    CAS  Google Scholar 

  • Mihaich EM, Friederich U, Caspers N, Hall AT, Klecka GM, Dimond SS, Staples CA, Ortego LS, Hentges SG (2009) Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol Environ Saf 72:1392–1399

    CAS  Google Scholar 

  • Moustakas M, Malea P, Haritonidou K, Sperdouli I (2017) Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles. Environ Sci Pollut Res 24:16007–16018

    CAS  Google Scholar 

  • Moustakas M, Malea P, Zafeirakoglou A, Sperdouli I (2016) Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. Pestic Biochem Physiol 126:28–34

    CAS  Google Scholar 

  • M’Rabet C, Pringault O, Zmerli-Triki H, Gharbia HB, Couet D, Yahia OKD (2018) Impact of two plastic-derived chemicals, the Bisphenol A and the di-2-ethylhexyl phthalate, exposure on the marine toxic dinoflagellate Alexandrium pacificum. Mar Pollut Bull 126:241–249

    Google Scholar 

  • Nugegoda D, Kibria G (2013) Water quality guidelines for the protection of aquatic ecosystems. In: Férad J-F, Blaise C (eds) Encyclopedia of aquatic ecotoxicology. Springer Science, Dordrecht, pp 1177–1195

    Google Scholar 

  • Oehlmann J, Schulte-Oehlmann U, BachmannOetken J, Lutz M, Kloas IW, Ternes TA (2006) Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: Prosobranchia) at environmental relevant concentrations. Environ Health Perspect 114:127–133

    Google Scholar 

  • Orfanidis S, Papathanasiou V, Gounaris S, Theodosiou T (2010) Size distribution approaches for monitoring and conservation of coastal Cymodocea habitats. Aquat Conserv Mar Freshwat Ecosyst 20:177–188

    Google Scholar 

  • Papathanasiou V, Orfanidis S, Brown MT (2015) Intra-specific responses of Cymodocea nodosa to macro-nutrient, irradiance and copper exposure. J Exp Mar Biol Ecol 469:113–122

    CAS  Google Scholar 

  • Pérez M, Romero J (1994) Growth dynamics, production and nutrient status of the seagrass Cymodocea nodosa in a Mediterranean semi-estuarine environment. Mar Ecol 15:51–64

    Google Scholar 

  • Pojana G, Gomiero A, Jonkers N, Marcomini A (2007) Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Enviror Int 33:929–936

    CAS  Google Scholar 

  • Quada SB, Ali RB, Leboulanger C, Quada HB (2018) Effect of bisphenol A on the extremorphic microalgal strain Picocystis sp. (Chlorophyta) and its BPA ability. Ecotoxicol Environ Saf 158:1–8

    Google Scholar 

  • Ralph PJ, Tomasko D, Moore K, Seddon S, Macinnis-Ng CMO (2006) Human impacts on seagrasses: eutrophication, sedimentation and contamination. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seegrass: biology. Springer, Ecology and Conservation, pp 567–593

    Google Scholar 

  • Richir J, Luya N, Lepoint G, Roze E, Alvera Azcarate A, Gobert S (2013) Experimental in situ exposure of the seagrass Posidonia oceanica (L.) Delile to 15 trace elements. Aquat Toxicol 140:157–173

    Google Scholar 

  • Short FT, Duarte CM (2001) Methods for the measurements of seagrass growth and production. In: Short FT, Coles RG (eds) , vol 2001. Elsevier Science, Amsterdam, pp 155–182

    Google Scholar 

  • Tato T, Salgueiro-González N, León VM, González S, Beiras R (2018) Ecotoxicological evaluation of the risk posed by bisphenol A, triclosan, and 4-nonyphenol in coastal waters using early life stages of marine organisms (Isichrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus and Acartia clausi). Environ Pollut 232:173–182

    CAS  Google Scholar 

  • Wang L, Wang Z, Liu J, Ji G, Shi L, Xu J, Yang J (2018) Deriving the freshwater quality criteria of BPA, BPF and BPAF for protecting aquatic life. Ecotoxicol Environ Saf 164:713–721

    CAS  Google Scholar 

  • Wang S, Wang L, Hua W, Zhou M, Wang Q, Zhou Q, Huang X (2015) Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants. Environ Sci Pollut Res 22:17653–17662

    CAS  Google Scholar 

  • Watts MM, Pascoe D, Carroll K (2003) Exposure to 17α-ethinylestradiol and bisphenol A effects on larval moulting and mouthpart structure of Chironomus riparius. Ecotoxicol Environ Saf 54:207–215

    CAS  Google Scholar 

  • Xiang R, Shi J, Yu Y, Zhang H, Dong C, Yang Y, Wu Z (2018b) The effect of bisphenol A on growth, morphology, lipid peroxidation, antioxidant enzyme activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda. Arch Environ Contam Toxicol 74:515–526

    CAS  Google Scholar 

  • Xiang R, Shi J, Zhang H, Dong C, Liu L, Fu J, He X, Yan Y, Wu Z (2018a) Chlorophyll a fluorescence and transcriptome reveal the toxicological effects of bisphenol a on an invasive cyanobacterium, Cylindrospermopsis raciborskii. Aquat Toxicol 200:188–196

    CAS  Google Scholar 

  • Xiao C, Wang L, Zhou Q, Huang X (2020) Hazards of bisphenol A (BPA) exposure: a systematic review of plant toxicology studies. J Hazard Mater 384:121488

    Google Scholar 

  • Xu G, Ma S, Tang L, Sun R, Xiang J, Xu B, Bao Y, Wu M (2016) Occurrence, fate, and risk assessment of selected endocrine disrupting chemicals in wastewater treatment plants and receiving river of Shanghai, China. Environ Sci Pollut Res 23:25442–25450

    CAS  Google Scholar 

  • Ying G-G, Kookana RS (2003) Degradation of five selected endocrine-disrupting chemicals in seawater and marine sediment. Environ Sci Technol 37:1256–1260

    CAS  Google Scholar 

  • Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, Li L, Sun XF, Shen W (2012) Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep 39:5651–5657

    CAS  Google Scholar 

  • Zhang J, Li X, Zhou L, Wang XL, Zhou Q, Huang X (2016) Analysis of effects of a new environmental pollutant, bisphenol a, on antioxidant systems in soybean roots at different growth stages. Sci Rep 6:23782

    CAS  Google Scholar 

  • Zhang J, Wang L, Zhou Q, Huang X (2018) Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A. Ecotoxicol Environ Saf 154: 197–205

    CAS  Google Scholar 

  • Zieman JC (1974) Methods for the study of the growth and production of turtle grass Thalassia restudinum König. Aquaculture 4:139–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi Malea.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malea, P., Kokkinidi, D., Kevrekidou, A. et al. Environmentally relevant bisphenol A concentrations effects on the seagrass Cymodocea nodosa different parts elongation: perceptive assessors of toxicity. Environ Sci Pollut Res 27, 7267–7279 (2020). https://doi.org/10.1007/s11356-019-07443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07443-6

Keywords

Navigation