Skip to main content
Log in

A rapid experimental protocol to determine the desorption resistant fraction of sediment-sorbed hydrophobic organic contaminants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Desorption of hydrophobic organic contaminants (HOCs) from sedimentary materials plays a vital role in dictating the fate and transport of HOCs in the environment. Desorption irreversibility is a commonly observed phenomenon in laboratory sorption/desorption studies of HOCs. A desorption-resistant fraction (DRF) typically exists during the desorption process. To correctly evaluate the DRF of HOCs can considerably contribute to the understanding of availability and bioavailability of HOCs. This can substantially benefit contaminant remediation and cleanup operations. Conventional batch method to measure the DRF replies on repetitive washing of the sediments, which is time-consuming and can be impractical. This study presents an experimental protocol to quantify the DRF of the sediment-sorbed organic contaminants in a rapid manner. This protocol utilizes cosolvent to expedite desorption kinetics and adopts an ultrafiltration/centrifugation combined method to achieve a complete separation of sediment and solution phases. This proposed experimental protocol can facilitate the quantification of the DRF of sorbed contaminants to understand and minimize the uncertainties associated with risk-based pollution remediation approach. This protocol has the potential to be widely used in environmental studies to characterize sorption and desorption properties of HOCs with soil and sedimentary materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C :

solution-phase contaminant concentration (μg mL−1)

C s :

solution-phase contaminant concentration after each desorption step (μg mL−1)

C sat :

contaminant aqueous solubility (μg mL−1)

f :

fraction of \( {q}_{\mathrm{resistant}}^{\mathrm{max}} \) that is filled during sorption

f oc :

organic carbon content

F Rs :

solubility enhancement factor

K oc :

organic carbon normalized partitioning coefficient

K ow :

octanol/water partitioning coefficient

\( {K}_{\mathrm{OC}}^{\mathrm{reversible}} \) :

organic carbon normalized partitioning coefficient of the reversible fraction (mL g−1)

\( {K}_{\mathrm{oc}}^{\mathrm{resistant}} \) :

organic carbon normalized partitioning coefficient of the resistant fraction (mL g−1)

M :

mass of sediment used in the desorption in the recommended experimental approach (g)

q :

sediment-phase contaminant concentration (μg g−1)

q 0 :

sediment-phase contaminant concentration at the beginning of desorption experiment (μg g−1)

q′:

sediment-phase contaminant concentration at the end of the desorption experiment measured by sediment Soxhlet extraction (μg g−1)

q initial :

initial sediment-phase contaminant concentration (μg g−1)

\( {q}_{\mathrm{resistant}}^{\mathrm{max}} \) :

maximum capacity of desorption resistant fraction (μg g−1)

q resistant :

desorption resistant fraction (μg g−1)

q re − adsorb :

re-adsorbed contaminant amount (μg g−1)

q reversible :

desorption reversible fraction (μg g−1)

γ w :

activity coefficient of solute in water

γ MS :

activity coefficient of solute in mixed solvent

V :

mixed solvent volume removed in the recommended experimental approach (mL)

V W :

molar volume of water

V MS :

molar volumes of mixed solvent

References

  • Aschermann G, Zietzschmann F, Jekel M (2018) Influence of dissolved organic matter and activated carbon pore characteristics on organic micropollutant desorption. Water Res 133:123–131

    Article  CAS  Google Scholar 

  • Barnier C, Ouvrard S, Robin C, Morel JL (2014) Desorption kinetics of PAHs from aged industrial soils for availability assessment. Sci Total Environ 470-471:639–645

    Article  CAS  Google Scholar 

  • Carroll KM, Harkness MR, Bracco AA, Balcarcel RR (1994) Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environ Sci Technol 28:253–258

    Article  CAS  Google Scholar 

  • Chen W (1999) Impact of irreversible sorption on sediment quality. Ph.D. thesis, Rice University, Houston, TX

  • Chen W, Kan AT, Fu G, Vignona LC, Tomson MB (1999) Adsorption-desorption behaviors of hydrophobic organic compounds in sediments of Lake Charles, Louisiana, USA. Environ Toxicol Chem 18:1610–1616

    Article  CAS  Google Scholar 

  • Chen W, Kan AT, Tomson MB (2000) Irreversible adsorption of chlorinated benzenes to natural sediments: implications for sediment quality criteria. Environ Sci Technol 34:385–392

    Article  CAS  Google Scholar 

  • Chen W, Kan AT, Newell CJ, Moore E, Tomson MB (2002) More realistic soil cleanup standards with dual-equilibrium desorption. Groundwater 40:153–164

