Skip to main content
Log in

Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A three-dimensional bimetal carbon-based electrode, CuNi/multi-walled carbon nanotube/graphite felt (CuNi/M/GF), was designed for the electrochemical reduction of nitrate. Multi-walled carbon nanotubes (MWCNTs) served as the interlayer and skeleton, which increased the electrochemical reduction activity of GF to nitrate. CuNi/M/GF with different atomic ratios of copper and nickel was prepared by adjusting the electrodeposition potential. The performance of the CuNi/M/GF, Cu foam, Ni foam, M/GF and GF in a dual-chamber cell and single-chamber cell was evaluated for different concentrations of chlorine, current density, energy consumption and degradation. In a solution of 100 mg/L NO3-N, the removal of NO3-N and total nitrogen (TN) by the optimal electrode in a single-chamber cell (SCC) can reach 99%. Aeration in the dual-chamber cell cathode can blow out more than 99% of the ammonia nitrogen that is converted from NO3-N. More than 95% of the TN in a 100 ml, 700 mg/L NO3-N solution was removed within 6 h. CuNi/M/GF showed excellent corrosion resistance and stability in the cyclic tests. CuNi–1.3/M/GF is more resistant to corrosion in the DCC than in the SCC which may be attributed to contact of the cathode with the oxidizing substance in the SCC. The application of CuNi/M/GF in practical wastewater that contained a high concentration of NaCl and nitrate-N shows that the electrode has considerable application prospects in TN removal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Martínez J, Ortiz A, Ortiz I (2017) State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl Catal B 207:42–59. https://doi.org/10.1016/j.apcatb.2017.02.016

    Article  CAS  Google Scholar 

  2. Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359

    Article  CAS  Google Scholar 

  3. Bilanovic D, Battistoni P, Cecchi F, Pavan P, Mata-Alvarez J (1999) Denitrification under high nitrate concentration and alternating anoxic conditions. Water Res 33:3311–3320

    Article  CAS  Google Scholar 

  4. Vitousek PM, Aber JD, Howarth RW et al (1997) Technical report: human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. https://doi.org/10.2307/2269431

    Article  Google Scholar 

  5. Fanning JC (2000) The chemical reduction of nitrate in aqueous solution. Coord Chem Rev 199:159–179

    Article  CAS  Google Scholar 

  6. Risica S (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva

    Google Scholar 

  7. Rivett MO, Buss SR, Morgan P, Smith JW, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42:4215–4232. https://doi.org/10.1016/j.watres.2008.07.020

    Article  CAS  Google Scholar 

  8. USEPA (2017) Ground water and drinking water table of regulated drinking water contaminants

  9. Kalaruban M, Loganathan P, Kandasamy J, Vigneswaran S (2018) Submerged membrane adsorption hybrid system using four adsorbents to remove nitrate from water. Environ Sci Pollut Res 25:20328–20335. https://doi.org/10.1007/s11356-017-8905-9

    Article  CAS  Google Scholar 

  10. Afonso MD, Jaber JO, Mohsen MS (2004) Brackish groundwater treatment by reverse osmosis in Jordan. Desalination 164:157–171

    Article  CAS  Google Scholar 

  11. Kim YM, Kim SJ, Kim YS, Lee S, Kim IS, Kim JH (2009) Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network. Desalination 238:312–332

    Article  CAS  Google Scholar 

  12. Chen Y, Peng C, Wang J, Liu Y, Zhang L, Peng Y (2011) Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system. Bioresour Technol 102:5722–5727

    Article  CAS  Google Scholar 

  13. Ding J, Li W, Zhao Q-L, Wang K, Zheng Z, Gao Y-Z (2015) Electroreduction of nitrate in water: role of cathode and cell configuration. Chem Eng J 271:252. https://doi.org/10.1016/j.cej.2015.03.001

    Article  CAS  Google Scholar 

  14. Wang Q, Zhao X, Zhang J, Zhang X (2015) Investigation of nitrate reduction on polycrystalline Pt nanoparticles with controlled crystal plane. J Electroanal Chem 755:210–214. https://doi.org/10.1016/j.jelechem.2015.08.005

    Article  CAS  Google Scholar 

  15. Mattarozzi L, Cattarin S, Comisso N et al (2013) Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes. Electrochim Acta 89:488–496. https://doi.org/10.1016/j.electacta.2012.11.074

