Skip to main content

Advertisement

Log in

Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, a sensitive and low-cost multi-wavelength spectrophotometric method for the determination of hydrogen peroxide (H2O2) in water was established. The method was based on the oxidative coloration of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) via Fenton reaction, which resulted in the formation of green radical (ABTS•+) with absorbance at four different wavelengths (i.e., 415 nm, 650 nm, 732 nm, and 820 nm). Under the optimized conditions (CABTS = 2.0 mM, CFe2+ = 1.0 mM, pH = 2.60 ± 0.02, and reaction time (t) = 1 min), the absorbance of the generated ABTS•+ at 415 nm, 650 nm, 732 nm, and 820 nm were well linear with H2O2 concentrations in the range of 0–40 μM (R2 > 0.999) and the sensitivities of the proposed Fenton-ABTS method were calculated as 4.19 × 104 M–1 cm–1,1.73 × 104 M–1 cm–1, 2.18 × 104 M–1 cm–1, and 1.96 × 104 M–1 cm–1, respectively. Meanwhile, the detection limits of the Fenton-ABTS method at 415 nm, 650 nm, 732 nm, and 820 nm were respectively calculated to be 0.18 μM, 0.12 μM, 0.10 μM, and 0.11 μM. The absorbance of the generated ABTS•+ in ultrapure water, underground water, and reservoir water was quite stable within 30 min. Moreover, the proposed Fenton-ABTS method could be used for monitoring the variations of H2O2 concentration during the oxidative decolorization of RhB in alkali-activated H2O2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amelin VG, Kolodkin IS, Irinina YA (2000) Test method for the determination of hydrogen peroxide in atmospheric precipitation and water using indicator papers. J Anal Chem 55:374–377

    Article  CAS  Google Scholar 

  • Audino F, Conte LO, Schenone AV, Pérez-Moya M, Graells M, Alfano OM (2018) A kinetic study for the Fenton and photo-Fenton paracetamol degradation in an annular photoreactor. Environ Sci Pollut Res 26:4312–4323

    Article  CAS  Google Scholar 

  • Aydin Z, Wei Y, Guo M (2012) A highly selective Rhodamine based turn-on optical sensor for Fe3+. Inorg Chem Commun 20:93–96

    Article  CAS  Google Scholar 

  • Bader H, Sturzenegger V, Hoigné J (1988) Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p -phenylenediamine (DPD). Water Res 22:1109–1115

    Article  CAS  Google Scholar 

  • Cai H, Liu X, Zou J, Xiao J, Yuan B, Li F, Cheng Q (2018) Multi-wavelength spectrophotometric determination of hydrogen peroxide in water with peroxidase-catalyzed oxidation of ABTS. Chemosphere 193:833–839

    Article  CAS  Google Scholar 

  • Childs RE, Bardsley WG (1975) Time-dependent inhibition of enzymes by active-site-directed reagents. A theoretical treatment of the kinetics of affinity labelling. J Theor Biol 53:381–394

    Article  CAS  Google Scholar 

  • De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732

    Article  CAS  Google Scholar 

  • Ding Y, Zhu L, Yan J, Xiang Q, Tang H (2011) Spectrophotometric determination of persulfate by oxidative decolorization of azo dyes for wastewater treatment. J Environ Monit 13:357–363

    Article  CAS  Google Scholar 

  • Evans SAG, Elliott JM, Andrews LM, Bartlett PN, Doyle PJ, Guy D (2002) Detection of hydrogen peroxide at mesoporous platinum microelectrodes. Anal Chem 74:1322–1326

    Article  CAS  Google Scholar 

  • Fan W, Qiao J, Guan X (2017) Multi-wavelength spectrophotometric determination of Cr (VI) in water with ABTS. Chemosphere 171:460–467

    Article  CAS  Google Scholar 

  • Georgi A, Schierz A, Trommler U, Horwitz CP, Collins TJ, Kopinke FD (2007) Humic acid modified Fenton reagent for enhancement of the working pH range. Appl Catal B-Environ 72:26–36

