Skip to main content
Log in

Carbon-based magnetic nanocomposite as catalyst for persulfate activation: a critical review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The activation of persulfate to produce active radicals has been attracting wide attention in environmental remediation fields. Among various catalysts, non-metal carbocatalysts and carbon-based composites have shown attractive prospects given that they are environmental-friendly, highly efficient, abundant, and diverse. In this paper, the use of carbon-based magnetic nanocomposites as catalysts for persulfate activation was reviewed and discussed. The preparation methods of carbon-based magnetic nanocomposites were first briefly summarized. Subsequently, the use of activated carbon, carbon nanotubes, graphene oxide, biochar, and nanodiamond-based magnetic composites to activate persulfate was discussed, respectively. A synergetic effect between carbon materials and magnetic nanoparticles facilitated the activation process because of the increased electron transfer capacity, good dispersity of magnetic nanoparticles, and good repeatability and separability. Both radical and non-radical pathways were detected in the activation processes, but the specific mechanisms were greatly influenced by the components of the catalyst and solution conditions. And fundamental studies were needed to clarify the inner mechanisms of the process. In the end, strategies for enhancing the catalytic performances of carbon-based magnetic nanocomposites were suggested. It is expected that this review will provide some inspirations for developing highly efficient and green catalyst, as well as sulfate radical–based advanced oxidation technology for the remediation water environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad A, Gu X, Li L, Lu S, Xu Y, Guo X (2015) Effects of pH and anions on the generation of reactive oxygen species (ROS) in nZVI-rGo-activated persulfate system. Water Air Soil Pollut 226:369–376

    Article  CAS  Google Scholar 

  • Aich N, Plazas-Tuttle J, Lead JR, Saleh NB (2014) A critical review of nanohybrids: synthesis, applications and environmental implications. Environ Chem 11:609–623

    Article  CAS  Google Scholar 

  • Cátia AL, Graça F, Velosa AD, Teixeira AC (2017) Amicarbazone degradation promoted by zvi-activated persulfate: study of relevant variables for practical application. Environ Sci Pollut Res 25(6):5474–5483

    Google Scholar 

  • Chabot V, Higgins D, Yu A (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7(5):1564–1596

    Article  CAS  Google Scholar 

  • Chen J, Wei H, Huang T, Zhang L, Li W, Wang Y (2016) Activated carbon fiber for heterogeneous activation of persulfate: implication for the decolorization of azo dye. Environ Sci Pollut Res 23:18564–18574

    Article  CAS  Google Scholar 

  • Chen CH, Cho IC, Jian HS (2017) Fe doped magnetic nanodiamonds made by ion implantation. Sci Report 7:41938–41946

    Article  CAS  Google Scholar 

  • Cheng X, Guo H, Zhang Y, Xiao W, Yang L (2017) Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res 113:80–88

    Article  CAS  Google Scholar 

  • Cheng DD, Chiu WC, Chang MH (2018) Persulfate activation with rice husk-based magnetic biochar for degrading PAEs in marine sediments. Environ Sci Pollut Res 24:1–10

    Google Scholar 

  • Dan Z, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 228:254–255

    Google Scholar 

  • Das D, Gaur V, Verma N (2004) Removal of volatile organic compound by activated carbon fiber. Carbon 42:2949–2962

    Article  CAS  Google Scholar 

  • Dong X, Ma LQ, Li Y (2011) Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J Hazard Mater 190(1):909–915

    Article  CAS  Google Scholar 

  • Dong CD, Chen CW, Hung CM (2017) Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour Technol 245:188–197

    Article  CAS  Google Scholar 

  • Duan XG, Ao Z, Zhou L, Sun HQ, Wang G, Wang SB (2016a) Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl Catal B Environ 188:98–105

    Article  CAS  Google Scholar 

  • Duan XG, Su C, Zhou L, Sun HQ, Alexanadra S, Wang SB (2016b) Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl Catal B Environ 194:7–15

    Article  CAS  Google Scholar 

  • Duan MJ, Guan ZY, Ma YW (2017) A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: synthesis, characterization, and catalytic performance. Chem Pap 1:235–250

    Google Scholar 

  • Duan XG, Sun H, Tade M, Wang S (2018a) Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catal Today 307:140–146

    Article  CAS  Google Scholar 

  • Duan XG, Sun HQ, Wang SB (2018b) Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res 51:678–687

    Article  CAS  Google Scholar 

  • Fang GD, Juan G, Cun L, Dionysiou DD, Yu W, Dongmei Z (2014) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48:1902–1910