    Article  CAS  Google Scholar 

  16. Comisso N, Cattarin S, Guerriero P et al (2016) Study of Cu, Cu-Ni and Rh-modified Cu porous layers as electrode materials for the electroanalysis of nitrate and nitrite ions. J Solid State Electrochem 20:1139–1148

    Article  CAS  Google Scholar 

  17. Birdja YY, Yang J, Koper MTM (2014) Electrocatalytic reduction of nitrate on tin-modified palladium electrodes. Electrochim Acta 140:518–524. https://doi.org/10.1016/j.electacta.2014.06.011

    Article  CAS  Google Scholar 

  18. Katsuaki S (2004) High electrocatalytic performance of Pd/Sn/Au electrodes for nitrate reduction. J Electroanal Chem 572:93–99

    Article  Google Scholar 

  19. Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, Westerhoff P (2018) Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B 236:546–568. https://doi.org/10.1016/j.apcatb.2018.05.041

    Article  CAS  Google Scholar 

  20. de Groot MT, Mtm K (2004) The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J Electroanal Chem 562:81–94

    Article  Google Scholar 

  21. Jha K, Weidner JW (1999) Evaluation of porous cathodes for the electrochemical reduction of nitrates and nitrites in alkaline waste streams. J Appl Electrochem 29:1305–1315

    Article  CAS  Google Scholar 

  22. Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49:11292–11302. https://doi.org/10.1021/acs.est.5b02414

    Article  CAS  Google Scholar 

  23. Mattarozzi L, Cattarin S, Comisso N et al (2014) Hydrogen evolution assisted electrodeposition of porous Cu-Ni alloy electrodes and their use for nitrate reduction in alkali. Electrochim Acta 140:337–344

    Article  CAS  Google Scholar 

  24. Wang Q, Yue K, Zhang X, Wang L, Guiver MD, Zhang J (2017) Carbon fiber paper supported nano-Pt electrode with high electrocatalytic activity for concentrated nitric acid reduction. J Electroanal Chem 794:43–48. https://doi.org/10.1016/j.jelechem.2017.03.043

    Article  CAS  Google Scholar 

  25. Zhu W, Zhang X, Yin Y, Qin Y, Zhang J, Wang Q (2018) In-situ electrochemical activation of carbon fiber paper for the highly efficient electroreduction of concentrated nitric acid. Electrochim Acta 291:328–334. https://doi.org/10.1016/j.electacta.2018.08.127

    Article  CAS  Google Scholar 

  26. Zhang X, Zhang S, Zhu W et al (2020) Synergetic electrochemical HNO3 reduction on the activated-CFP supported nano-Pt electrodes. J Electroanal Chem 869:114182. https://doi.org/10.1016/j.jelechem.2020.114182

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhao Y, Chen Z, Wang L, Wu P, Wang F (2018) Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N2 selectivity. Electrochim Acta 291:151–160. https://doi.org/10.1016/j.electacta.2018.08.154

    Article  CAS  Google Scholar 

  28. Wu Y, Gan L, Zhang S et al (2018) Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: enhanced activity and stability. J Hazard Mater 356:17–25. https://doi.org/10.1016/j.jhazmat.2018.05.034

    Article  CAS  Google Scholar 

  29. Su L, Li K, Zhang H et al (2017) Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res 120:1–11. https://doi.org/10.1016/j.watres.2017.04.069

    Article  CAS  Google Scholar 

  30. Chang J-K, Hsu S-H, Sun IW, Tsai W-T (2008) Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel−copper alloys. J Phys Chem C 112:1371–1376. https://doi.org/10.1021/jp0772474

    Article  CAS  Google Scholar 

  31. Liu Z, Xia G, Zhu F et al (2008) Exploiting finite size effects in a novel core/shell microstructure. J Appl Phys 103:064313. https://doi.org/10.1063/1.2844286

    Article  CAS  Google Scholar 

  32. Reyter D, Bélanger D, Roué L (2011) Optimization of the cathode material for nitrate removal by a paired electrolysis process. J Hazard Mater 192:507–513. https://doi.org/10.1016/j.jhazmat.2011.05.054

    Article  CAS  Google Scholar 

  33. Durivault L, Brylev O et al (2007) Cu-Ni materials prepared by mechanical milling: their properties and electrocatalytic activity towards nitrate reduction in alkaline medium. J Alloys Compd 432:323–332

    Article  CAS  Google Scholar 

  34. Hristovski KD, Markovski J (2017) Engineering metal (hydr) oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: a critical review with emphasis on factors governing sorption processes. Sci Total Environ 598:258–271. https://doi.org/10.1016/j.scitotenv.2017.04.108