    Article  CAS  Google Scholar 

  • Gomez-Herrero E, Tobajas M, Polo A, Rodriguez JJ, Mohedano AF (2018) Removal of imidazolium- and pyridinium-based ionic liquids by Fenton oxidation. Environ Sci Pollut Res 25:34930–34937

    Article  CAS  Google Scholar 

  • Gu Y, Xue P, Jia F, Shi K (2019) Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. J Hazard Mater 365:118–124

    Article  CAS  Google Scholar 

  • Hoshino M, Kamino S, Doi M, Takada S, Mitani S, Yanagihara R, Asano M, Yamaguchi T, Fujita Y (2014) Spectrophotometric determination of hydrogen peroxide with osmium(VIII) and m-carboxyphenylfluorone. Spectrochim Acta A 117:814–816

    Article  CAS  Google Scholar 

  • Hu Y, Zhang Z, Yang C (2007) The determination of hydrogen peroxide generated from cigarette smoke with an ultrasensitive and highly selective chemiluminescence method. Anal Chim Acta 601:95–100

    Article  CAS  Google Scholar 

  • Jia W, Min G, Zhe Z, Yu T, Rodriguez EG, Ying W, Lei Y (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: toward H2O2 detection. J Electroanal Chem 625:27–32

    Article  CAS  Google Scholar 

  • Kieber RJ, Helz GR (1986) Two-method verification of hydrogen peroxide determinations in natural waters. Anal Chem 58:1944–1945

    Article  Google Scholar 

  • Koltsakidou Α, Antonopoulou M, Sykiotou M, Ε Ε KI, Lambropoulou DA (2017) Photo-Fenton and Fenton-like processes for the treatment of the antineoplastic drug 5-fluorouracil under simulated solar radiation. Environ Sci Pollut Res 24:4791–4800

    Article  CAS  Google Scholar 

  • Labrinea EP, Georgiou CA (2004) Stopped-flow method for assessment of pH and timing effect on the ABTS total antioxidant capacity assay. Anal Chim Acta 526:63–68

    Article  CAS  Google Scholar 

  • Lee Y, Yoon J, Von GU (2005) Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. Water Res 39:1946–1953

    Article  CAS  Google Scholar 

  • Lee Y, Kissner R, Von GU (2014) Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms. Environ Sci Technol 48:5154–5162

    Article  CAS  Google Scholar 

  • Li YZ, Townshend A (1998) Evaluation of the adsorptive immobilisation of horseradish peroxidase on PTFE tubing in flow systems for hydrogen peroxide determination using fluorescence detection. Anal Chim Acta 359:149–156

    Article  CAS  Google Scholar 

  • Li Z, Cui X, Zheng J, Wang Q, Lin Y (2007) Effects of microstructure of carbon nanofibers for amperometric detection of hydrogen peroxide. Anal Chim Acta 597:238–244

    Article  CAS  Google Scholar 

  • Li Y, Li L, Chen Z, Zhang J, Gong L, Wang Y, Zhao H, Mu Y (2018) Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: process, kinetics, and mechanisms. Chemosphere 192:372–378

    Article  CAS  Google Scholar 

  • Long X, Yang Z, Wang H, Chen M, Peng K, Zeng Q, Xu A (2012) Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Ind Eng Chem Res 51:11998–12003

    Article  CAS  Google Scholar 

  • Luo W, Abbas ME, Zhu L, Deng K, Tang H (2008) Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system. Anal Chim Acta 629:1–5

    Article  CAS  Google Scholar 

  • Ma J, Yang J, Zhao J (2009) Spectrophotometric determination of trace KMnO4 in water with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate). Acta Sci Circumst 29:668–672

    CAS  Google Scholar 

  • Mounteer AH, Pereira RO, Morais AA, Ruas DB, Silveira DS, Viana DB, Medeiros RC (2007) Advanced oxidation of bleached eucalypt kraft pulp mill effluent. Water Sci Technol 55:109–116