    Article  CAS  Google Scholar 

  • Chen C-E, Jones KC, Ying G-G, Zhang H (2014) Desorption kinetics of sulfonamide and trimethoprim antibiotics in soils assessed with diffusive gradients in thin-films. Environ Sci Technol 48:5530–5536

    Article  CAS  Google Scholar 

  • Chen H, Reinhard M, Nguyen VT, Gin YK (2016) Reversible and irreversible sorption of perfluorinated compounds (PFCs) by sediments of an urban reservoir. Chemosphere 144:1747–1753

    Article  CAS  Google Scholar 

  • Chiou CT, Kile DE (1998) Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ Sci Technol 32:338–343

    Article  CAS  Google Scholar 

  • Choi H, Lawal W, Al-Abed SR (2015) Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon. J Hazard Mater 287:118–125

    Article  CAS  Google Scholar 

  • Clark MM (2009) Transport modeling for environmental engineers and scientists, 2nd edn. Wiley

  • Cornelissen G, van Noort PCM, Govers HAJ (1997) Desorption kinetics of chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls: sediment extraction with Tenax® and effects of contact time and solute hydrophobicity. Environ Toxicol Chem 16:1351–1357

    Article  CAS  Google Scholar 

  • Cristale J, Álvarez-Martín A, Rodríguez-Cruz S, Sánchez-Martín MJ, Lacorte S (2017) Sorption and desorption of organophosphate esters with different hydrophobicity by soils. Environ Sci Pollut Res 24:27870–27878

    Article  CAS  Google Scholar 

  • Cui X, Mayer P, Gan J (2013) Methods to assess bioavailability of hydrophobic organic contaminants: principles, operations, and limitations. Environ Pollut 172:223–234

    Article  CAS  Google Scholar 

  • Diaz JMC, Martin-Laurent F, Beguet J, Nogales R, Romero E (2017) Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: risk for soil functions, structure, and bacterial abundance. Sci Total Environ 579:1111–1119

    Article  CAS  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    Article  CAS  Google Scholar 

  • Griffiths RA (2004) Sorption and desorption by ideal two-compartment systems: unusual behavior and data interpretation problems. Chemosphere 55:443–454

    Article  CAS  Google Scholar 

  • Jing F, Pan M, Chen J (2018) Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis. Environ Sci Pollut Res 25:11493–11504

    Article  CAS  Google Scholar 

  • Kan AT, Fu G, Hunter MA, Tomson MB (1997) Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments. Environ Sci Technol 31:2176–2185

    Article  CAS  Google Scholar 

  • Kan AT, Fu G, Hunter M, Chen W, Ward CH, Tomson MB (1998) Irreversible sorption of neutral hydrocarbons to sediments: experimental observations and model predictions. Environ Sci Technol 32:892–902

    Article  CAS  Google Scholar 

  • Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244–245:444–456

    Article  CAS  Google Scholar 

  • Lewandowski KK, Cieślikiewicz W, Kobusińska ME, Niemirycz E (2018) Sorption of pentachlorophenol (PCP) in the marine bottom sediments—batch sorption experiment at varying pressure. Environ Sci Pollut Res 25:10799–10807

    Article  CAS  Google Scholar 

  • Liu J, Ma Y, Zhu D, Xia T, Qi Y, Yao Y, Guo X, Ji R, Chen W (2018) Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain. Environ Sci Technol 52:2677–2685

    Article  CAS  Google Scholar 

  • Loganathan BG, Lam PK (2011) Global contamination trends of persistent organic chemicals. CRC Press

  • Martín J, Orta MM, Medina-Carrasco S, Santos JL, Aparicio I, Alonso E (2018) Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environ Res 164:488–494

    Article  CAS  Google Scholar 

  • Mayer P, Olsen JL, Gouliarmou V, Hasinger M, Kendler R, Loibner AP (2011) A contaminant trap as a tool for isolating and measuring the desorption resistant fraction of soil pollutants. Environ Sci Technol 45:2932–2937

    Article  CAS  Google Scholar 

  • Mayer P, Hilber I, Gouliarmou V, Hale SE, Cornelissen G, Bucheli TD (2016) How to determine the environmental exposure of PAHs originating from biochar. Environ Sci Technol 50:1941–1948