    Article  CAS  Google Scholar 

  35. Cook AR, Dimitrijevic N, Dreyfus BW, Meisel D, Curtiss LA, Camaioni DM (2001) Reducing radicals in nitrate solutions. The NO32-system revisited. J Phys Chem A 105:3658–3666. https://doi.org/10.1021/jp0038052

    Article  CAS  Google Scholar 

  36. Dima GE, Beltramo GL, Koper MTM (2005) Nitrate reduction on single-crystal platinum electrodes. Electrochim Acta 50:4318–4326. https://doi.org/10.1016/j.electacta.2005.02.093

    Article  CAS  Google Scholar 

  37. de Vooys ACA, Beltramo GL, van Riet B, van Veen JAR, Koper MTM (2004) Mechanisms of electrochemical reduction and oxidation of nitric oxide. Electrochim Acta 49:1307–1314. https://doi.org/10.1016/j.electacta.2003.07.020

    Article  CAS  Google Scholar 

  38. Horányi G, Rizmayer EM (1982) Role of adsorption phenomena in the electrocatalytic reduction of nitric acid at a platinized platinum electrode. J Electroanal Chem Interfacial Electrochem 140:347–366. https://doi.org/10.1016/0022-0728(82)85178-4

    Article  Google Scholar 

  39. Katsounaros I, Kyriacou G (2008) Influence of nitrate concentration on its electrochemical reduction on tin cathode: identification of reaction intermediates. Electrochim Acta 53:5477–5484. https://doi.org/10.1016/j.electacta.2008.03.018

    Article  CAS  Google Scholar 

  40. Katsounaros I, Kyriacou G (2007) Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode. Electrochim Acta 52:6412–6420. https://doi.org/10.1016/j.electacta.2007.04.050

    Article  CAS  Google Scholar 

  41. Li M, Feng C, Zhang Z, Sugiura N (2009) Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim Acta 54:4600–4606. https://doi.org/10.1016/j.electacta.2009.03.064

    Article  CAS  Google Scholar 

  42. Li M, Feng C, Zhang Z et al (2009) Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method. J Hazard Mater 171:724–730. https://doi.org/10.1016/j.jhazmat.2009.06.066

    Article  CAS  Google Scholar 

  43. Couto AB, Oishi SS, Ferreira NG (2016) Enhancement of nitrate electroreduction using BDD anode and metal modified carbon fiber cathode. J Ind Eng Chem 39:210–217. https://doi.org/10.1016/j.jiec.2016.05.028

    Article  CAS  Google Scholar 

  44. Karri RR, Sahu JN, Chimmiri V (2018) Critical review of abatement of ammonia from wastewater. J Mol Liq 261:21–31. https://doi.org/10.1016/j.molliq.2018.03.120

    Article  CAS  Google Scholar 

  45. Hl Li DH, Robertson JQC, Hobbs DT (1988) Electrochemical reduction of nitrate and nitrite in concentrated sodium hydroxide at platinum and nickel electrodes. J Electrochem Soc 135:1154. https://doi.org/10.1149/1.2095900

    Article  Google Scholar 

  46. Paidar M, Roušar I, Bouzek K (1999) Electrochemical removal of nitrate ions in waste solutions after regeneration of ion exchange columns. J Appl Electrochem 29:611–617. https://doi.org/10.1023/A:1026423218899

    Article  CAS  Google Scholar 

  47. Li W, Xiao C, Zhao Y, Zhao Q, Fan R, Xue J (2016) Electrochemical reduction of high-concentrated nitrate using Ti/TiO2 nanotube array anode and Fe cathode in dual-chamber cell. Catal Lett 146:2585–2595. https://doi.org/10.1007/s10562-016-1894-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge generous support provided by the National Natural Science Foundation (No. 51778281) and Jiangsu Natural Science Fund (Nos. BK20171342 and BK20161493) P.R. China, and this study is supported by the Fundamental Research Funds for the Central Universities (No. 20620140479), the Nanjing Normal University Research Funding (184080H202B146), the State Key Program of National Natural Science of China (No. 51438008), State Key Laboratory of Pollution Control and Resource Reuse Open Fund (PCRRF18018, PCRRF19032), and National Key R&D Program of China (No. 2016YFE0112300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Li.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Lu, X., Yang, K. et al. Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water. J Mater Sci 56, 7357–7371 (2021). https://doi.org/10.1007/s10853-020-05764-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05764-3

Navigation