    Article  CAS  Google Scholar 

  • Fang GD, Cun L, Juan G, Dionysiou DD, Dongmei Z (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49:5645–5653

    Article  CAS  Google Scholar 

  • Fang GD, Wu W, Liu C, Dionysiou DD, Deng Y, Zhou D (2017) Activation of persulfate with vanadium species for PCBs degradation: a mechanistic study. Appl Catal B Environ 202:1–11

    Article  CAS  Google Scholar 

  • Feng M, Qu R, Zhang X, Sun P, Sui Y, Wang L (2015) Degradation of flumequine in aqueous solution by persulfate activated with common methods and polyhydroquinone-coated magnetite/multi-walled carbon nanotubes catalysts. Water Res 85:1–10

    Article  CAS  Google Scholar 

  • Fert A, Piraux L (1999) Magnetic nanowires. J Magnetism Mag Mater 200:338–358

    Article  CAS  Google Scholar 

  • Frontistis Z, Antonopoulou M, Konstantinou I, Mantzavinos D (2017) Degradation of ethyl paraben by heat-activated persulfate oxidation: statistical evaluation of operating factors and transformation pathways. Environ Sci Pollut Res 24(2):1073–1084

    Article  CAS  Google Scholar 

  • Giulia C, Jiri K, Berns AE, Schaumann GE, Giuseppe A, Pellegrino C (2014) Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. J Agric Food Chem 62:1912–1921

    Article  CAS  Google Scholar 

  • Gong F, Wang L, Li D, Zhou F, Yao Y, Lu W (2015) An effective heterogeneous iron-based catalyst to activate peroxymonosulfate for organic contaminants removal. Chem Eng J 267:102–110

    Article  CAS  Google Scholar 

  • Hammouda SB, Zhao FP, Safaei Z, Srivastava V, Ramasamy D (2017) Degradation and mineralization of phenol in aqueous medium by heterogeneous monopersulfate activation on nanostructured cobalt based-perovskite catalysts ACoO3 (A = La, Ba, Sr and Ce): characterization, kinetics and mechanism study. Appl Catal B Environ 215:60–73

    Article  CAS  Google Scholar 

  • Hu PD, Long M (2016) Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B Environ 181:103–117

    Article  CAS  Google Scholar 

  • Huang X, Meng X, Tang F, Li L, Chen D (2008) Mesoporous magnetic hollow nanoparticles-protein carriers for lysosome escaping and cytosolic delivery. Nanotechnology 19:445101–445111

    Article  CAS  Google Scholar 

  • Hussain I, Li M, Zhang Y, Li Y, Huang S, Du X (2017) Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chem Eng J 311:163–172

    Article  CAS  Google Scholar 

  • Jiang X, Guo Y, Zhang L, Jiang W, Xie R (2018) Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon. Chem Eng J 341:392–401

    Article  CAS  Google Scholar 

  • Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu X, Tannenbaum R (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114:6944–6951

    Article  CAS  Google Scholar 

  • Kolotilov SV, Shvets O, Cador O (2006) Synthesis, structure and magnetic properties of porous magnetic composite, based on MCM-41 molecular sieve with Fe3O4 nanoparticles. J Solid State Chem 179:2426–2432

    Article  CAS  Google Scholar 

  • Kong J, Li R, Wang F, Chen P, Liu H, Liu G (2018) Sulfate radical-induced transformation of trimethoprim with CuFe2O4/MWCNTs as a heterogeneous catalyst of peroxymonosulfate: mechanisms and reaction pathways. RSC Adv 8:24787–24795

    Article  CAS  Google Scholar 

  • Kuhn LT, Bojesen A, Timmermann L, Nielsen MM, Mørup S (2002) Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condens Matter 14:13551–13559

    Article  CAS  Google Scholar 

  • Lath S, Navarro DA, Losic D, Kumar A, McLaughlin MJ (2018) Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. Environ Chem 15:472–480

    Article  CAS  Google Scholar 

  • Lee YC, Lo SL, Kuo J (2013) Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon. J Hazard Mater 261:463–469

    Article  CAS  Google Scholar 

  • Lee H, Lee HJ, Jeong J, Lee J, Park NB, Lee C (2015) Activation of persulfates by carbon nanotubes: oxidation of organic compounds by nonradical mechanism. Chem Eng J 266:28–33

    Article  CAS  Google Scholar 

  • Lee H, Kim HI, Weon S, Choi W, Hwang YS (2016) Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environ Sci Technol 50:10134–10142

