Skip to main content
Log in

Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydrogen peroxide (H2O2) electrogenerated via two-electron oxygen reduction reaction at cathode plays an important role in electrochemical advanced oxidation processes for organic pollutants removal from wastewater. Herein, multi-walled carbon nanotubes and carbon black co-modified graphite felt electrode (MWCNTs-CB/GF) was prepared as an efficient cathode for H2O2 electrogeneration and amoxicillin removal by anodic oxidation with hydrogen peroxide (AO-H2O2) and electro-Fenton (EF) under mild pH condition. Besides, the physicochemical and electrochemical properties of MWCNTs-CB/GF were characterized by scanning electron microscopy, N2 adsorption and desorption experiment, contact angle measurement, X-ray photoelectron spectroscopy, and linear sweep voltammetry. Compared with GF, MWCNTs-CB/GF showed a higher H2O2 generation of 309.0 mg L−1 with a current efficiency of 60.9% (after 120 min) and more effective amoxicillin removal efficiencies of 97.5% (after 120 min) and 98.7% (after 30 min) in AO-H2O2 and EF (with 0.5 mM Fe2+) processes, under the condition of current density 12 mA cm−2 and initial pH 5.5. Meanwhile, the TOC removal efficiency was 45.2% during EF process after 120 min. Anodic oxidation, H2O2 oxidation, and methanol capture indicated that ∙OH generated via electro-activation reaction at MWCNTs-CB/GF and Fenton reaction in solution played the dominant role in amoxicillin removal. Moreover, the TOC removal was associated with ∙OH generated during Fenton reaction in the solution. The major intermediates of AMX degradation by EF process were identified using LC-MS and the possible degradation pathways were proposed containing of β-lactam ring opening, hydroxylation reaction, decarboxylation reaction, methyl groups in the thiazolidine ring oxidation reaction, bond cleavage, and rearrangement processes. All of the above results proved that MWCNTs-CB/GF was an excellent cathode for AMX degradation under mild pH condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Download references

Funding

This work was supported by National Natural Science Foundation of China (51778013) and Beijing Natural Science Foundation (8192005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vitor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, G., Sun, X. & Sun, Z. Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition. Environ Sci Pollut Res 27, 8231–8247 (2020). https://doi.org/10.1007/s11356-019-07358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07358-2

Keywords

Navigation