    Article  CAS  Google Scholar 

  • Nzengung VA, Voudrias EA, Nkedi-Kizza P, Wampler JM, Weaver CE (1995) Organic cosolvent effects on sorption equilibrium of hydrophobic organic chemicals by organoclays. Environ Sci Technol 30:89–96

    Article  Google Scholar 

  • Nzengung VA, Nkedi-Kizza P, Jessup RE, Voudrias EA (1997) Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays. Environ Sci Technol 31:1470–1475

    Article  CAS  Google Scholar 

  • de Oliveira Neto OF, Arenas AY, Fostier AH (2017) Sorption of thiabendazole in sub-tropical Brazilian soils. Environ Sci Pollut Res 24:16503–16512

    Article  CAS  Google Scholar 

  • Pan G, Jia C, Zhao D, You C, Chen H, Jiang G (2009) Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environ Pollut 157:325–330

    Article  CAS  Google Scholar 

  • Qi Z, Hou L, Zhu D, Ji R, Chen W (2014) Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil. Environ Sci Technol 48:10136–10144

    Article  CAS  Google Scholar 

  • Salloum MJ, Chefetz B, Hatcher PG (2002) Phenanthrene sorption by aliphatic-rich natural organic matter. Environ Sci Technol 36:1953–1958

    Article  CAS  Google Scholar 

  • Sander M, Pignatello JJ (2009) Sorption irreversibility of 1,4-dichlorobenzene in two natural organic matter–rich geosorbents. Environ Toxicol Chem 28:447–457

    Article  CAS  Google Scholar 

  • Sander M, Lu YF, Pignatello JJ (2005) A thermodynamically based method to quantify true sorption hysteresis. J Environ Qual 34:1063–1072

    Article  CAS  Google Scholar 

  • Sandler SI (2017) Chemical, biochemical, and engineering thermodynamics, 5th edn. Wiley

  • Schnoor JL (1996) Environmental modeling: Fate and transport of pollutants in water, air, and soil. Wiley-Interscience

  • Schwarzenbach RP, Gschwend P.M, Imboden D.M (2013) Environmental organic chemistry, 3rd edn. Wiley

  • Semple KT, Riding MJ, McAllister JE, Sopena-Vazquez F, Bending GD (2013) Impact of black carbon on the bioaccessibility of organic contaminants in soil. J Hazard Mater 261:808–816

    Article  CAS  Google Scholar 

  • Spasojević JM, Maletić SP, Rončević SD, Radnović DV, Čučak DI, Tričković JS, Dalmacija BD (2015) Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment. J Hazard Mater 283:60–69

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (1998) Contaminated sediment management strategy (EPA-823-R-98-001). Office of Water, Washington, DC

    Google Scholar 

  • Umeh AC, Duan L, Naidu R, Semple KT (2017) Residual hydrophobic organic contaminants in soil: are they a barrier to risk-based approaches for managing contaminated land? Environ Int 98:18–34

    Article  CAS  Google Scholar 

  • Xing B, Pignatello JJ (1998) Competitive sorption between 1,3-dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soil organic matter. Environ Sci Technol 32:614–619

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008

    Article  CAS  Google Scholar 

  • Zhang L, Wang L, Zhang P, Kan AT, Chen W, Tomson MB (2011) Facilitated transport of 2,2,5,5-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Environ Sci Technol 45:1341–1348

    Article  CAS  Google Scholar 

  • Zhu B, Xia X, Wu S, Lu X, Yin X (2016) Microbial bioavailability of 2,2′,4,4’-Tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China. Chemosphere 153:386–393

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate the sponsorship of Science and Technology Development Fund, Macao S.A.R (FDCT) (0063/2018/A2) and Start-Up Research Grant provided by the University of Macau (SRG2018-00112-FST). This work was also financially supported by Brine Chemistry Consortium companies of Rice University, including Aegis, Apache, BHGE, BWA, Chevron, ConocoPhillips, Coastal Chemical, EOG Resources, ExxonMobil, Flotek Industries, Halliburton, Hess, Italmatch, JACAM, Kemira, Kinder Morgan, Nalco, Oasis, Occidental Oil and Gas, Range Resources, RSI, Saudi Aramco, Schlumberger, Shell, SNF, Statoil, Suez, Total, and the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (ERC-1449500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Zhihong Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Huang, S., Kan, A.T. et al. A rapid experimental protocol to determine the desorption resistant fraction of sediment-sorbed hydrophobic organic contaminants. Environ Sci Pollut Res 27, 1449–1460 (2020). https://doi.org/10.1007/s11356-019-06521-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06521-z

Keywords

Navigation