    Article  CAS  Google Scholar 

  • Liang C, Li Z, Dai S (2010) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed Engl 47:3696–3717

    Article  CAS  Google Scholar 

  • Liang P, Zhang C, Duan XG, Sun HQ, Wang SB (2017) An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ Sci Nano 4:315–325

    Article  CAS  Google Scholar 

  • Lin KYA, Hsu FK, Lee WD (2015) Magnetic cobalt-graphene nanocomposite derived from self-assembly of MOFs with graphene oxide as an activator for peroxymonosulfate. J Mater Chem A 3:9480–9490

    Article  CAS  Google Scholar 

  • Liu ZL, Zeng ZQ, Yang J (2017) Degradation of phenol with persulfate activated by surface modified activated carbon. Chem J Chin Univ 38:1241–1248

    CAS  Google Scholar 

  • Metheniti ME, Frontistis Z, Ribeiro RS, Adrián MT, Faria JL (2017) Degradation of propyl paraben by activated persulfate using iron-containing magnetic carbon xerogels: investigation of water matrix and process synergy effects. Environ Sci Pollut Res 25(35):34801–34810

    Article  CAS  Google Scholar 

  • Nathanail CP, Han L, Dong M, Yan J, Gao W, Qian L (2016) Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle. Chem Eng J 295:309–316

    Article  CAS  Google Scholar 

  • Nidheesh PV (2017) Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res 24:27047–27069

    Article  CAS  Google Scholar 

  • Nie CH, Sun PP, Zhu LY, Gao SM, Wu HJ, Wang BH (2017) Solar-driven advanced oxidation processes for full mineralisation of azo dyes in wastewater. Environ Chem 14:188–197

    Article  CAS  Google Scholar 

  • Ocampo MA (2009) Persulfate activation by organic compounds. Dissertation, Washington State University.

  • Oh WD, Lua SK, Dong Z, Lim TT (2014) Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. J Hazard Mater 284:1–9

    Article  CAS  Google Scholar 

  • Pang Y, Luo K, Tang L, Li X, Song Y (2018) Preparation and application of magnetic nitrogen-doped rGO for persulfate activation. Environ Sci Pollut Res 25(35):34100–34110

    Google Scholar 

  • Pastora JG, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204

    Article  CAS  Google Scholar 

  • Peiris C, Gunatilake SR, Mlsna TE, Mohan D, Vithanage M (2017) Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour Technol 246:287–302

    Article  CAS  Google Scholar 

  • Peng W, Liu S, Sun H, Yao Y, Zhi L, Wang S (2013) Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J Mater Chem A 1:5854–5859

    Article  CAS  Google Scholar 

  • Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Criti Rev Solid State Mater Sci 34:18–74

    Article  CAS  Google Scholar 

  • Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Criti Rev Solid State Mater Sci 27:130–145

    Google Scholar 

  • Shokoohi R, Bajalan S, Salari M (2019) Thermochemical degradation of furfural by sulfate radicals in aqueous solution: optimization and synergistic effect studies. Environ Sci Pollut Res 26(9):8914–8927

    Article  CAS  Google Scholar 

  • Simonetti S, Pronsato ME, Brizuela G (2007) The C-C pair in the vicinity of a bcc Fe bulk vacancy: electronic structure and bonding. Physi Status Solid (b) 244:9–18

    Google Scholar 

  • Song X, Wang C, Liu M, Zhang M (2018) Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst. Water Sci Technol 77:1891–1898

    Article  CAS  Google Scholar 

  • Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Perez M (2016) Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Bio Bioener 84:37–48

    Article  CAS  Google Scholar 

  • Sun H, Liu S, Zhou G, Ang HM, Tadé MO, Wang S (2012) Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants. ACS Appl Mater Interfaces 4:5466–5471

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Yang D, Jing D, Zhou S, Li J (2014) Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J Hazard Mater 276:452–460

    Article  CAS  Google Scholar 

  • Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, Hu XJ (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333

    Article  CAS  Google Scholar 

  • Tang L, Liu Y, Wang J, Zeng G, Deng Y, Dong H (2018) Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism. Appl Catal B Environ 231:1–10

    Article  CAS  Google Scholar 

  • Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Comp Sci Technol 61:1899–1912

    Article  CAS  Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, MosbaK H, Siegrist RL, Bjerg PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Cri Rev Environ Sci Technol 40(1):55–91