    Article  Google Scholar 

  • Pignatello JJ, Oliveros E, Mackay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Environ Sci Technol 36:1–84

    Article  CAS  Google Scholar 

  • Pinkernell U, Lüke HJ, Karst U (1997) Selective photometric determination of peroxycarboxylic acids in the presence of hydrogen peroxide. Analyst 122:567–571

    Article  CAS  Google Scholar 

  • Pinkernell U, Nowack B, Gallard H, Gunten UV (2000) Methods for the photometric determination of reactive bromine and chlorine species with ABTS. Water Res 34:4343–4350

    Article  CAS  Google Scholar 

  • Razmi H, Mohammad-Rezaei R, Heidari H (2010) Self-assembled prussian blue nanoparticles based electrochemical sensor for high sensitive determination of H2O2 in acidic media. Electroanal 21:2355–2362

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Riceevans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Sakuragawa A, Tanial T, Okutani T (1998) Fluorometric determination of microamounts of hydrogen peroxide with an immobilized enzyme prepared by coupling horseradish peroxidase to chitosan beads. Anal Chim Acta 374:191–200

    Article  CAS  Google Scholar 

  • Sellers RM (1980) Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst 105:950–954

    Article  CAS  Google Scholar 

  • Song Y, Jiang J, Ma J, Pang S, Liu Y, Yang Y, Luo C, Zhang J, Gu J, Qin W (2015) ABTS as an electron shuttle to enhance the oxidation kinetics of substituted phenols by aqueous permanganate. Environ Sci Technol 49:11764–11771

    Article  CAS  Google Scholar 

  • Steger PJ, Mühlebach SF (1997) In vitro oxidation of i.v. lipid emulsions in different all-in-one admixture bags assessed by an iodometric assay and gas-liquid chromatography. Nutrition 13:133–140

    Article  CAS  Google Scholar 

  • Sully BD, Williams PL (1962) The analysis of solutions of per-acids and hydrogen peroxide. Analyst 87:653–657

    Article  CAS  Google Scholar 

  • Tahirović A, Čopra A, Omanović-Mikličanin E, Kalcher K (2007) A chemiluminescence sensor for the determination of hydrogen peroxide. Talanta 72:1378–1385

    Article  CAS  Google Scholar 

  • Wang T, Reckhow DA (2016) Spectrophotometric method for determination of ozone residual in water using ABTS: 2.2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonate). Ozone Sci Eng 38:373–381

    Article  CAS  Google Scholar 

  • Wang D, Zou J, Cai H, Huang Y, Li F, Cheng Q (2018) Effective degradation of Orange G and Rhodamine B by alkali-activated hydrogen peroxide: roles of HO2 and O2 ·−. Environ Sci Pollut Res 221:117–124

    Google Scholar 

  • Zhang K, Mao L, Cai R (2000) Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51:179–186

    Article  CAS  Google Scholar 

  • Zou J, Cai H, Wang D, Xiao J, Zhou Z, Yuan B (2019a) Spectrophotometric determination of trace hydrogen peroxide via the oxidative coloration of DPD using a Fenton system. Chemosphere 224:646–652

    Article  CAS  Google Scholar 

  • Zou J, Huang Y, Zhu L, Cui Z (2019b) Multi-wavelength spectrophotometric measurement of persulfates using 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as indicator. Spectrochim Acta A 216:214–220

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 51708231), China Postdoctoral Science Foundation (No. 2017M612120), Natural Science Foundation of Fujian province (No. 14185013), and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-YX506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zou.

Additional information

Responsible editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, D., Qiu, S. et al. Multi-wavelength spectrophotometric determination of hydrogen peroxide in water by oxidative coloration of ABTS via Fenton reaction. Environ Sci Pollut Res 26, 27063–27072 (2019). https://doi.org/10.1007/s11356-019-05884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05884-7

Keywords

Navigation