    Article  CAS  Google Scholar 

  • Wacławek S, Lutze HV, Grübel K, Padil VVT, Dionysiou DD (2017) Chemistry of persulfates in water and wastewater treatment: a review. Chem Eng J 330:44–62

    Article  CAS  Google Scholar 

  • Wang H, Yan N, Li Y, Zhou XH, Chen J, Chen QW (2012) Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions. J Mater Chem 22:9230–9238

    Article  CAS  Google Scholar 

  • Wang XB, Qin YL, Zhu LH, Tan HQ (2015) Nitrogen-doped reduced graphene oxide as a bifunctional material for removing bisphenols: synergistic effect between adsorption and catalysis. Environ Sci Technol 49:6855–6864

    Article  CAS  Google Scholar 

  • Wang YX, Ao ZM, Sun HQ, Duan XG, Wang SB (2016) Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Appl Catal B Environ 198:295–302

    Article  CAS  Google Scholar 

  • Wang J, Liao Z, Ifthikar J, Shi L, Du Y, Zhu J (2017) Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 185:754–763

    Article  CAS  Google Scholar 

  • Weng CH, Ding F, Lin YT, Liu N (2015) Effective decolorization of polyazo direct dye Sirius Red F3B using persulfate activated with Fe0 aggregate. Sep Purif Technol 147:147–155

    Article  CAS  Google Scholar 

  • Wu Y, Guo J, Han Y, Zhu J, Zhou L, Lan Y (2018) Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline. Chemosphere 200:373–379

    Article  CAS  Google Scholar 

  • Xuan S, Hao L, Jiang W, Gong X, Hu Y, Chen Z (2007) A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology 18:35602–35611

    Article  CAS  Google Scholar 

  • Yang X, Yang SY, Wang LL, Shao XT, Niu R, Shan L (2011) Activated carbon catalyzed persulfate oxidation of azo dye acid Orange 7 in aqueous solution. Environ Sci 32:1960–1966

    CAS  Google Scholar 

  • Yao YJ, Yang ZH, Zhang DW, Peng WC, Sun HQ, Wang SB (2012) Magnetic CoFe2O4-graphene hybrids: facile synthesis, characterization, and catalytic properties. Ind Eng Chem Res 51:6044–6051

    Article  CAS  Google Scholar 

  • Yao Y, Cai Y, Lu F, Wei F, Wang X (2014) Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J Hazard Mater 270:61–70

    Article  CAS  Google Scholar 

  • Yu HQ, Huang BC, Jiang J, Huang G (2018) Sludge biochar-based catalyst for improved pollutant degradation by activating peroxymonosulfate. J Mater Chem A 6:378–387

    Google Scholar 

  • Yu J, Tang L, Pang Y, Zeng G, Wang J, Deng Y (2019) Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: internal electron transfer mechanism. Chem Eng J 364:146–159

    Article  CAS  Google Scholar 

  • Zhang X, Feng M, Qu R, Liu H, Wang L, Wang Z (2016) Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs. Chem Eng J 301:1–11

    Article  CAS  Google Scholar 

  • Zhao Q, Mao Q, Zhou Y, Wei J, Liu X, Yang J (2017) Metal-free carbon materials-catalyzed sulfate radical–based advanced oxidation processes: a review on heterogeneous catalysts and applications. Chemosphere 189:224–238

    Article  CAS  Google Scholar 

  • Zhou P, Zhang J, Zhang Y, Zhang G, Li W, Wei C (2017) Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J Hazard Mater 344:1209–1219

    Article  CAS  Google Scholar 

  • Zhu MY, Diao GW (2011) Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale 3:2748–2767

    Article  CAS  Google Scholar 

  • Zhu Y, Murali S, Cai W (2010a) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  • Zhu Y, Stubbs LP, Ho F, Liu R, Ship CP (2010b) Magnetic nanocomposites: a new perspective in catalysis. Chemcatchem 2:365–374

    Article  CAS  Google Scholar 

  • Zhu SS, Huang XC, Ma F, Duan XG, Wang SB (2018) Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environ Sci Technol 15:8649–8658

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 51409024, 51508043, 51579096), the Natural Science Foundation of Hu Nan province (No. 2017JJ3341), and the Training program for Excellent Young Innovators of Changsha (No. kq1802022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Luo or Lin Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Luo, K., Tang, L. et al. Carbon-based magnetic nanocomposite as catalyst for persulfate activation: a critical review. Environ Sci Pollut Res 26, 32764–32776 (2019). https://doi.org/10.1007/s11356-019-06403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06403-4

Keywords

Navigation